概率论与数理统计第七章 参数估计

合集下载

概率论与数理统计第7章

概率论与数理统计第7章

x 0 , x 0 ,x 1 ,x 2 ,
,x n 为 总 体 X
的 一 个 样 本 ,则 未 知 参 数 的 矩 估 计 ˆ _ _ _ _ _ _ _ _ _ _ _ .
这个例子所作的推断已经体现了极大似然法 的基本思想 .
最大似然估计原理:
设X1,X2,…Xn是取自总体X的一个样本,样 本的联合密度(连续型)或联合分布律 (离散型)为
f (x1,x2,… ,xn ; ) .
当给定样本X1,X2,…Xn时,定义似然函数为:
L() f (x1, x2 ,…, xn; )

pˆ1Βιβλιοθήκη nn i 1xix
即为 p 的最大似然估计值 .
从而 p 的最大似然估计量为
p ˆ(X1,
1n ,Xn)ni1Xi X
求最大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合分布率(或联 合密度);
(2) 把样本联合分布率 ( 或联合密度 ) 中自变
量看成已知常数,而把参数 看作自变量,得到似然 函数L();
要求:领会
2.2 估计量的有效性、相合性, 要求:领会
3.区间估计
3.1 置信区间的概念,
要求:领会
3.2 求单个正态总体均值和方差的置信区间,要求:简单应用
参数估计
现在我们来介绍一类重要的统计推断问题
参数估计问题是利用从总体抽样得到的信息来估计总体 的某些参数或者参数的某些函数.
估计新生儿的体重
1 p
n
pxi (1p)1xi
i1
n
n
xi
n xi
pi1 (1p) i1
n
n
xi
n xi
L(p)pi1 (1p) i1

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论与数理统计讲义 (27)

概率论与数理统计讲义 (27)

原点矩
由矩法,
0
X 1
2
总体矩
样本矩
2
从中解得 ˆ 2X 1 , 即为 的矩估计.
1 X
例2 设X1,X2,…Xn是取自总体X的一个样本
X
~
f
(
x)
1
e( x
)
,
x
, 为未知参数
0,
其它
其中 >0,求 , 的矩估计.
解: 由密度函数知
X 具有均值为 的指数分布
故 E(X- )= 即 E(X)=
缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 .
其主要原因在于建立矩法方程时, 选取那些总体矩用相应样本矩代替带 有一定的随意性 .
第 七 章第一节 矩估计
矩是基于一种简单的“替换” 思想建立起来的一种估计方法 .
是英国统计学家K.皮尔逊最早提出的 .
其基本思想是用样本矩估计总体矩 . 理论依据: 大数定律
记总体k阶矩为 k E( X k )
样本k阶矩为
Ak
1 n
n i 1
X
k i
记总体k阶中心矩为 k E[ X E( X )]k
参数估计问题的一般提法
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 ( 可以是
向量) . 现从该总体抽样,得样本 X1, X2 , … , Xn
要依据该样本对参数 作出估计,或估计 的某个已知函数 g( ) .
这类问题称为参数估计.
点估计
参数估计
区间估计
假如我们要估计某队男生的平均身高.
1
n
n i 1
X
m i

概率论与数理统计应用_参数估计_

概率论与数理统计应用_参数估计_
概率论与数理统计应用
第7章 参数估计
7.2 估计量的评选标准
授课教师:李林杉 副教授
估计量的评选标准
由前面的学习知道, 对于同一个参数,用不同的估计方法求出的估计量可能不相同,对 不同的样本值也会得到不同的估计值,原则上任何统计量都可以作为未知参数的估计量.
问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么?
D(1 6
X1
5 6
X
3)
1 36
D
X1
25 36
D
X
2
13 ቤተ መጻሕፍቲ ባይዱ8
因为 13 18
5 ,所以估计量 9
ˆ1
2 3
X1
1 3
X 2 更有效.
估计量的评选标准
三、相合性
我们不仅希望一个估计量是无偏的,并且具有较小的方差,还希望当样本容量n 增大时,估计量能充分地接近于未知参数的真值, 因此就引出相合性(一致性)的 评价标准.

的矩估计量和极大似然估计量都是 X
1 n
n i 1
Xi
.
的估计值都是 ˆ x 1200
估计值与真值的误差?(精度) 点估计可信程度有多大?(可信度)
区间估计
二、置信区间
定义 设总体X 的分布函数F(x,θ)含有一个未知参数θ. X1, X 2, , X n 为总体的样本, 对于给定值α( 0<α<1), 若能确定两个统计量
( X1, X 2, , X n ), ( X1, X 2, , X n ) 满足: P{ } 1
则称随机区间 , 是θ 的置信度为1 的置信区间,
——置信下限, ——置信上限, 置信度1 ——称为置信水平.

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

《概率论与数理统计》7


未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

概率论与数理统计PPT课件第七章最大似然估计

最大似然估计
• 最大似然估计的概述 • 最大似然估计的数学基础 • 最大似然估计的实现 • 最大似然估计的应用 • 最大似然估计的扩展
01
最大似然估计的概述
定义与性质
定义
最大似然估计是一种参数估计方法, 通过最大化样本数据的似然函数来估 计参数。
性质
最大似然估计是一种非线性、非参数 的统计方法,具有一致性、无偏性和 有效性等优良性质。
无偏性
在某些条件下,最大似然估计的参数估计值是无偏的,即其期望值等于真实值。
最大似然估计的优缺点
• 有效性:在某些条件下,最大似然估计具有最小方差性质, 即其方差达到最小。
最大似然估计的优缺点
非线性
01
最大似然估计是非线性估计方法,对参数的估计可能存在局部
最优解而非全局最优解。
对初值敏感
02
最大似然估计对初值的选择敏感,不同的初值可能导致不同的
04
最大似然估计的应用
在回归分析中的应用
线性回归
最大似然估计常用于线性回归模型的参数估计,通过最大化似然函 数来估计回归系数。
非线性回归
对于非线性回归模型,最大似然估计同样适用,通过将非线性模型 转换为似然函数的形式进行参数估计。
多元回归
在多元回归分析中,最大似然估计能够处理多个自变量对因变量的影 响,并给出最佳参数估计。
最大熵原理与最大似然估计在某些方面具有相似性,例如都追求最大化某种度量, 但在应用场景和约束条件上有所不同。
THANKS
感谢观看
连续型随机变量的概率密度函数
然函数
基于样本数据和假设的概率模型, 计算样本数据在该模型下的可能 性。
似然函数的性质
非负性、归一化、随着样本数据的 增加而增加。

《概率论与数理统计》第七章

i 1
n
n
ln xi
(4)的极大似然估计量为:ˆ
n
n2 i1
lnX
i
2
i1
第七章 参数估计 ‹#›
例 9 设X~b(1,p), X1,X2,…,Xn是来自X的一个样本, 试求参数p的最大似然估计量
解: 设x1, x2,, xn,是相应于样本X1,X2,…,Xn 的一个样本值,X
的分布律为:
(3)以样本各阶矩A1, ,Ak代替总体各阶矩1,
得各参数的矩估计
ˆi gi(A1, ,Ak ), i 1, , k
, k,
第七章 参数估计 ‹#›
注意:
在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i.
(二)最大似然估计法
最(极)大似然估计的原理介绍
第七章
参数估计
目录/Contents
第1章 随机事件与 2 概率
§ 1 点估计
§3
估计量的评选标准
第七章 参数估计 ‹#›
问题的提出:
在实际进行统计时,有不少总体的(我们关心的某 确定指标)概率分布是已知的。比如
例 1 产品寿命服从的分布
X~
f
(
x)
1
x
e
x0
0
其他
但其中有参数是未知的: θ
n
似然函数 L f xi , 。 i 1
, xn ,
极大似然原理:L(ˆ( x1 ,
,
xn
))
max
L(
).
计算简化方法:
在求L 的最大值时,通常转换为求:lnL 的最大值,
lnL 称为对数似然函数.
利用

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。

(5)()p p m x p p x X P xm x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)Xθcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX X θ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp 令mp =X, 解得mX p=ˆ3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni iθn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 参数估计参数估计是数理统计研究的主要问题之一. 假设总体X ~N (μ,σ2),μ,σ2是未知参数,X 1,X 2,…,X n 是来自X 的样本,样本值是x 1,x 2,…,x n ,我们要由样本值来确定μ和σ2的估计值,这就是参数估计问题,参数估计分为点估计(Point estimation )和区间估计(Interval estimation).第一节 点估计所谓点估计是指把总体的未知参数估计为某个确定的值或在某个确定的点上,故点估计又称为定值估计.定义7.1 设总体X 的分布函数为F (x ,θ),θ是未知参数,X 1,X 2,…,X n 是X 的一样本,样本值为x 1,x 2,…,x n ,构造一个统计量(X 1,X 2,…,X n ),用它的观察值 (x 1,x 2,…,x n )作为θ的估计值,这种问题称为点估计问题.习惯上称随机变量(X 1,X 2,…,X n )为θ的估计量,称(x 1,x 2,…,x n )为的估计值.构造估计量(X 1,X 2,…,X n )的方法很多,下面仅介绍矩法和极大似然估计法. 1.矩法矩法(Moment method of estimation )是一种古老的估计方法.它是由英国统计学家皮尔逊(K .Pearson )于1894年首创的.它虽然古老,但目前仍常用.矩法估计的一般原则是:用样本矩作为总体矩的估计,若不够良好,再作适当调整. 矩法的一般作法:设总体X ~F (X ;θ1,θ2,…,θl )其中θ1,θ2,…,θl 均未知. (1) 如果总体X 的k 阶矩μk =E (X k ) (1≤k ≤l)均存在,则μk =μk (θ1,θ2,…,θl ),(1≤k ≤l ).(2) 令⎪⎪⎩⎪⎪⎨⎧.),,,(,),,,(,),,,(2122121211l l l l l A A A θθθμθθθμθθθμ其中A k (1≤k ≤l )为样本k 阶矩.求出方程组的解,ˆ,,ˆ,ˆ21l θθθ 我们称),,,(ˆˆ21n k k X X X θθ=为参数θk (1≤k ≤l )的矩估计量, ),,,(ˆˆ21nk k x x x θθ=为参数θk 的矩估计值. 例7.1 设总体X 的密度函数为:f (x )=⎩⎨⎧-><<+.,0),1(,10,)1(其他αααx x其中α未知,样本为(X 1,X 2,…,X n ),求参数α的矩法估计.解 A 1=X .由μ1=A 1及μ1=E (X )=21)1()(1++=+=⎰⎰+∞∞-ααααx x x x x xf d d , 有21++=ααX ,得121ˆ--=X Xα.例7.2 设X ~N (μ,σ2),μ,σ2未知,试用矩法对μ,σ2进行估计. 解⎪⎪⎩⎪⎪⎨⎧======∑∑==.1)(,1)(12222111ni i ni i X n A X E X n A X E μμ 又 E (X )=μ, E (X 2)=D (X )+(EX )2=σ2+μ2,那么 .1ˆˆ,ˆ2222S nn A X -=-==μσμ. 例7.3 在某班期末数学考试成绩中随机抽取9人的成绩.结果如下:试求该班数学成绩的平均分数、标准差的矩估计值.解 设X 为该班数学成绩,μ=E (X ),σ2=D (X ))558994(919191+++==∑= i i x x =75;2/19122)(819898⎥⎦⎤⎢⎣⎡-⋅=∑=i i x x s =12.14.⎪⎪⎩⎪⎪⎨⎧======∑∑==.91)(,91)(9122229111i i i i X A X E X A X E μμ 由于E (X 2)=D (X )+(EX )2=σ2+μ2,那么,2222228ˆˆˆ,().9X A A x S μσμ==-=-= 所以,该班数学成绩的平均分数的矩估计值x =μˆ=75分,标准差的矩估计值298ˆs =σ=12.14. 作矩法估计时无需知道总体的概率分布,只要知道总体矩即可.但矩法估计量有时不惟一,如总体X 服从参数为λ的泊松分布时,X 和B 2都是参数λ的矩法估计.2.极(最)大似然估计法极大似然估计法(Maximum likelihood estimation)只能在已知总体分布的前提下进行,为了对它的思想有所了解,我们先看一个例子.例7.4 假定一个盒子里装有许多大小相同的黑球和白球,并且假定它们的数目之比为3∶1,但不知是白球多还是黑球多,现在有放回地从盒中抽了3个球,试根据所抽3个球中黑球的数目确定是白球多还是黑球多.解 设所抽3个球中黑球数为X ,摸到黑球的概率为p ,则X 服从二项分布P {X =k }=k 3C p k(1-p )3-k , k =0,1,2,3.问题是p =1/4还是p =3/4?现根据样本中黑球数,对未知参数p 进行估计.抽样后,共有4种可能结果,其概率如表7-1所示.假如某次抽样中,只出现一个黑球,即X =1,p =1/4时,P {X =1}=27/64;p =3/4时,P {X =1}=9/64,这时我们就会选择p =1/4,即黑球数比白球数为1∶3.因为在一次试验中,事件“1个黑球”发生了.我们认为它应有较大的概率27/64(27/64>9/64),而27/64对应着参数p =1/4,同样可以考虑X =0,2,3的情形,最后可得p =⎪⎩⎪⎨⎧==.3,2,43,1,0,41时当时当x x(1) 似然函数在极大似然估计法中,最关键的问题是如何求得似然函数(定义下文给出),有了似然函数,问题就简单了,下面分两种情形来介绍似然函数. (a ) 离散型总体设总体X 为离散型,P {X =x }=p (x ,θ),其中θ为待估计的未知参数,假定x 1,x 2,…,x n 为样本X 1,X 2,…,X n 的一组观测值.P {X 1=x 1,X 2=x 2,…,X n =x n }=P {X 1=x 1}P {X 2=x 2}…P {X n =x n }=p (x 1,θ)p (x 2,θ)…p (x n ,θ)=∏=ni ix p 1),(θ.将∏=ni ix p 1),(θ看作是参数θ的函数,记为L (θ),即 L (θ)=∏=ni ix p 1),(θ. (7.1)(b ) 连续型总体设总体X 为连续型,已知其分布密度函数为f (x ,θ),θ为待估计的未知参数,则样本(X 1,X 2,…,X n )的联合密度为:f (x 1,θ)f (x 2,θ)…f (x n ,θ)=∏=ni ix f 1),(θ.将它也看作是关于参数θ的函数,记为L (θ),即L (θ)=∏=ni ix f 1),(θ. (7.2)由此可见:不管是离散型总体,还是连续型总体,只要知道它的概率分布或密度函数,我们总可以得到一个关于参数θ的函数L (θ),称L (θ)为似然函数.(2) 极大似然估计极大似然估计法的主要思想是:如果随机抽样得到的样本观测值为x 1,x 2,…,x n ,则我们应当这样来选取未知参数θ的值,使得出现该样本值的可能性最大,即使得似然函数L (θ)取最大值,从而求参数θ的极大似然估计的问题,就转化为求似然函数L (θ)的极值点的问题,一般来说,这个问题可以通过求解下面的方程来解决0)(=θθd d L . (7.3)然而,L (θ)是n 个函数的连乘积,求导数比较复杂,由于ln L (θ)是L (θ)的单调增函数,所以L (θ)与ln L (θ)在θ的同一点处取得极大值.于是求解(7.3)可转化为求解0)(=θθd dln L .(7.4)称ln L (θ)为对数似然函数,方程(7.4)为对数似然方程,求解此方程就可得到参数θ的估计值.如果总体X 的分布中含有k 个未知参数:θ1,θ2,…,θk ,则极大似然估计法也适用.此时,所得的似然函数是关于θ1,θ2,…,θk 的多元函数L (θ1,θ2,…,θk ),解下列方程组,就可得到θ1,θ2,…,θk 的估计值,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂=∂∂=∂∂.0),,,(ln ,0),,,(ln ,0),,,(ln 21221121k k k k L L L θθθθθθθθθθθθ(7.5) 例7.5 在泊松总体中抽取样本,其样本值为:x 1,x 2,…,x n ,试对泊松分布的未知参数λ作极大似然估计.解 因泊松总体是离散型的,其概率分布为:P {X =x }=λλ-e !x x,故似然函数为:L (λ)=∏∏==∑--⋅⋅==ni ni i x nixx x ni ii11!1!1λλλλee. ln L (λ)=11ln ln (!)nniii i n x x λλ==-+-∑∏,∑=+-=ni i x n 11)ln(λλλd d . 令λλd d ln =0,得: ∑=+-ni i x n 11λ=0.所以x x n ni i L ==∑=11ˆλ,λ的极大似然估计量为X L=λˆ(为了和λ的矩法估计区别起见,我们将λ的极大似然估计记为Lλˆ). 例7.6 设一批产品含有次品,今从中随机抽出100件,发现其中有8件次品,试求次品率θ的极大似然估计值.解 用极大似然法时必须明确总体的分布,现在题目没有说明这一点,故应先来确定总体的分布.设 X i =,100,,2,1,0,1 =⎩⎨⎧i ,i ,i 次取正品第次取次品第则X i 服从两点分布:12100p (x i ,θ)=P {X i =x i }=θ xi (1-θ)1-xi ,x i =0,1,故似然函数为:L (θ)=∑-∑=-==-=-∏1001100110010011)1()1(i ii i iix x i x x θθθθ由题知:∑=1001i ix =8,所以 L (θ)=θ8(1-θ)92. 两边取对数得:ln L (θ)=8ln θ+92ln (1-θ).对数似然方程为:θθθθ--=1928)(ln d d L =0.解之得θ=8/100=0.08.所以Lθˆ=0.08. 例7.7 设x 1,x 2,…,x n 为来自正态总体N (μ,σ2)的观测值,试求总体未知参数μ,σ2的极大似然估计.解 因正态总体为连续型,其密度函数为f (x )=222)(21σμσ--x e π,所以似然函数为:L (μ,σ2)=⎭⎬⎫⎩⎨⎧--⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧--∑∏==n i i nni i x x 122122)(21exp 212)(exp 21μσσσμσππ ln L (μ,σ2)=∑=----n i i x n n 1222)(21ln 22ln 2μσσπ. 故似然方程组为:⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂=-=∂∂∑∑==.0)(212),(ln ,0)(1),(ln 124222122ni i ni i x n L x L μσσσσμμσμσμ 解以上方程组得:⎪⎪⎩⎪⎪⎨⎧=-=-===∑∑∑===.ˆ)(1)(1,12121221B x x n x n x x n ni i n i i ni i μσμ 所以 ⎩⎨⎧==.ˆ,ˆ22B X L σμ例7.8 设总体X 服从[0,θ]上的均匀分布,X 1,X 2,…,X n 是来自X 的样本,求θ的矩法估计和极大似然估计.解 因为E (X )=θ/2,令X =E (X ),得.2ˆX =矩θ 又 f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,1其他θθx所以L (θ)=n θ1,0≤x i ≤θ. 要L (θ)最大,θ必须尽可能小,又θ≥x i ,i =1,2,…,n ,所以{}ini L X ≤≤=1max ˆθ.第二节 估计量的评价标准设总体X 服从[0,θ]上的均匀分布,由上节例7可知ˆ2X θ=矩,{}1ˆmax L ii nX θ≤≤ 都是θ的估计,这两个估计哪一个好?下面我们首先讨论衡量估计量好坏的标准问题.1.无偏性定义7.2 若估计量(X 1,X 2,…,X n )的数学期望等于未知参数θ,即:ˆ()E θθ=, (7.6) 则称ˆθ为θ的无偏估计量(Non -deviation estimator ).估计量ˆθ的值不一定就是θ的真值,因为它是一个随机变量,若ˆθ是θ的无偏估计,则尽管ˆθ的值随样本值的不同而变化,但平均来说它会等于θ的真值.例7.9 设X 1,X 2,…,X n 为总体X 的一个样本,E (X )=μ,则样本平均数11nii X X n ==∑是μ的无偏估计量.证 因为E (X )=μ,所以E (X i )=μ,i =1,2,…,n ,于是1111()()n ni i i i E X E X E X n n ==⎛⎫== ⎪⎝⎭∑∑=μ.所以X 是μ的无偏估计量.例7.10 设有总体X ,E (X )=μ,D (X )=σ2,(X 1,X 2,…,X n )为从该总体中抽得的一个样本,样本方差S 2及二阶样本中心矩B 2=11()ni i X X n =-∑是否为总体方差σ2的无偏估计?解 因为E (S 2)=σ2,所以S 2是σ2的一个无偏估计,这也是我们称S 2为样本方差的理由.由于B 2=21n S n -, 那么 E (B 2)=2211()n n E S n nσ--=, 所以B 2不是σ2的一个无偏估计.还需指出:一般说来无偏估计量的函数并不是未知参数相应函数的无偏估计量.例如,当X ~N (μ,σ2)时,X 是μ的无偏估计量,但2X 不是μ2的无偏估计量,事实上:22222()()().E X D X E X nσμμ⎡⎤=+=+≠⎣⎦2.有效性对于未知参数θ,如果有两个无偏估计量1ˆθ与2ˆθ,即E (1ˆθ)=E (2ˆθ)=θ,那么在1ˆθ,2ˆθ中谁更好呢?此时我们自然希望对θ的平均偏差E (ˆθ-θ)2越小越好,即一个好的估计量应该有尽可能小的方差,这就是有效性.定义7.3 设1ˆθ和2ˆθ都是未知参数θ的无偏估计,若对任意的参数θ,有 D (1ˆθ)≤D (2ˆθ), (7.7)则称1ˆθ比2ˆθ有效. 如果1ˆθ比2ˆθ有效,则虽然1ˆθ还不是θ的真值,但1ˆθ在θ附近取值的密集程度较2ˆθ高,即用1ˆθ估计θ精度要高些. 例如,对正态总体N (μ,σ2),11ni i X X n ==∑,X i 和X 都是E (X )=μ的无偏估计量,但D (X )=2nσ≤D (X i )=σ2,故X 较个别观测值X i 有效.实际当中也是如此,比如要估计某个班学生的平均成绩,可用两种方法进行估计,一种是在该班任意抽一个同学,就以该同学的成绩作为全班的平均成绩;另一种方法是在该班抽取n 位同学,以这n 个同学的平均成绩作为全班的平均成绩,显然第二种方法比第一种方法好.3.一致性无偏性、有效性都是在样本容量n 一定的条件下进行讨论的,然而(X 1,X 2,…,X n )不仅与样本值有关,而且与样本容量n 有关,不妨记为n ,很自然,我们希望n 越大时,n 对θ的估计应该越精确.定义7.4 如果n 依概率收敛于θ,即∀ε>0,有{}ˆlim 1,nn P θθε→∞-<=,(7.8) 则称ˆnθ是θ的一致估计量(Uniform estimator ). 由辛钦大数定律可以证明:样本平均数X 是总体均值μ的一致估计量,样本的方差S 2及二阶样本中心矩B 2都是总体方差σ2的一致估计量.第三节 区间估计1.区间估计的概念上节我们介绍了参数的点估计,假设总体X ~N (μ,σ2),对于样本(X 1,X 2,…,X n ),ˆX μ=是参数μ的矩法估计和极大似然估计,并且满足无偏性和一致性.但实际上X =μ的可能性有多大呢?由于X 是一连续型随机变量,P {X =μ}=0,即ˆμ=μ的可能性为0,为此,我们希望给出μ的一个大致范围,使得μ有较高的概率在这个范围内,这就是区间估计问题.定义7.5 设1ˆθ(X 1,X 2,…,X n )及2ˆθ (X 1,X 2,…,X n )是两个统计量,如果对于给定的概率1-α(0<α<1),有:P {1ˆθ<θ<2ˆθ}=1-α, (7.9) 则称随机区间(1ˆθ,2ˆθ)为参数θ的置信区间(Confidence interval ),1ˆθ称为置信下限,2ˆθ称为置信上限,1-α叫置信概率或置信度(Confidence level).定义中的随机区间(1ˆθ,2ˆθ)的大小依赖于随机抽取的样本观测值,它可能包含θ,也可能不包含θ,(7.9)式的意义是指(1ˆθ,2ˆθ)以1-α的概率包含θ.例如,若取α=0.05,那么置信概率为1-α=0.95,这时,置信区间(1ˆθ,2ˆθ)的意义是指:在100次重复抽样中所得到的100个置信区间中,大约有95个区间包含参数真值θ,有5个区间不包含真值θ,亦即随机区间(1ˆθ,2ˆθ)包含参数θ真值的频率近似为0.95. 例7.11 设X ~N (μ,σ2),μ未知,σ2已知,样本X 1,X 2,…,X n 来自总体X ,求μ的置信区间,置信概率为1-α.解 因为X 1,X 2,…,X n 为来自X 的样本,而X ~N (μ,σ2),所以uX ~N (0,1),对于给定的α,查附录中表2可得上分位点2z α,使得2P z α⎫<⎬⎭=1-α,即22P X z X z ααμ⎧-<<+⎨⎩=1-α. 所以μ的置信概率为1-α的置信区间为X z X z αα⎛-+ ⎝. (7.10) 由(7.10)式可知置信区间的长度为22z α,若n 越大,置信区间就越短;若置信概率1-α越大,α就越小,2z α就越大,从而置信区间就越长.2.正态总体参数的区间估计由于在大多数情况下,我们所遇到的总体是服从正态分布的(有的是近似正态分布),故我们现在来重点讨论正态总体参数的区间估计问题.在下面的讨论中,总假定X ~N (μ,σ2),X 1,X 2,…,X n 为其样本. (1) 对μ的估计 分两种情况进行讨论. (a ) σ2已知此时就是例7.11的情形,结论是:μ的置信区间为22X z X z αα⎛-+ ⎝, 置信概率为1-α.(b ) σ2未知当σ2未知时,不能使用(7.10)式作为置信区间,因为(7.10)式中区间的端点与σ有关,考虑到S 2=211()1n ii X X n =--∑是σ2X σ换成S 得 TX ~t (n -1).对于给定的α,查附录中t 分布表4可得上分位点t σ/2(n -1),使得2(1)P t n α⎫<-⎬⎭=1-α,即22(1)(1)P X t n X t n ααμ⎧⎫-<<-⎨⎬⎩⎭=1-α.所以μ的置信概率为1-α的置信区间为22(1),(1)X t n X t n αα⎛⎫-- ⎪⎝⎭. (7.11)=,S 0,所以μ的置信区间也可写成22(1),(1)X t n X t n αα⎛⎫-+- ⎪⎝⎭.(7.12) 例7.12 某车间生产滚珠,已知其直径X ~N (μ,σ2),现从某一天生产的产品中随机地抽出6个,测得直径如下(单位:毫米)14.6 15.1 14.9 14.8 15.2 15.1试求滚珠直径X 的均值μ的置信概率为95%的置信区间.解 111(14.615.114.914.815.215.1)6n i i x x n ===+++++∑=14.95,s 0, t α/2(n -1)=t 0.025(5)=2.571,所以2(t n α-=2.571=0.24, 置信区间为(14.95-0.24,14.95+0.24),即(14.71,15.19),置信概率为95%.σ2的置信区间我们只考虑μ未知的情形.此时由于S 2=211()1n i i X X n =--∑是σ2的无偏估计,我们考虑22(1)n S σ-,由于222(1)~(1)n S n χσ--,所以,对于给定的α,2122222(1)(1)(1)n S P n n ααχχσ-⎧⎫--<<-⎨⎬⎩⎭=1-α. 即222221(1)(1)(1)(1)n S n S P n n αασχχ-⎧⎫--⎪⎪<<⎨⎬--⎪⎪⎩⎭=1-α.所以σ2的置信区间为2222221(1)(1),(1)(1)n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭(7.13) 或222200221,(1)(1)nS nS n n ααχχ-⎛⎫ ⎪ ⎪--⎝⎭, 其中S 02=211()ni i X X n =-∑. 例7.13 某种钢丝的折断力服从正态分布,今从一批钢丝中任取10根,试验其折断力,得数据如下:572 570 578 568 596 576 584 572 580 566试求方差的置信概率为0.9的置信区间.解 因为111(572570566)10n i i x x n ===+++∑=576.2,s 02=2211n i i x x n =-∑=71.56, α=0.10,n -1=9,查附表得:2220.05(1)(9)n αχχ-==16.919,220.951(1)(9)n αχχ--==3.325,22021071.56(1)16.919ns n αχ⨯=-=42.30,220211071.56(1) 3.325ns n αχ-⨯=-=215.22.所以,σ2的置信概率为0.9的置信区间为(42.30,215.22).以上仅介绍了正态总体的均值和方差两个参数的区间估计方法.在有些问题中并不知道总体X 服从什么分布,要对E (X )=μ作区间估计,在这种情况下只要X 的方差σ2已知,并且样本容量n 很大,X 准正态分布N (0,1),因而μ的置信概率为1-α的近似置信区间为X z X z αα⎛-+ ⎝.小 结参数估计问题分为点估计和区间估计.设θ是总体X 的待估计参数.用统计量ˆθ=ˆθ(X 1,X 2,…,X n )来估计θ称ˆθ是θ的估计量,点估计只给出未知参数θ的单一估计.本章介绍了两种点估计的方法:矩估计法和极大似然估计法.矩法的做法:设总体X ~F (X ;θ1,θ2,…,θl )其中θk (1≤k ≤l )为未知参数. (1) 求总体X 的k (1≤k ≤l )阶矩E (x k ); (2) 求方程组112112(,,,)(),(,,,)().l l l l l E X A E X A μθθθμθθθ==⎧⎪⎨⎪==⎩的一组解1ˆθ,2ˆθ,…, ˆl θ,那么ˆk θ=ˆk θ (X 1,X 2,…,X n )(1≤k ≤l)为k 的矩估计量. ˆkθ(x 1,x 2,…,x n )为θk 的矩估计值. 极大似然估计法的思想是若已观察到样本值为(x 1,x 2,…,x n ),而取到这一样本值的概率为P =P (θ1,θ2,…,θl ),我们就取θk (1≤k ≤l )的估计值使概率P 达到最大,其一般做法如下: (1) 写出似然函数L =L (θ1,θ2,…,θl ) 当总体X 是离散型随机变量时,L =121(;,,,)nil i P x θθθ=∏,当总体X 是连续型随机变量时L =121(;,,,)nil i f x θθθ=∏,(2) 对L 取对数ln L =121ln (;,,,)nil i f x θθθ=∑,(3) 求出方程组ln kLθ∂∂=0, k =1,2,…,l . 的一组解ˆk θ=ˆk θ (x 1,…,x n ) (1≤k ≤l )即k 为未知参数θ的极大似然估计值,ˆkθ=(X 1,X 2,…,X n )为θk 的极大似然估计量.在统计问题中往往先使用极大似然估计法,在此法使用不方便时,再用矩估计法进行未知参数的点估计.对于一个未知参数可以提出不同的估计量,那么就需要给出评定估计量好坏的标准.本章介绍了三个标准:无偏性、有效性、一致性.重点是无偏性.点估计不能反映估计的精度,我们就引人区间估计.设θ是总体X 的未知参数,1ˆθ,2ˆθ均是样本X 1,X 2,…,X n 的统计量,若对给定值α(0<α<1)满足P (1ˆθ<θ<2ˆθ)=1-α,称1-α为置信度或置信概率,(1ˆθ,2ˆθ)为θ的置信度为1-α的置信区间.参数的区间估计中一个典型、重要的问题是正态总体X (X ~N (μ,σ2))中μ或σ2的区间估计,其置信区间如表7-3所示.表7-3 正态总体的均值、方差的置信度为(1-α)的置信区间区间估计给出了估计的精度与可靠度(1-α),其精度与可靠度是相互制约的即精度越高(置信区间长度越小),可靠度越低;反之亦然.在实际中,应先固定可靠度,再估计精度. 重要术语及主题矩估计量 极大似然估计量估计量的评选标准:无偏性、有效性、一致性, 参数θ的置信度为(1-α)的置信区间, 单个正态总体均值、方差的置信区间.习 题 七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i ii XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ? 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量. (1997年研考)12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量;(2) 求ˆ()D θ. (1999研考) 13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,0;0,.e x x x θθ--⎧>⎨≤⎩其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值. (2000研考)估计值和极大似然估计值. (2002研考)15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪<⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量;(3) 当β=2时,求α的极大似然估计量. (2004研考) 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰(1998研考)17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 的样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. (2006研考)。

相关文档
最新文档