空间分析复习重点

空间分析复习重点
空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。

空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据

属性数据的类型名义量、次序量、间隔量、比率量

属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。

空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。

生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式)

空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。

空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。

空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。

ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。

常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图

主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。

空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。

茎叶图:单变量、小数据集数据分布的图示方法。

优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。

箱线图&五数总结

箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1

3密度估计是一个随机变量概率密度函数的非参数方法。

应用不同带宽生成的100个服从正态分布随机数的核密度估计。

空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。

空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)中个体出现与不出现的概率完全或几乎相等。

3)聚集分布:许多点集中在一个或少数几个区域,大面积的区域没有或仅有少量点。总体中一个或多个点的存在影响其它点在同一取样单位中的出现概率。

点模式的描述:1)一阶效应:事件间的绝对位置具有决定作用,单位面积的事件数量在空间上有比较清楚的变化,如空间上平均值/密度的变化。2)二阶效应:事件间的相对位置和距离具有决定作用,如空间相互作用。

空间点模式分析方法:

1)基于密度的方法:测度一阶效应

①样方分析,包括选取所有点和随机取样法。步骤:a )研究区域中打上网格,建议方格大小为

OuadratSize=2A/n A :研究区域面积,n :点的个数。 b )确定每个网格中点的个数。 c )计算均值(Mean )、方差(Var )和方差均值比:VMR=Var/Mean {对于均与分布,方差=0,因此VMR 的期望值=0;对于随机分布,方差=均值,因此VMR 的期望值=1;对于聚集分布,方差大于均值。因此VME 的期望值>1.}

样方分析的缺点:结果依赖于样方的大小和方向;样方分析主要依据点密度,而不是点之间的相互关系,所以不能区别图示的两种情况。

②样方分析的统计检验,包括K-S 检验和方差均值比的X 2检验。

③核密度估计 基本思想:在研究区域内的任一点都有一个密度,而不仅仅是在事件点上。

该密度通过计数一定区域内的事件点数量,或核(Kernel)进行估计。核以估计点为中心,一定距离为半径。

C (s ,r )是以点s 为圆心、r 为半径的圆域,#表示事件S 落在圆域C 中的数量。

核密度估计(KDE)用途:

a ) 可视化点模式进行热点 (hot spot)探测;

b ) 离散 连续。 如,疾病与污染。

2)基于距离的方法:测度二阶效应

①最近邻距离

计算每个点到其最近邻点之间的距离, 然后计算所有点最近邻距离的平均值。对每一个点,根据其欧几里德距离最小确定其最近邻点。

平均最近邻距离的大小,反映点在空间的分布特征。最近邻距离越小,说明点在空间分布越密集,反之,越离散。

②最近邻距离的方法

G 函数:欧几里德距离

计算G 函数的一般过程:1、计算任一点到其最邻近点的距离d ;2、将所有最邻近距离列表,并按照大小排序;3、计算最邻近距离的变程R 和组距;4、根据组距上线,累计计数点的数量,并计算累计频数;

5、画出G (d )关于d 的曲线。 F 函数:与G 函数仅仅基于事件间最近邻距离的频率分布不同,F 函数基于区域内任意位置点与事件间最近邻距离的频率分布。

F 函数计算的三个步骤:随机选择m 个位置{p1, p2, …, pm}; 计算dmin(pi, s) :pi 到点模式S 中的任一事件的最小距离;计算:

K 函数:与G 函数、F 函数只使用事件或点的最近邻距离不同,K 函数基于事件间的所有距离。因此,K 函数不仅能探测空间模式,而且可以给出空间模式和尺度的关系。

定义

经验K 函数估计的四个步骤: 1) 对于每一个事件s i ,以s i 为圆心、d 为半径画圆C (s i ,d )

2) 计算圆内其他事件点的数量

3) 计算同一半径下所有事件的均值

4) 均值除以研究区内事件密度得: 2

2)()(),(j i j i j i y y x x s s d -+-=(#())

()d K d λ=E 距任一事件距离小于的事件)]

,([#d s C S i ∈

空间接近性与空间权重矩阵 实质上,空间接近性就是面积单元之间的距离关系,根据地理学第一定律,空间接近性描述了不同距离关系下的空间相互作用,而接近性程度一般使用空间权重矩阵来描述。 空间自相关:空间自相关描述空间中位置上的变量与其邻近位置上同一变量的相关性。

空间权重矩阵

为了测度一组地理对象的空间自相关性,必须讨论识别多边形之间关系的方法。空间自相关衡量的是邻接区域内各单元属性值的相似程度,但首先必须定量地界定“邻接区域”的概念。即,在计算这些统计量之前,必须定量地界定区域单元之间的邻接关系,即,空间权重矩阵。

邻居的类型:两种规则

– 邻接 (公共边):二值或标准

– 距离 (距离带,K -近邻) 连接数统计量连接数统计量(Join Count Statistics):一般用于名义量(nominal )数据,尤其是二值

变量数据。

全局空间自相关指标

①Moran’s I 指数及其统计检验

②Geary’s C 指数、

③Getis’s G 指数。

三个指标计算方法相似,一般用于间隔量(interval )和比率量(ratio )数据,最常用的是Moran’s I 。 局部空间自相关指标 LISA :全局自相关的分解,描述一个面元在多大程度上与其邻居相似,或不同。

①局部 Moran’s I i 指数

②局部 Geary’s C i 指数

③ 局部 Getis’s G i 指数

倒距离权重差值、趋势面分析

倒距离加权 (IDW) 插值方法假定每个输入点都有着局部影响,这种影响随着距离增加而减弱。步骤: a) 计算未知点到所有点的距离;

b) 计算每个点的权重: 权重是距离倒数的函数。

c)计算结果

1对误差项的假设:期望值为0,并且 和 之间的自相关不取决于s 点的位置,而取决于

位移量h 。为确保自相关方差有解,必须允许某两点间的自相关可以相等。如,下面有箭头相连的两对位置点假设具有相同的自相关性。

趋势值 可以被简单地赋予一个常量。即在任何位置处①如果 未知,就是普通克里金模型。 ②如果在任何时候趋势

已知,无论趋势是否是常量,都形成简单克里金模型。 ③趋势也可以表示为: 若趋势中的系数未知,就是泛克里金模型。

空间自回归模型的一般形式 式中,y 是因变量,为n ×1向量;X 表示解释变量的n ×k 阶矩阵;m 是随空间变化的误差项;e 是白噪声。W 1,W 2是空间权重矩阵。 如果对式 施加某些限定,可导出多种不同形式的空间自回归模型。

①设X =0,W 2=0,则由式 推出一阶空间自回归模型(SAR ):

意义:y 的变化是邻接空间单元的因变量的线性组合,解释变量X 对于y 的变化没有贡献。

2()()()ij i j i j ij i i j i w z z z z n I w z z --=-∑∑∑∑∑()s ε()s h ε+()s μ()s μμ=μ

μ22012345x y x y xy

μββββββ=+++++μμμ

包含空间效应的方法:通过因变量自身 ②设W 2=0,则由式

推出回归-空间自回归组合模型(MAR ): 意义:y 的变化不仅和邻接空间单元的因变量有关,而且解释变量X 对y 的变化也有贡献。 y 是因变量,经过空间加权 (W 1);??为系数。 ③设W 1=0,则由式

推出空间误差模型: ??是空间加权的(W 2) 误差项;???系数;???不相关的、同方差的误差向量。 包含空间效应的方法:通过误差项。

④空间Durbin 模型(SDM ):将因变量的空间延迟(spatial lag )和自变量的空间延迟项加在模型中便得到空间Durbin 模型。 地图代数中的函数与类型

函数是建立在基本运算符基础上的对栅格数据的高级操作,主要函数类型包括:局部函数、焦点函数、类区函数、块函数。

①局部函数

函数运算:栅格数据以某种函数关系作为分析依据进行逐网格运算,从而得到新的栅格数据。又分为数学函数、选择函数、重分类函数、统计函数。

②焦点函数,又称邻域函数

邻域分析也称窗口分析,主要应用于栅格数据模型。邻域函数计算出的栅格数据每个象元位置上的值都是输入数据中相应位置下指定的一些邻域单元的函数. 计算出的邻域统计值是一个移动窗口,它可以对数据进行扫描。

窗口分析:对于栅格数据系统中的一个、多个栅格点或全部数据,开辟一个有固定分析半径的分析窗口,并在该窗口内进行诸如极值、均值等一系列统计计算,或与其它层面的信息进行必要的复合分析,从而实现栅格数据水平方向上的扩展分析。

空间决策:空间决策是一个利用地理信息的分析和解释对一组方案进行优劣排序和选择的过程。

决策步骤:(1)决策问题的定义(2)确定用于评价的一组标准(3)加权标准产生可选择性(4)决策规则应用(5)推荐问题的最佳解决方案 22~(0,)y N I βμμλμε

εσ=+=+X W μμ

自动控制原理 第八章 线性系统的状态空间分析与综合习题及解答

第八章 线性系统的状态空间分析与综合 习题及解答 8-1 已知电枢控制的直流伺服电机的微分方程组及传递函数 b a a a a a E dt di L i R U ++=+ dt d K E m b b θ= a m m i C M = dt d f dt d J M m m m m m θθ+=2 2 ) ()([)()(2m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ ⑴设状态变量m m x θ=1,m x θ =2,θ =3x 及输出量m y θ=,试建立其动态方程; ⑵设状态变量m m a x x i x θθ ===321,,及 m y θ=,试建立其动态方程。 解: (1)由题意可知: ??? ????=======123121x y x x x x x m m m m θθθθ , 由已知 ???????+===++=m m m m m a m m m b b a a a a a f J M i C M K E E i L i R U θθθ 可推导出 ????? ????=++-+-===1 233 3221x y U J L C x J L C K f R x J L R J L f x x x x x a m a m m a m b m a m a a m a m 由上式,可列动态方程如下

=??????????321x x x ??? ?? ? ? ?????? ?+- +- m a a m m a m a m b m a J L R J f L J L C K f R 01 00010??????????321x x x +??????? ? ????? ???m a m J L C 00 a U y =[]001???? ??????321x x x (2)由题意可知:,1a i x =m m m y x x θθθ===,,32 可推导出 ???????? ???==-=-====+--=+--==2 3133 231111x y x J f x J C J f i J C x x x U L x L K x L R U L L K i L R i x m m m m m m m m a m m m m a a a b a a a a m a b a a a a θθθθθ 可列动态方程如下 []?? ?? ??????=321010x x x y 由 ?????===m m m x x x θθθ 321和 ??? ??===m m a x x i x θθ 321 得 ??? ? ????? -=-======3 133221x J f x J C J f i J C x x x x x m m m m m m m a m m m m m θθθθ 由上式可得变换矩阵为 ?????? ? ??????? -=m m m m J f J C T 0100 010 8-2 设系统微分方程为 u y y y y 66116=+++ 。式中,u 和y 分别为系统输入和输出量。试列写可控标准型(即矩阵A 为友矩阵)及可观测标准型(即矩阵A 为友矩阵转置)状态空间表达式,并画出状态变量图。 解: 由题意可得: 10110010220330R K a b x L L L x a a a x x U a C f x x m m J J m m ?? ??--???? ?????? ??????????=+??????????????????????- ????????

状态空间分析法的应用与特点

状态空间分析法的主要特点及其应用 课程:现代控制工程 教师: 学生: 班级:机电研班 学号:

状态空间分析法的主要特点及其应用 机电研班 摘要:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时域分析方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 本文通过分析比较经典控制理论在多输入多输出方面存在的不足,阐述了现代控制理论中的一种方法——状态空间分析法。本文以线性系统的状态空间表达式为基础对状态空间分析法的特点和应用方面作了一些阐述和论证,并结合现实生活中的一些实际工程问题的分析,论证了此种方法的实用性和先进性。 关键词:现代控制;状态空间分析法;汽轮机;调节系统;动态分析 1引言 经典控制理论主要以传递函数为基础,采用复域分析方法,由此建立起来的频率特性和根轨迹等图解解析设计法,对于单输入——单输出系统极为有效,至今仍在广泛成功地使用。但传递函数只能描述线性定常系统的外部特征,并不能反映其全部内部变量变化情况,且忽略了初始条件的影响,其控制系统的设计建立在试探的基础之上,通常得不到最优控制。复域分析法对于控制过程来说是间接的。 现代控制理论由于可利用数字计算机进行分析设计和实时控制,因此可处理时变、非线性、多输入——多输出系统的问题。现代控制理论主要以状态空间法为基础,采用时域分析方法,对于控制过程来说是直接的。它一方面能使设计者针对给定的性能指标设计出最优控制系统;另一方面还可以用更一般的输入函数代替特殊的所谓“典型输入函数”来实现最优控制系统设计。随着控制系统的高性能发展,最优控制、最佳滤波、系统辨识,自适应控制等理论都是这一领域研究的主要课题。 在用状态空间法分析系统时,系统的动态特性是由状态变量构成的一阶微分方程组来描述的。已能反映系统的全部独立变量的变化,从而能同时确定系统的全部运动状态,而且可以方便地处理初始条件。

线性系统状态空间分析报告与运动解

【实验地点】课外(宿舍) 【实验目的】 1、学会利用MATLAB 实现离散系统传递函数模型的生成 2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】 1、MATLAB/Simulink 数值分析软件 2、计算机一台 【实验原理】 1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A) 说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法 (1)利用Laplace 逆变换----适合于连续/离散线性系统 采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有: 假设初始时刻为零,LTI 系统的解析解为dt Bu e e x e t x t At At At ??+=0 )()0()(τ。若u (t )是单 位阶跃输入,则上述解可写成dtBu e e x e t x t At At At ? ?+=0 )()0()(τ。进一步简化为: Bu A Bu A x e t x At 11))0(()(---+= 对离散线性定常系统有: ∑---+ =1 1 )()0()(k i k k i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统 采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式: [t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。 b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间围;x0是初值是初值向量;[t,x]是解。 (4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下: 调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间围和周期; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间围和周期; 当系统G 是离散的情况下: 调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应 使用simulink 求取线性或非线性系统的响应,调用格式如下: [t,x,y]=sim(‘XX.mdl ’,ti:Ts:tf,options,u) 【实验容】 已知线性系统:]) (201)() (2 10)(404040202119201921)(t x t y t u t x t x +-----? 已知线性系统 1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

大学校园小尺度公共空间

大学校园小尺度公共空间特点和类型 校园空间是大学校园文化的空间载体,有特色的校园空间为大学校园文化提供物质化的可能。如何通过校园综合环境及空间设计体现大学的校园文化,从而创造出一个有个性、有涵、有文化底蕴的校园环境将是本文着重研究的问题。结合本次设计的理工大学,探讨大学校园公共开放空间对大学生成长的促进作用,寻求适合大学校园公共开放空间的设计方法。 关键字:校园空间;校园文化;开放空间 1.绪论 大学校园公共开放空间是师生们生活与学习的重要场所,是学校教学环境的组成部分,在大学生的学习和成长过程中起到不可忽视的作用。校园规划应努力创造多样化与富于特色的公共开放空间,以满足校园功能需求和提升校园环境品质。而评价一个校园规划好与坏的重要标准是看规划方案能否真正利用好室外开放空间,根据建筑以及地形要求,设计出适宜人们活动的多元化空间。人性化的校园空间能够激发好奇心,增强学生的求知欲望,同时校园的环境又能为促进随意交流、淡话提供良好的环境时,它所营造出的校园气氛才是最现实的。 2 .校园开放空间活动的多样化及意义 开放空间多样化包括功能,形式以及配置的多样化。功能多样化,如隔离,交通,交往,运动等不同用途;形式上的多样化,如形状,尺度,色彩,材质,构图等多种变化;配置多样化,如草坪,树林,山水,建筑等不同设置。 多样化有利于满足校园的基本功能,校园开放空间需要交通,集会,运动等多种功能。尽管一个单纯空间可以赋予不同的功能,但其适应性受到一定限制;多样化有利于满足师生不同心理需求,有关心理学的研究表明,长期在单调的环境中生活,可能造成思维缓慢,智力下降。相反,多样化的环境,信息量大,有更大的吸引力,有利于使用者

大学校园空间分析

大学校园空间分析 摘要:大学空间小是指个别的研究室、实验室、教学楼或图书馆,也小是单纯地指具有树林的大面积的场地,而是指由校园必要设施围合而成的开放空间作为基木单元而形成的校园空间。是容纳人们丰富室外活动的场所。 关键词:城市空间校园空间 一、大学校园空间的界定 大学是接受高等教育和从事研究的场所, 其主体是教师与学生构成的共同体。大学是教师与学生面对面进行知识传授和交流的场所, 其本质是生产知识或者说是创造知识的场所, 这需要一种可供教师与学生共同携手生产或创造知识的实在的场所, 或者说是教师与学生进行面对面交流的空间, 这就是大学的空间。大学空间不是指个别的研究室、实验室、教学楼或图书馆,也不是单纯地指具有树林的大面积的场地, 而是指由校园必要设施围合而成的开放空间作为基本单元而形成的校园空间。 多样的大学空间的形成与变化正是以开放空间作为媒介, 而开放空间的聚合力及对聚合空间的开放力正是大学空间形成与变化的基本原理。 二、大学校园空间的分类 大学是我们学习和生活的地方,里面承载者我们的生活和我们生活所需要的空间,但是这些空间没有明确的划分,所有的空间都是相互交融在一起的。仅以个人感受和分析,我认为校园空间可以按以下的方式分类: 2.1按使用功能分类 根据空间的使用性质不同,我将其分为教学空间、居住空间、景观空间、交通空间。这四个空间都是校园里不可缺少的空间,也是学生使用最频繁的空间。 2.2按开放性与私密性分类 不同的空间具有不同的开放性和私密性,根据其具有开放性与私密性的不同比例,将其分为开放性空间、半开放半私密空间、私密性空间。 2.3外部空间与内部空间 根据建筑形成的空间,建筑内部空间和建筑外部空间。这些空间的分类买一个分支都有交叉,比如说景观空间有属于外部空间,外部空间又可划分成开

状态空间分析法的特点及其应用

状态空间法分析及其应用的特点 摘要 基于为寻求便于分析系统的性能的相应状态变量以及探究状态空间变量线性变换对系统性能的影响,来阐述状态空间分析法的特点。通过应用状态空间法到绞线一叠层橡胶复合支座隔震结构进行数值模拟分析中来进一步阐述其特点,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。建立了普通框架、安装叠层橡胶支座和安装绞线一叠层橡胶复合支座框架的结构状态方程,应用MATLAB/SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。通过对比分析可以看出绞线一叠层橡胶复合支座能很好地改变结构的隔震效果,应用状态空间法进行绞线一叠层橡胶复合支座隔震结构的数值模拟分析简单准确。 关键词:系统、传递函数、线性变换、状态空间变量

一、引言 状态空间分析从实质上说并不是什么新颖的东西,其关键思想起源予19世纪到拉格朗日、哈密顿等人在研究经典力学时提出的广义坐标与变分法。当然,由高斯等人奠定的古典概率、估计理论以及线性代数等也具有同样的重要性。上世纪40年代以来,布利斯、庞德里亚金和别尔曼关于极大值原理,卡尔曼、布西与巴丁等人提出的卡尔曼滤波理论,以及许许多多的学者完成的并不具有里程碑意义的研究成果,积累起来却对算法及分析结果产生了决定性意义的贡献。这些便是状态空间方法发展的历史概况。状态空间分析是对线性代数、微分方程、数值方法、变分法、随机过程以及控制理论等应用数学各学科的综台。对动态系统的性能分析,特别是对扰动的响应、稳定性的特性、估计与误差分析以及对控制律的设计及性能评估,这些便构成状态空间分析的内容。这主要表现在利用向量、矩阵等一整套数学符合,把大量资料加以整理与综合,形成了观念上统一的体系——60年代中期之后出现了现代控制理论。 状态空间分析随着动力学与控制问题维数的增加(其中包括坐标、敏感器、执行机构以及其它装置的数量)而越发显得重要。另一方面亦由于计算机软件的不断完善,特别在可靠性及用户接口方面的改善与进展,使得计算工作比以前任何时候都易于进行,使状态空间分析越发显得有生命力。它具有的特性使得在设计控制系统时,不在只局限于输入量、输出量和误差量,为提高系统性能提供了有力的工具,加之可以利用计算机进行分析设计及实时控制,因而可以应用于非线性系统、时变系统、多输入—多输出系统以及随机过程等。

状态空间分析法

第9章 线性系统的状态空间分析与综合 重点与难点 一、基本概念 1.线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。 输出方程 输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示: ???+=+=Du Cx y Bu Ax x & (9.1) (2)状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。 (3)状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。满秩线性变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。 (4)线性定常系统状态方程解。状态转移矩阵)(t φ(即矩阵指数At e )及其性质:

i . I =)0(φ ii .A t t A t )()()(φφφ ==& iii. )()()()()(122121t t t t t t φφφφφ±=±=+ iv. )()(1 t t -=-φφ v. )()]([kt t k φφ= vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At P APt P --= 求状态转移矩阵)(t φ的常用方法: 拉氏变换法 =)(t φL -1])[(1--A sI (9.2) 级数展开法 ΛΛ++++ +=k k At t A k t A At I e ! 12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4) 非齐次状态方程式(9.1)求解 ?-+=t Bu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现 传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 D B A sI C s G +-=-1)()( (9.6) 传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。当系统阶数等于传递函数矩阵阶数时,称该系统为)(s G 的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。 (6)线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述

状态空间分解法计算公式分析

同批工件间同时到达的耦合关系? 工件本来是一个个到达,如C-C+1-C+2,但考虑为批次同时到达,C 可以直接到C+2; 基于更新过程的关键更新定理,将小车与B2、B4间的耦合关系用节点间的批量到达速率、批量离开速率变化替代?B2的输出与B4的输入之间相互依赖 节点二: 两次小车装载之间通常会有多个工件到达B2,在小车两次到达的间隔中B2内的工件数量曲线是单调非减的。因此,实际上小车回到B2时B2拥有的工件数量的期望(锯齿的上尖点)远远比稳态后(稳态后不变,中间水平线)计算的期望要大 节点四: 实际上小车来到B4时B4拥有的工件数量的期望远远比稳态后计算的期望要小,当小车容量C 越大、小车速度越慢(保持当量运载能力不变)的时候这个偏差越明显,这样将提高小车由于阻塞停留在B4处的计算概率(实际堵塞概率比计算值要小),降低前环节的处理能力。 平均在制品数量: ()()()() ()121112223331122334444444441112123 ,,,01 01 11 11C 4,,201 1 WIP=; N N C S w b S w b S w b b w b w b w N i S w b S w b w w P w P w P w P w P N +======+===?+?+?+?+?∑∑∑∑∑∑∑ ∑∑ 第4项改为乘以W4;第五项(节点四在制品数期望)就是小车阻塞的概率乘以节点4的个数 (N4+1) 状态之间的转换速率:存在概率路径,则用概率路径乘以速率,不存在概率路径,则直接用速率。实际上概率路径之和一定=1 1 i b =-0 i b =1 i b =2 i b = B2 B4 节点3:2C+2个状态对应2C+2个方程 右边第一项:上标为W3,漏了V ,第二项是只可能是从小车上只有一个变为空车返回状态

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

校园景观空间与学生的行为特征分析

校园景观空间与学生的行为特征分析 大学校园是城市中特殊的社区单元,具有物质空间和文化空间的双重属性。校园景观环境包括实体要素和空间要素。从文化角度看,校园环境包含了人及社会关系,同样也渗透着文化属性。由此看来,大学校园所要担当的角色不仅是满足学习、实验和生活的功能,更要能为使用者提供新的交流平台和活动空间。现代校园空间形态更为开放、多层次,以便提供流通的、便于公共交往的建筑室内外空间。 从人的行为特征来分析校园景观空间,首先要分析下人的行为与空间的对应关系。人在空间的流动有一定的特性,主要分为三大类:1.目的性较强的人流; 2.随意性的流动; 3.静止。从这三大类来看,本文主要研究第三类静止,也就是景观空间设计中的休憩空间。室外休憩空间包括广场、绿地、水体、林荫道以及座椅等休憩设施的休憩空间等。 随着社会进步和科技发展,电子信息和网络广泛进入学生生活,学生更多地与电脑接触,减少了大量的户外活动。因此良好的室外休憩空间对学生显得尤为重要,为校园注入活力和生机,也为学生身心发展起到良好作用。如今教育应尽可能地发挥出促进学生素质全面提高的基础上,更要使学生课内外都能受到良好教育。因此,校园规划就要做到以人为本,为师生生活条件作出努力。由此可见休憩空间对学生生活的重要性。 曾经有研究表明,认为人的空间行为是环境设计的有机组成部分,在这个环境中,使用者要求发现自我、表现自我、要求思想和文化共享交流。因此在设计中应根据人们的行为习惯和心理感受,设计出能够反映设计完成后使用者潜在的各种行为意识和心理感受的环境空间,并且设计出的物质和空间形式都能满足使用者的行为。以我校为例来探究大学生行为活动与休憩空间的关系。大学生具有 独特的交往需求,校园交往生活也是学生自身发 展的重要条件。休憩空间包含了休息、交往、独 处、晨读和学习等,这些决定了休憩空间的多功 能性和多层次性。良好的休憩空间可以满足大学 生交往的需求,最大程度上吸引、启发学生交往,为休憩空间注入活力和生机,为校园增添人文气息。左边这张表格是对学生休憩

第八章控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 图8-1 典型控制系统方块图 典型控制系统如图8-1所示,由被控对象、传感器、执行器和控制器组成。被控过程 327

328 (见图8-2)具有若干输入端和输出端。数学描述通常有两种基本方法:一种是输入、输出描述(外部描述),它将系统看成为“黑箱”,只是反映输入与输出间的关系,而不去表征系统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x 和输入变量u 间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y 与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。 8.1.2 状态空间描述常用的基本概念 1.输入和输出 由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。 2.状态、状态变量和状态向量 能完整描述和惟一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态,其中的各个变量称为状态变量。当状态表示成以各状态变量为分量组成的向量时,称为状态向量。系统的状态)(t x 由0t t =时的初始状态x (0t ) 及0t t ≥的输入)(t u 惟一确定。 对n 阶微分方程描述的系统,当n 个初始条件)(,),(),(0)1(00t x t x t x n -Λ&及0t t ≥的输入)(t u 给定时,可惟一确定方程的解,故)1(,,,-n x x x Λ&这n 个独立变量可选作状态变量。状态对于确定系统的行为既是必要的,也是充分的。n 阶系统状态变量所含独立变量的个数为n ,当变量个数小于n 时,便不能完全确定系统的状态,而当变量个数大于n 时,则存在多余的变量,这些多余的变量就不是独立变量。判断变量是否独立的基本方法是看它们之间是否存在代数约束。 状态变量的选取并不惟一,一个系统通常有多种不同的选取方法。但应尽量选取能测

空间数据分析

空间数据分析报告 —使用Moran's I统计法实现空间自相关的测度1、实验目的 (1)理解空间自相关的概念和测度方法。 (2)熟悉ArcGIS的基本操作,用Moran's I统计法实现空间自相关的测度。2、实验原理 2.1空间自相关 空间自相关的概念来自于时间序列的自相关,所描述的是在空间域中位置S 上的变量与其邻近位置Sj上同一变量的相关性。对于任何空间变量(属性)Z,空间自相关测度的是Z的近邻值对于Z相似或不相似的程度。如果紧邻位置上相互间的数值接近,我们说空间模式表现出的是正空间自相关;如果相互间的数值不接近,我们说空间模式表现出的是负空间自相关。 2.2空间随机性 如果任意位置上观测的属性值不依赖于近邻位置上的属性值,我们说空间过程是随机的。 Hanning则从完全独立性的角度提出更为严格的定义,对于连续空间变量Y,若下式成立,则是空间独立的: 式中,n为研究区域中面积单元的数量。若变量时类型数据,则空间独立性的定义改写成 式中,a,b是变量的两个可能的类型,i≠j。 2.3Moran's I统计 Moran's I统计量是基于邻近面积单元上变量值的比较。如果研究区域中邻近面积单元具有相似的值,统计指示正的空间自相关;若邻近面积单元具有不相似的值,则表示可能存在强的负空间相关。

设研究区域中存在n 个面积单元,第i 个单位上的观测值记为y i ,观测变量在n 个单位中的均值记为y ,则Moran's I 定义为 ∑∑∑∑∑======n i n j ij n i n j ij n i W W n I 11 11j i 1 2i ) y -)(y y -(y )y -(y 式中,等号右边第二项∑∑==n 1i n 1j j i ij )y -)(y y -(y W 类似于方差,是最重要的项,事 实上这是一个协方差,邻接矩阵W 和) y -)(y y -(y j i 的乘积相当于规定)y -)(y y -(y j i 对邻接的单元进行计算,于是I 值的大小决定于i 和j 单元中的变量值对于均值的偏离符号,若在相邻的位置上,y i 和y j 是同号的,则I 为正;y i 和y j 是异号的, 则I 为负。在形式上Moran's I 与协变异图 {}{}u ?-)Z(s u ?-)Z(s N(h)1(h)C ?j i ∑=相联系。 Moran's I 指数的变化范围为(-1,1)。如果空间过程是不相关的,则I 的期望接近于0,当I 取负值时,一般表示负自相关,I 取正值,则表示正的自相关。用I 指数推断空间模式还必须与随机模式中的I 指数作比较。 通过使用Moran's I 工具,会返回Moran's I Index 值以及Z Score 值。如果Z score 值小于-1.96获大于1.96,那么返回的统计结果就是可采信值。如果Z score 为正且大于1.96,则分布为聚集的;如果Z score 为负且小于-1.96,则分布为离散的;其他情况可以看作随机分布。 3、实验准备 3.1实验环境 本实验在Windows 7的操作系统环境中进行,使用ArcGis 9.3软件。 3.2实验数据 此次实习提供的数据为以湖北省为目标区域的bount.dbf 文件。.dbf 数据中包括第一产业增加值,第二产业增加值万元,小学在校学生数,医院、卫生院床位数,乡村人口万人,油料产量,城乡居民储蓄存款余额,棉花产量,地方财政一般预算收入,年末总人口(万人),粮食产量,普通中学在校生数,肉类总产量,规模以上工业总产值现价(万元)等属性,作为分析的对象。

关于大学校园公共开放空间的思考

摘要:校园空间是大学校园文化的空间载体,有特色的校园空间为大学校园文化提供物质化的可能。如何通过校园综合环境及空间设计体现大学的校园文化,从而创造出一个有个性、有内涵、有文化底蕴的校园环境将是本文着重研究的问题。结合本次设计的西安理工大学,探讨大学校园公共开放空间对大学生成长的促进作用,寻求适合大学校园公共开放空间的设计方法。 关键字:校园空间;校园文化;开放空间 1绪论 大学校园公共开放空间是师生们生活与学习的重要场所,是学校教学环境的组成部分,在大学生的学习和成长过程中起到不可忽视的作用。校园规划应努力创造多样化与富于特色的公共开放空间,以满足校园功能需求和提升校园环境品质。而评价一个校园规划好与坏的重要标准是看规划方案能否真正利用好室外开放空间,根据建筑以及地形要求,设计出适宜人们活动的多元化空间。人性化的校园空间能够激发好奇心,增强学生的求知欲望,同时校园的环境又能为促进随意交流、淡话提供良好的环境时,它所营造出的校园气氛才是最现实的。 2 校园开放空间活动的多样化及意义 开放空间多样化包括功能,形式以及配置的多样化。功能多样化,如隔离,交通,交往,运动等不同用途;形式上的多样化,如形状,尺度,色彩,材质,构图等多种变化;配置多样化,如草坪,树林,山水,建筑等不同设置。 多样化有利于满足校园的基本功能,校园开放空间需要交通,集会,运动等多种功能。尽管一个单纯空间可以赋予不同的功能,但其适应性受到一定限制;多样化有利于满足师生不同心理需求,有关心理学的研究表明,长期在单调的环境中生活,可能造成思维缓慢,智力下降。相反,多样化的环境,信息量大,有更大的吸引力,有利于使用者稳定情绪和身心健康;多样化有利于强化学环境氛围,生机勃勃,丰富多变的校园景观可以激发学生的学习兴趣,强化教育氛围。校园中丰富的自然景观;多样化受到师生的欢迎,多样化打破了现代主义的形式教条,大胆借鉴与融合古今中外优秀的造园手法,强化了环境的印象能力,形成丰富多彩的环境面貌,接近大众审美情趣,因而容易受到广大师生的接受和欢迎。 2.1 校园开放空间活动的类型 2.1.1必要性活动 指多少有点不自由的活动,如出早操、听课、购物等日常学习、工作和生活等事务属于这一类型。这类活动受外部环境影响不大,没有选择的余地。 2.1.2自发性活动 指人有参加的意愿,并在时间地点允许的情况下才会发生的,如散步、呼吸新鲜空气、晒太阳等活动,这类活动受外部环境影响较人,只有天气好,场所吸引力大时才会发生。 2.1.3社会性活动 社会性活动—是指公共空间中有赖于他人参加的各种活动,如校园文化节,各种展览,朋友间的交谈等,这些活动受校园外部物质空间的影响也很大。 2.2不同层次的校园空间 大学校空间是指高校校园内服务于学习、交往、休息、步行穿越等功能的各类软质和硬

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u ,则系 统在0t t ≥任何时刻())()() (21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。系统在某时 刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

空间统计分析实验报告

空间统计分析实验报告 一、空间点格局的识别 1、平均最邻近分析 平均最邻近距离指点间最邻近距离均值。该分析方法通过比较计算最邻近点对的平均距离与随机分布模式中最邻近点对的平均距离,来判断其空间格局,分析结果如图1所示。 图1 平均最邻近分析结果图最邻近比率小于1,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0

计算结果共有5个参数,平均观测距离,预期平均距离,最邻近比率,Z 得分,P值。 P值就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。最邻近比率值表示要素是否有聚集分布的趋势,对于趋势如何,要根据Z值和P值来判断。 本实验中的最邻近比率小于1 ,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0,该结果说明省详细居民点的分布是聚集分布的,不存在随机分布。 2、多距离空间聚类分析 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离围的空间相关性(要素聚类或要素扩散)。 本实验中第一次将距离段数设为10,距离增量设为1,第二次将距离段数设为5,距离增量同样为1,得到如图2和图3所示的结果。 从图中可以看出,小于3千米的距离,观测值大于预测值,居民点聚集,大于3千米,观测值小于预测值,居民点离散。且聚集具有统计意义上的聚集,离散并未具有统计意义上的显著性。 图2 K函数聚类分析结果1

探讨我国小学校园建筑开放空间设计

探讨我国小学校园建筑开放空间设计 摘要:开放空间是小学校园建筑中孩子们活动交流的最重要的公共空间。本文从开放空间的概念入手,分析开放空间的特征以及在教育活动中的重要意义,进而探索开放空间的设计手法,并对小学建筑内底层架空空间、走廊、门厅、活动平台等开放空间的简单分析,探讨在当代素质教育的大背景下,如何创造出一个从室内到室外的多层次开放空间,适应小学生全面发展的空间,促进他们的学习和人格的全面发展,让小学生在轻松舒适的空间中健健康康、快快乐乐的成长。 关键词: 小学建筑开放空间 Discusses the open space design of Our country Elementary school campus building Abstract:Open space is the most important public space for the exchange of children in primary school of architecture .From the concept of open space, this paper analyses the characteristic of open space, and the important meaning in the education activities, and then explore the design methods of open space,through to simply analysis the open space of the elementary school building such as the underlying overhead space ,corridor, hall, activity platform ,it aims to solve the problem of how to create a multilevel open space, which extended from indoor to outdoor, in the background of quality education. This space is designed to implement the overall development of pupils, to promote the comprehensive development of their learning and personality and let pupils grow happily in a relaxed and comfortable atmosphere. key word:Primary school buildings open space 1引言 一个人从幼年到青年期间的很长一段时间都是在学校中渡过,尤其是小学阶段是一个人长大成人过程中的重要一环,校园是小学生生活学习的重要场所,因此它对学生的教育也是十分重要的一环。 通常在我们的观念中,教室是学生学习的主要空间,但是随着现代教育理念的改变,我们越来越重视开放式的教学,开放式教育更注重学习和娱乐于一体,提倡学生在交流中共同成长,建筑设计上注重开放空间的创造和功能流线的丰富,不仅拥有私人的学习空间,而且要有开阔的公共交流空间,丰富的学习娱乐空间。开放式的教学环境往往打破学习空间的封闭,创造出轻松的环境为学生提供更多的交流和娱乐机会。 2小学校园建筑的开放空间的意义 小学的使用者为6-12岁的儿童,这个阶段是儿童认知、兴趣、语言能力、人格发展的重要时期,不仅仅只是知识的摄取,同时也应注意儿童心理行为的健康发展。在此阶段,他们有共同交流、游戏、学习的意愿,在设计的过程中应该充分考虑到他们的心理特点,应在学校建筑中营造良好的心理行为环境,让孩子们在体验建筑的过程中更加有效的体会建筑空间,创作出他们喜欢的空间,而最主要的空间环境就是小学建筑的开放空间。 著名的教育建筑师赫曼·赫兹伯格在一次采访中,表达了他的教育理念:“教育就是这样:激发人们的好奇心,打开世界,而不是压缩到一个小房间里。”他希望把学校营造成像城市一样具有开放的特性,从而促进人与人之间的交流,而开放空间正具有这样的特性。校

相关文档
最新文档