2019届高三数学文一轮复习:第二章 函数的概念与基本初等函数 课时跟踪训练10含解析
高中数学一轮复习:第二章 函数的概念与基本初等函数(必修1)课后跟踪训练12

课后跟踪训练(十二)基础巩固练一、选择题1.若函数f (x )在区间[-2,2]上的图象是连续不断的曲线,且f (x )在(-2,2)内有一个零点,则f (-2)·f (2)的值( )A .大于0B .小于0C .等于0D .不能确定[解析] 若函数f (x )在(-2,2)内有一个零点,且该零点是变号零点,则f (-2)·f (2)<0,否则, f (-2)·f (2)>0,故选D.[答案] D2.(2019·湖北襄阳四校联考)函数f (x )=3x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3[解析] 由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.故选B.[答案] B3.(2018·吉林省实验中学段考)若函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎢⎡⎭⎪⎫2,52D.⎣⎢⎡⎭⎪⎫2,103[解析] 解法一:当f ⎝ ⎛⎭⎪⎫12·f (3)<0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有且仅有一个零点,即⎝ ⎛⎭⎪⎫54-a 2(10-3a )<0, 解得52<a <103;当⎩⎪⎨⎪⎧12<a2<3,Δ=a 2-4≥0,f ⎝ ⎛⎭⎪⎫12>0,f (3)>0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有一个或两个零点,解得2≤a <52; 当a =52时,函数的零点为12和2,符合题意; 当a =103时,函数的零点为13或3,不符合题意. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D.解法二:令f (x )=0,则a =x 2+1x .令g (x )=x 2+1x , 而g ′(x )=1-1x 2.当x ∈⎝ ⎛⎭⎪⎫12,1时,g ′(x )<0;当x ∈(1,3)时,g ′(x )>0,∴g (x )在⎝ ⎛⎭⎪⎫12,1上单调递减,在(1,3)上单调递增,∴g (x )的值域为⎣⎢⎡⎭⎪⎫2,103.∴a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D. [答案] D[解析] g (x )=f (x )-m 有三个不同的零点等价于f (x )=m 有三个不同的根,等价于函数y =f (x )与y =m 的图象有三个不同的公共点.在同一直角坐标系中画出函数y =f (x ),y =m 的图象(如图所示),观察其交点个数,显然当-14<m <0时,两个函数图象有三个不同的公共点.故选C.[答案] C5.(2018·安徽安庆二模)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点个数为( )A .3B .2C .1D .0[解析] 由f (x +1)=f (x -1),知f (x )的周期是2,画出函数f (x )和g (x )的部分图象,如图所示,由图象可知f (x )与g (x )的图象有2个交点,故F (x )有2个零点.故选B.[答案] B 二、填空题6.函数f (x )=ln(2x )-1的零点为________. [解析] 由ln(2x )-1=0,得2x =e ,所以x =e2. 故f (x )=ln(2x )-1的零点为e2. [答案] e27.(2019·四川绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.[解析] 由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎨⎧f (1)<0,f (2)>0,即⎩⎨⎧-a <0,4-1-a >0,解得0<a <3,故填(0,3).[答案] (0,3)8.(2019·山东济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为________.[解析] 方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,因为函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4.[答案] 4 三、解答题9.(2019·烟台模拟)已知二次函数f (x )=x 2+(2a -1)x +1-2a , (1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围.[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧ f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为{a ⎪⎪⎪⎭⎬⎫12<a <34.10.(2019·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2. (3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.能力提升练11.(2019·云南昆明一模)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若函数f (x ),g (x )的零点分别为a ,b ,则有( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 易知函数f (x ),g (x )在定义域上都是单调递增函数,且f (0)=-1<0,f (1)=e -1>0,g (1)=-2<0,g (2)=ln2+1>0,所以a ,b 存在且唯一,且a ∈(0,1),b ∈(1,2),从而f (1)<f (b )<f (2),g (0)<g (a )<g (1),于是f (b )>0,g (a )<0,即g (a )<0<f (b ).[答案] A12.(2019·昆明市高三质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5][解析] 解法一:当x ≥1时,由ln x +1=2,得x =e ,由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.解法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象,如图,由图象知,要使f (x )=2有两个解.则a -3<2,得a <5,故选C.[答案] C13.(2019·河南名校联考)已知函数f (x )=x 2-m cos x +m 2+3m -8有唯一的零点,则实数m 的值为________.[解析] 由题意,函数f (x )为偶函数,在x =0处有定义且存在唯一零点,所以唯一零点为0,则02-m cos0+m 2+3m -8=0,解得m =-4或m =2.将m =-4代入解析式,得f (x )=x 2+4cos x -4,分离得两个函数y =-x 2+4,y =4cos x ,如图知f (x )存在3个零点,不符合题意,仅m =2时f (x )存在唯一零点.[答案] 214.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.[解] (1)作出g (x )=x +e 2x (x >0)的大致图象如图(1).图(1)可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象如图(2).图(2)∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).拓展延伸练15.(2019·山西质量检测)已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6[答案] C16.已知函数f (x )=⎩⎨⎧|log 2(x -1)|,1<x ≤3,12x 2-92x +10,x >3,若方程f (x )=m 有四个不同的实根x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)的取值范围为________.[解析] 方程f (x )=m 有四个不同的实数根x 1,x 2,x 3,x 4可转化为函数f (x )的图象与直线y =m 有四个不同的交点,且交点的横坐标分别为x 1,x 2,x 3,x 4,作出函数f (x )的大致图象如图所示,结合图象得0<m <1,且f (x 1)=f (x 2)=f (x 3)=f (x 4).由f (x 1)=f (x 2)可得,|log 2(x 1-1)|=|log 2(x 2-1)|,又1<x 1<2<x 2,所以log 2(x 1-1)+log 2(x 2-1)=0,得(x 1-1)(x 2-1)=1,整理得x 1x 2=x 1+x 2,所以1x 1+1x 2=1. 由f (x 3)=f (x 4)及二次函数图象的对称性,得x 3+x 4=9,所以⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)=m ⎝ ⎛⎭⎪⎫1x 1+1x 2(x 3+x 4)=9m ∈(0,9).[答案](0,9)。
第二章基本初等函数(I)复习课第一和二课时

超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
1
3x
2 .
例4.比较下列各组中两个值的大小:
1 log6 7, log7 6; 2 log3 , log2 0.8.
例5.设 f x 4x a 2x1 b, 当x=2时,f(x)有最小值10.
求a,b的值。
解: f x 4 x a 2 x1 b 2 x 2 2a 2 x b 2 x a 2 b a 2
质 (3)a>1 时,a 越大越靠近 y 轴,0<a<1 时,a 越小越靠近 y 轴,
(4)在 R 上是增函数
(4)在 R 上是减函数
11.对数的定义:如果 ab N( a 0且a 1),那么数 b 就叫做以 a 为底 的 N 的对数,记作 log a N b ,其中 N 0,b R 12.指数式与对数式的互化
若a≤0,则f(x)不存在最值。若a>0,由题
意可知,要取最小值,需 a 2 x a 4
此时,最小值为b a 2 b 16 10,b 26
综上:a=4,b=26
例6.设0<x<1,a>0且a≠1,比较 log a 1 x和log a 1 x
的大小。
解:
log
a
1
x
log
a
1
x
log
对数与对数函数
对数换底公式
(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用课件文

答案:-1967
第十页,共45页。
39
2. a 2 a-3÷ 3 a-73 a13=________.
解析:原式=(a
9 2
a
3 2
)
1 3
÷(a
7 3
a
13 3
)
1 2
=(a3)
1 3
÷(a2)
1 2
=a÷a=1.
答案:1
4
1
3. 4b
a 3 -8a 3 b
2 3
+23
ab+a
2 3
÷a
2 3
3
1.指数函数的图象
函数
y=ax(a>0,且 a≠1)
0<a<1
a>1
图象
在 x 轴_上__方_,过定点_(0_,_1_)
图象
特征 当 x 逐渐增大时,图象逐渐 当 x 逐渐增大时,图象
下___降_
逐渐_上__升_
第十五页,共45页。
2.指数函数图象画法的三个关键点 画指数函数 y=ax(a>0,且 a≠1)的图象,应抓住三个关键 点:(1,a),(0,1),-1,1a. 3.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图 象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
2
1
2
又因为 a=2 3 =4 3 ,c=25 3 =5 3 ,
2
由函数 y=x 3 在(0,+∞)上为增函数知,a<c.
综上得 b<a<c. [答案] c>a>b
第二十九页,共45页。
[方法技巧] 比较指数式大小的方法
比较两个指数式大小时,尽量化同底或同指. (1)当底数相同,指数不同时,构造同一指数函数,然后利 用指数函数性质比较大小. (2)当指数相同,底数不同时,构造两个指数函数,利用图 象比较大小. (3)当底数不同,指数也不同时,常借助 1,0 等中间量进行 比较.
届数学一轮复习第二章函数概念及基本初等函数Ⅰ第7节函数的图象教学案含解析

第7节函数的图象考试要求 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.知识梳理1。
利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线。
2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象错误!y=-f(x)的图象;y=f(x)的图象错误!y=f(-x)的图象;y=f(x)的图象错误!y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象错误!y=log a x(a〉0,且a≠1)的图象. (3)伸缩变换y=f(x)错误!y=f(ax).y=f(x)错误!y=Af(x)。
(4)翻折变换y=f(x)的图象错误!y=|f(x)|的图象;y=f(x)的图象错误!y=f(|x|)的图象.[常用结论与微点提醒]1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称。
(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.2.图象的左右平移仅仅是相对于...x.而言,如果x的系数不是1,常需把系数提出来,再进行变换.3。
图象的上下平移仅仅是相对于...y.而言的,利用“上减下加”进行。
诊断自测1.判断下列结论正误(在括号内打“√"或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a〉0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称。
高考数学第一轮复习教案-专题2函数概念与基本初等函数

反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。
高考数学一轮复习第2章函数的概念及基本初等函数Ⅰ第4节二次函数与幂函数课件理新人教A版
第四节 二次函数与幂函数
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.了解幂函数的概念.
2.结合函数 y=x,y=x2,y
幂函数一般不单独命题,常与指数、对数
=x3,y=1x,y=x12的图象,函数交汇命题;二次函数的图象与应用仍是 1.逻辑推理
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
图象
定义域 值域
(-∞,+∞) 4ac4-a b2,+∞
f(x)=ax2+bx+c(a<0)
(-∞,+∞) -∞,4ac4-a b2
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
单调性
在-∞,-2ba上单调递减; 在 6 ___-__∞__,__-__2b_a__上单调递增; 在 5 ___-__2b_a_,__+__∞___上单调递 在-2ba,+∞上单调递减 增
考点二 二次函数的图象与性质 |题组突破|
4.如图是二次函数 y=ax2+bx+c 图象的一部分,图象过点 A(-3,0),对称轴为 x =-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的 是( )
A.②④ B.①④ C.②③ D.①③
解析:选 B 因为图象与 x 轴交于两点,所以 b2-4ac>0,即 b2>4ac,①正确;对称 轴为 x=-1,即-2ba=-1,2a-b=0,②错误;结合图象知,当 x=-1 时,y>0,即 a -b+c>0,③错误;由对称轴为 x=-1 知,b=2a.又函数图象开口向下,所以 a<0,所 以 5a<2a,即 5a<b,④正确.故选 B.
新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文
一、知识梳理1.函数的零点函数零点的概念对于函数y =f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y =f(x)(x∈D)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在性定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,若f(a)·f (b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.二、习题改编1.(必修1P92A组T5改编)函数f(x)=ln x—错误!的零点所在的大致范围是()A.(1,2)B.(2,3)C.错误!和(3,4)D.(4,+∞)答案:B2.(必修1P88例1改编)f(x)=e x+3x的零点个数是()A.0 B.1C.2D.3答案:B3.(必修1P92A组T4改编)函数f(x)=x错误!—错误!错误!的零点个数为.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)二次函数y=ax2+bx+c(a≠0)在b2—4ac<0时没有零点.()(4)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)√(4)√二、易错纠偏错误!(1)忽略限制条件致误;(2)错用零点存在性定理致误.1.函数f(x)=(x—1)ln(x—2)的零点个数为()A.0 B.1C.2D.3解析:选B.由x—2>0,得x>2,所以函数f(x)的定义域为(2,+∞),所以当f(x)=0,即(x—1)ln(x—2)=0时,解得x=1(舍去)或x=3.2.已知函数f(x)=2ax—a+3,若∃x0∈(—1,1),使得f(x0)=0,则实数a的取值范围是.解析:依题意可得f(—1)·f(1)<0,即(—2a—a+3)(2a—a+3)<0,解得a<—3或a>1.答案:(—∞,—3)∪(1,+∞)函数零点所在区间的判断(师生共研)(一题多解)函数f(x)=log3x+x—2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】法一(定理法):函数f(x)=log3x+x—2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=—1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x—2有唯一零点,且零点在区间(1,2)内.法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h(x)=—x+2图象交点的横坐标所在的范围.作出两个函数的图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.【答案】B错误!判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象设f(x)=3x—x2,则在下列区间中,使函数f(x)有零点的区间是()A.[0,1] B.[1,2]C.[—2,—1] D.[—1,0]解析:选D.因为f(x)=3x—x2,所以f(—1)=3—1—1=—错误!<0,f(0)=30—0=1>0,所以f(—1)·f(0)<0.函数零点个数的判断(师生共研)(一题多解)函数f(x)=错误!的零点个数为()A.3B.2C.1D.0【解析】法一(方程法):由f(x)=0,得错误!或错误!解得x=—2或x=e.因此函数f(x)共有2个零点.法二(图形法):函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.【答案】B错误!判断函数零点个数的3种方法(1)方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)图形法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.已知函数f(x)=错误!则f(x)的零点个数为()A.0 B.1C.2D.3解析:选C.当x>1时,令f(x)=ln(x—1)=0,得x=2;当x≤1时,令f(x)=2x—1—1=0,得x=1.故选C.函数零点的应用(师生共研)设函数f(x)=错误!(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有2个零点,则实数a的取值范围是.【解析】(1)若a=1,则f(x)=错误!作出函数f(x)的图象如图所示.由图可得f(x)的最小值为—1.(2)当a≥1时,要使f(x)恰有2个零点,需满足21—a≤0,即a≥2,所以a≥2;当a<1时,要使f(x)恰有2个零点,需满足错误!解得错误!≤a<1.综上,实数a的取值范围为错误!∪[2,+∞).【答案】(1)—1(2)错误!∪[2,+∞)错误!利用函数零点求参数取值范围的方法及步骤(1)常用方法(2)一般步骤1.函数f(x)=2x—错误!—a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析:选C.由题意,知函数f(x)在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以错误!即错误!解得0<a<3,故选C.2.已知函数f(x)=错误!若函数g(x)=f(x)—m有3个零点,则实数m的取值范围是.解析:画出函数f(x)=错误!的图象,如图所示.由于函数g(x)=f(x)—m有3个零点,结合图象得0<m<1,即m∈(0,1).答案:(0,1)3.若函数f(x)=4x—2x—a,x∈[—1,1]有零点,则实数a的取值范围是.解析:因为函数f(x)=4x—2x—a,x∈[—1,1]有零点,所以方程4x—2x—a=0在[—1,1]上有解,即方程a=4x—2x在[—1,1]上有解.方程a=4x—2x可变形为a=错误!错误!—错误!,因为x∈[—1,1],所以2x∈错误!,所以错误!错误!—错误!∈错误!.所以实数a的取值范围是错误!.答案:错误!核心素养系列5直观想象——用图形快速解决的常见几类题直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述分析数学问题,建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路.一、利用图形研究函数的性质【解析】由已知条件得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,1正确;当—1≤x≤0时,0≤—x≤1,f(x)=f(—x)=错误!错误!,函数y=f(x)的部分图象如图所示:由图象知2正确,3不正确;当3<x<4时,—1<x—4<0,f(x)=f(x—4)=错误!错误!,因此4正确,故正确命题的序号为124.【答案】124错误!作出函数图象,由图象观察可得函数的定义域、值域、最值、单调性、奇偶性、极值点等性质,并将这些性质用于转出条件求得结论.二、利用图形解不等式使log2(—x)<x+1成立的x的取值范围是.【解析】在同一直角坐标系内作出y=log2(—x),y=x+1的图象,知满足条件的x∈(—1,0).【答案】(—1,0)错误!f(x),g(x)之间大小不等关系表现为图象中的上下位置关系,画出两个函数的图象,根据函数图象的交点和图象的相对位置确定所求不等式的解集.三、利用图形求解不等式中的参数范围若不等式|x—2a|≥错误!x+a—1对x∈R恒成立,则a的取值范围是.【解析】作出y=|x—2a|和y=错误!x+a—1的简图,依题意知应有2a≤2—2a,故a≤错误!.【答案】错误!错误!对含有参数的函数不等式问题,一般将不等式化简,整理、重组、构造两个函数,一个含有参数,一个不含参数,研究两个函数的性质,画出两个函数的图象,观察参数的变化如何带动含参函数图象的变化,根据两函数图象的相对位置确定参数满足的不等式,解不等式得出参数a的取值范围.四、利用图形研究零点问题已知函数f(x)=2x+x,g(x)=log3x+x,h(x)=x—错误!的零点依次为a,b,c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】在同一直角坐标系下分别画出函数y=2x,y=log3x,y=—错误!的图象,如图,观察它们与y=—x的交点可知a<b<c,故选A.【答案】A错误!零点的个数等价于两函数图象交点的个数,零点的范围、大小可以转化为交点的横坐标的范围、大小,参数的取值范围通过图象的变化寻找建立不等式求解.1.函数f(x)=|x—2|—ln x在定义域内的零点的个数为()A.0 B.1C.2D.3解析:选C.由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y1=|x—2|(x>0),y2=ln x(x>0)的图象,如图所示.由图可知函数f(x)在定义域内的零点个数为2.2.已知函数f(x)=错误!若f(a2)<f(2—a),则实数a的取值范围是.解析:函数f(x)的图象如图所示,由图象知函数f(x)在(—∞,+∞)上单调递增,所以a2<2—a,解得—2<a<1,故实数a的取值范围是(—2,1).答案:(—2,1)[基础题组练]1.(2020·福州期末)已知函数f(x)=错误!则函数y=f(x)+3x的零点个数是()A.0 B.1C.2D.3解析:选C.令f(x)+3x=0,则错误!或错误!解得x=0或x=—1,所以函数y=f(x)+3x 的零点个数是2.故选C.2.下列函数中,在(—1,1)内有零点且单调递增的是()A.y=log错误!xB.y=2x—1C.y=x2—错误!D.y=—x3解析:选B.函数y=log错误!x在定义域上单调递减,y=x2—错误!在(—1,1)上不是单调函数,y=—x3在定义域上单调递减,均不符合要求.对于y=2x—1,当x=0∈(—1,1)时,y=0且y=2x—1在R上单调递增.故选B.3.(2020·甘肃酒泉敦煌中学一诊)方程log4x+x=7的解所在区间是()A.(1,2)B.(3,4)C.(5,6)D.(6,7)解析:选C.令函数f(x)=log4x+x—7,则函数f(x)是(0,+∞)上的单调递增函数,且是连续函数.因为f(5)<0,f(6)>0,所以f(5)·f(6)<0,所以函数f(x)=log4x+x—7的零点所在区间为(5,6),所以方程log4x+x=7的解所在区间是(5,6).故选C.4.(2020·内蒙古月考)已知函数f(x)=x2—2|x|—m的零点有两个,则实数m的取值范围为()A.(—1,0)B.{—1}∪(0,+∞)C.[—1,0)∪(0,+∞)D.(0,1)解析:选B.在同一直角坐标系内作出函数y=x2—2|x|的图象和直线y=m,可知当m>0或m=—1时,直线y=m与函数y=x2—2|x|的图象有两个交点,即函数f(x)=x2—2|x|—m有两个零点.故选B.5.已知函数f(x)=x e x—ax—1,则关于f(x)的零点叙述正确的是()A.当a=0时,函数f(x)有两个零点B.函数f(x)必有一个零点是正数C.当a<0时,函数f(x)有两个零点D.当a>0时,函数f(x)只有一个零点解析:选B.f(x)=0⇔e x=a+错误!(x≠0),在同一直角坐标系中作出y=e x与y=错误!的图象,观察可知A,C,D选项错误,选项B正确.6.已知函数f(x)=错误!+a的零点为1,则实数a的值为.解析:由已知得f(1)=0,即错误!+a=0,解得a=—错误!.答案:—错误!7.(2020·新疆第一次适应性检测)设a∈Z,函数f(x)=e x+x—a,若x∈(—1,1)时,函数有零点,则a的取值个数为.解析:根据函数解析式得到函数f(x)是单调递增的.由零点存在性定理知若x∈(—1,1)时,函数有零点,需要满足错误!⇒错误!—1<a<e+1,因为a是整数,故可得到a的可能取值为0,1,2,3.答案:48.已知f(x)=x2+(a2—1)x+(a—2)的一个零点比1大,一个零点比1小,则实数a的取值范围是.解析:法一:设方程x2+(a2—1)x+(a—2)=0的两根分别为x1,x2(x1<x2),则(x1—1)(x2—1)<0,所以x1x2—(x1+x2)+1<0,由根与系数的关系,得(a—2)+(a2—1)+1<0,即a2+a—2<0,所以—2<a<1.故实数a的取值范围为(—2,1).法二:函数f(x)的图象大致如图,则有f(1)<0,即1+(a2—1)+a—2<0,得a2+a—2<0,所以—2<a<1.故实数a的取值范围是(—2,1).答案:(—2,1)9.设函数f(x)=ax2+bx+b—1(a≠0).(1)当a=1,b=—2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同的零点,求实数a的取值范围.解:(1)当a=1,b=—2时,f(x)=x2—2x—3,令f(x)=0,得x=3或x=—1.所以函数f(x)的零点为3或—1.(2)依题意,f(x)=ax2+bx+b—1=0有两个不同的实根,所以b2—4a(b—1)>0恒成立,即对于任意b∈R,b2—4ab+4a>0恒成立,所以有(—4a)2—4×(4a)<0⇒a2—a<0,解得0<a<1,因此实数a的取值范围是(0,1).10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)—f(x)=2x—1.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)—mx的两个零点分别在区间(—1,2)和(2,4)内,求m的取值范围.解:(1)由f(0)=2得c=2,又f(x+1)—f(x)=2x—1,得2ax+a+b=2x—1,故错误!解得a=1,b=—2,所以f(x)=x2—2x+2.(2)g(x)=x2—(2+m)x+2,若g(x)的两个零点分别在区间(—1,2)和(2,4)内,则满足错误!⇒错误!解得1<m<错误!.所以m的取值范围为错误!.[综合题组练]1.(一题多解)函数f(x)=2x—错误!零点的个数为()A.0 B.1C.2D.3解析:选B.法一:当x<0时,f(x)=2x—错误!>0恒成立,无零点;又易知f(x)=2x—错误!在(0,+∞)上单调递增,最多有一个零点.又f错误!=错误!—2<0,f(1)=2—1>0,所以有一个零点.故选B.法二:在同一平面直角坐标系中,作出函数y=2x和y=错误!的图象,如图所示.函数f(x)=2x—错误!的零点等价于2x=错误!的根等价于函数y=2x和y=错误!的交点.由图可知,有一个交点,所以有一个零点.故选B.2.已知命题p:“m=2”是“幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数”的充要条件;命题q:已知函数f(x)=ln x+3x—8的零点x0∈[a,b],且b—a=1(a,b∈N*),则a+b=5.则下列命题为真命题的是()A.p∧qB.(﹁p)∧qC.﹁qD.p∧(﹁q)解析:选A.对于命题p,若幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数,则错误!解得m=2,所以命题p是真命题,﹁p是假命题.对于命题q,函数f(x)=ln x+3x—8在(0,+∞)上单调递增,且f(2)=ln 2—2<0,f(3)=ln 3+1>0,所以零点x0∈[a,b],且b—a=1(a,b∈N*),则a=2,b=3,a+b=5,所以命题q为真命题,﹁q为假命题.所以p∧q 是真命题,(﹁p)∧q,﹁q,p∧(﹁q)都是假命题.故选A.3.设函数f(x)=错误!(x>0).(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求错误!+错误!的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.解:(1)如图所示.(2)因为f(x)=错误!=错误!故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b),得0<a<1<b,且错误!—1=1—错误!,所以错误!+错误!=2.(3)由(1)中函数f(x)的图象可知,当0<m<1时,方程f(x)=m有两个不相等的正根.所以m的取值范围是(0,1).4.(创新型)已知函数f(x)=—x2—2x,g(x)=错误!(1)求g(f(1))的值;(2)若方程g(f(x))—a=0有4个实数根,求实数a的取值范围.解:(1)利用解析式直接求解得g(f(1))=g(—3)=—3+1=—2.(2)令f(x)=t,则原方程化为g(t)=a,易知方程f(x)=t在t∈(—∞,1)上有2个不同的解,则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g (t)(t<1)的图象,如图,由图象可知,当1≤a<错误!时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是错误!.。
届数学一轮复习第二章函数的概念及基本初等函数I第七节函数的图象学案理含解析
第七节函数的图象[最新考纲][考情分析][核心素养]1。
在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数。
2。
会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.本节的常考点有函数图象的辨析、函数图象和函数性质的综合应用及利用图象解方程或不等式,其中函数图象的辨析仍将是2021年高考考查的热点,题型多以选择题为主,属中档题,分值为5分。
1.逻辑推理2.数学运算3.数据分析4.数学建模‖知识梳理‖1.利用描点法作函数图象其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等);最后:描点,连线.2.利用图象变换法作函数的图象(1)平移变换y=f(x)错误!错误!y=f(x-a);y=f(x)错误!错误!y=f(x)+b.(2)伸缩变换y=f(x)y=f(ωx);y=f(x)错误!y=Af(x).(3)对称变换y=f(x)――――――→,关于x轴对称y=错误!-f(x);y=f(x)错误!y=错误!f(-x);y=f(x)错误!y=错误!-f(-x).(4)翻折变换y=f(x)错误!y=f(|x|);y=f(x)错误!y=|f(x)|。
►常用结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a -x),则函数y=f(x)的图象关于直线x=a对称.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)将函数y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图象.()(2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(3)函数y=f(x)与y=-f(-x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案:(1)×(2)×(3)√(4)√二、走进教材2.(必修1P23T2改编)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()答案:C3.(必修1P24A7改编)下列图象是函数y=错误!的图象的是()答案:C三、易错自纠4.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1解析:选D与曲线y=e x关于y轴对称的图象对应的解析式为y=e-x,将函数y=e-x的图象向左平移1个单位长度即得y =f(x)的图象,∴f(x)=e-(x+1)=e-x-1,故选D.5.(2019年浙江卷)在同一直角坐标系中,函数y=错误!,y=log a 错误!(a〉0,且a≠1)的图象可能是()解析:选D可分别取a=12和a=2,在同一直角坐标系内画出相应图象(图略),对比可知,D正确,故选D.6.已知函数f(x)的图象如图所示,则函数g(x)=log错误!f(x)的定义域是________.解析:当f(x)>0时,函数g(x)=log错误!f(x)有意义,由函数f(x)的图象知满足f(x)〉0时,x∈(2,8].答案:(2,8]错误!|题组突破|1.(2019年全国卷Ⅰ)函数f(x)=错误!在[-π,π]的图象大致为()解析:选D∵f(x)=错误!,x∈[-π,π],∴f(-x)=-sin x-xcos(-x)+(-x)2=-错误!=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f(π)=错误!=错误!>0,因此排除B、C,故选D.2.(2020届合肥调研)函数f(x)=ln错误!的图象大致为()解析:选B解法一:易知f(x)定义域为{x|x≠0}.又因为f(-x)=ln错误!=ln错误!=ln错误!=f(x),所以函数f(x)为偶函数,故排除A、D;又f(1)=ln错误!<0,f(2)=ln错误!=ln2-错误!〉0,所以f(2)>f(1),故排除C.故选B.解法二:因为f(x)=ln错误!=ln错误!,所以当x→+∞时,f(x)→+∞,排除A、C;当x→-∞时,1-错误!→-1,x错误!→+∞,则f(x)→+∞,排除D,故选B.3。
高考数学一轮复习 第2章 函数的概念与基本初等函数 第6讲 对数与对数函数课件 文
(1)确定函数的定义域,研究或利用函数的性质,都要在其定义 域上进行. (2)如果需将函数解析式变形,一定要保证其等价性,否则结论 错误. (3)在解决与对数函数相关的比较大小或解不等式问题时,要优 先考虑利用对数函数的单调性来求解.在利用单调性时,一定 要明确底数 a 的取值对函数增减性的影响,及真数必须为正的 限制条件.
A.3
B.13
C. 3
D.
3 3
解析:选 D.因为 xlog34=1,即 log34x=1.所以 4x=3.即 2x= 3,
所以
2-x=
1= 3
3 3.
12/11/2021
(必修 1 P71 例 7(1)改编)函数 y=log2x2 的大致图象是( )
解析:选 D.法一:f(-x)=log2(-x)2=log2x2=f(x). 所以 y=log2x2 的图象关于 y 轴对称,故选 D. 法二:y=log2x2=2log2|x|=22lloogg22x(,-x> x)0, ,x<0. 作出图象可知选 D.
【答案】
(1)D
1 (2)4
12/11/2021
(1)在识别函数图象时,要善于利用已知函数的性质、函数图象 上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合 要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问 题,利用数形结合法求解.
12/11/2021
【对点通关】 1.(必修 1 P73 练习 T1 改编)若函数 y=a|x|(a>0,且 a≠1)的值 域为{y|y≥1},则函数 y=loga|x|的图象大致是( )
12/11/2021
【对点通关】
1.(2016·高考全国卷Ⅰ)若 a>b>0,0<c<1,则( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(十) 小值的3倍,则a的值为() 2 2 C.14D. [解析]∵0a min =log22a,∴1=3loga2a⇒a=(2a)3⇒8a2=1⇒a= [答案]A 3.(2017·西安模拟)已知函数f(x)=log 的解为() [解析]因为函数f(x)=logax(a>0且a≠1)在(0,+∞)上为单调函数,而2a< f2a>f3a,所以f(x)=logax(a>0且a≠1)在(0,+∞)上单调递减,从而f1-1x>0⇒0<1
[基础巩固]
一、选择题
1.(2018·湖北省仙桃中学月考)计算2log63+log64的结果是()
A.log62B.2
C.log63D.3
[解析]2log63+log64=log69+log64=log636=2.故选B.
[答案]B
2.(2018·临川二中月考)若函数f(x)=log
a
x(0
A.24B
.
1
2
a=1,f(x)
2
4
.故选A.
a
x(a>0且a≠1)满足f2a>f3a,则f1-1x>0
A.0
3
a
且
-
1x<1,所以0<1
x
<1⇔x>1.故选C.