螺杆断裂失效分析
45K冷镦钢螺栓装配过程断裂失效分析

(3)扫描电镜检测 采用 SIGMA 300扫描电子显微镜,对 螺栓失效件断口进行检测。六 角凸缘端断口为圆锥形凸起,螺 杆端断口为圆锥形凹坑。对六角 突缘端圆锥凸起断口进行检测, 图2a所示左侧为六角突缘端断口 的螺牙齿顶外缘,右侧为断口中 心凸起圆锥面。距螺杆螺牙底槽 部位存在周向开裂的裂纹,裂纹 呈多条平行条纹,表明材料表 面强度极低。图2a中红框区域的 倍率经放大,螺牙底槽裂纹显示 多源台阶的应力开裂特征。该处 存在应力集中现象,而且材料表 面强度低,因而存在多条多源台
(%)
45K钢 标准值 实测值 评价
C 0.42~0.48
0.478 符合
Si 0.10~0.35
0.159 符合
Mn 0.60~0.90
0.703 符合
P ≤0.030 0.019
符合
S ≤0.035 0.009
符合
表2 失效件样品表面硬度测试结果
(HRC)
检测点 实测值 规范值
1 25.68
2 25.22
14 2018年 第10期
热加工
螺栓断裂件上截取试样,采用 ARL8860火花放电直读光谱仪进 行化学成分检测。依据标准JIS
螺母锁紧位置
(a)螺栓装配图
六角凸缘部位裂部位
螺杆端
(c)螺栓断裂件 图1 螺栓成品及断裂件
G3507-1-2010《冷镦用碳素钢 第1部分:盘条》进行判定,化学 成分符合规范要求(见表1)。
F racture Failure
断裂失效
阶裂纹源的开裂特征形貌(见图 2b),由此推断螺牙底槽部位属 于断口的断裂起始区。
螺栓断口失效分析

1、解理断裂(大多数情况下为脆性断裂)2、剪切断裂1、静载断裂(拉伸断裂、扭转断裂)2、冲击断裂3、疲劳断裂1、低温冷脆断裂2、静载延滞断裂(静载断裂)3、应力腐蚀断裂4、氢脆断裂断口微观形貌(图3/4/5/6),断口呈脆性特征,表面微观形貌为冰糖状沿晶断裂,芯部为沿晶+准解理断裂,在断裂的晶面上有细小的发纹状形貌。
结论:零件为沿晶断裂的脆性断口。
断口呈脆性特征,表面微观形貌沿晶断裂,芯部为准解理断裂;终断区(图4)微观为丝状韧窝形貌,为最终撕裂区结论:断口为脆性断裂宏观断口无缩颈现象且微观组织多处存在剪切韧窝形貌,为剪切过载断裂断口。
综上分析:零件为氢脆导致的断裂,氢进入钢后常沿晶界处聚集,导致晶界催化,形成沿晶裂纹并扩展,导致断面承载能力较弱,最终超过其承载极限导致断裂典型氢脆断口的宏观形貌如右图所示:氢脆又称氢致断裂失效是由于氢渗入金属内部导致损伤,从而使金属零件在低于材料屈服极限的静应力持续作用下导致的失效。
氢脆多发生于螺纹牙底或头部与杆部过渡位置等应力集中处。
断口附近无明显塑性变形,断口平齐,结构粗糙,氢脆断裂区呈结晶颗粒状,一般可见放射棱线。
色泽亮灰,断面干净,无腐蚀产物。
应力腐蚀也属于静载延滞断裂,其断口宏观形貌与一般的脆性断口相似,断口平齐而光亮,且与正应力相垂直,断口上常有人字纹或放射花样。
裂纹源区、扩展区通常色泽暗灰,伴有腐蚀产物或点蚀坑,离裂纹源区越近,腐蚀产物越多。
应力腐蚀断面最显著宏观形貌特征是裂纹源表面存在腐蚀介质成分贝纹线是疲劳断口最突出的宏观形貌特征,是鉴别疲劳断口的重要宏观依据。
如果在宏观上观察到贝壳状条纹时,在微观上观察到疲劳辉纹,可以判别这个断口属于疲劳断口。
螺栓断裂分析报告

螺栓断裂分析报告1. 引言螺栓是一种常见的连接元件,广泛应用于工程领域。
然而,在使用过程中,螺栓的断裂可能会导致严重的安全事故和设备损坏。
因此,对螺栓的断裂原因进行分析非常重要。
本文将介绍螺栓断裂的分析步骤,以帮助读者更好地了解螺栓断裂的原因,并提供相应的解决方案。
2. 分析步骤螺栓断裂分析通常可以按照以下步骤进行:2.1 收集断裂螺栓样本首先,需要收集断裂的螺栓样本。
这些样本应来自不同的工程项目,并涵盖不同的工作条件。
收集足够数量的样本有助于得出准确的结论。
2.2 观察断口形貌通过对断裂螺栓的断口形貌进行观察可以初步判断断裂的原因。
断口形貌可以分为韧性断口、脆性断口等。
韧性断口常常表明螺栓断裂是由于受到超负荷载荷所致,而脆性断口则意味着存在其他问题。
2.3 进行金相分析金相分析是一种常用的分析方法,通过对螺栓样本进行金相薄片制备和观察,可以获得螺栓的组织结构信息。
通过金相分析,可以检测到螺栓材料中的缺陷、夹杂物、氧化层等问题。
2.4 进行力学性能测试力学性能测试是评估螺栓质量的重要手段。
通过对螺栓样本进行拉伸试验、硬度测试等,可以了解螺栓的强度、韧性等性能参数。
与标准数值进行对比,可以判断螺栓是否达到设计要求。
2.5 考虑工况因素分析断裂螺栓时,还需要考虑螺栓所处的工作条件。
例如,工作温度、湿度、振动等因素都可能对螺栓的性能产生影响。
通过分析工况因素,可以找到与断裂相关的潜在问题。
2.6 结果分析与解决方案综合以上分析结果,可以得出螺栓断裂的原因。
根据不同的原因,提出相应的解决方案。
例如,如果断裂原因是由于材料质量问题,可以优化材料制备过程;如果是由于超负荷导致断裂,则需要对工作负荷进行合理评估等。
3. 结论螺栓断裂分析是一项复杂的工作,需要综合考虑多个因素。
通过对断裂螺栓样本的观察、金相分析、力学性能测试以及考虑工况因素,可以准确判断螺栓断裂的原因,并提出相应的解决方案。
对螺栓断裂问题的分析与解决不仅可以提高工程项目的安全性,还能为相关领域的研究提供参考。
特种螺栓断裂检测内容与失效分析

特种螺栓断裂检测内容与失效分析8.8级40Cr制作的六角头固定螺栓,规格M24×120mm,表面经热镀锌处理。
螺栓用于管子间连接起固定作用,服役一段时间后发生断裂。
断裂位置为螺栓头部与杆部结合处,断口有锈斑,断裂螺栓外观见图11-20。
断口经清洗后,宏观上可见整个断口上有少量锈斑,断裂起源于一侧的头杆结合处(图11-21),向另一侧扩展;起源处有轻微损伤痕迹。
疲劳源区可见疲劳台阶,源区附近的断口表面平坦、光滑、细密,疲劳扩展区断面粗糙;整个断口可见大量疲劳条带和疲劳弧形,从疲劳弧线位置和区域判断,断口上瞬断区面积很小,不到断口总面积的5%。
图11-20 断裂螺栓形貌图11-21 清洗前断口宏观形貌断口清洗后宏观上可见疲劳弧线(图11-22)。
在扫描电镜下对断口进行微观观察,疲劳源区的形貌可见较多台阶(图11-22箭头所指),裂纹源区有多条放射状裂纹(图11-23),图11-22宏观疲劳区图11-23裂纹区金相分析表明裂源区存在多个裂源,这些裂源均始于头杆结合处,在疲劳扩展区可看到疲劳条带(图11-24),断面中心区域有较多孔洞(图11-25)。
图11-24 扩展区解理形貌图11-25 中心区域孔洞在扫描电镜下对断口化学元素进行能谱分析,在断口的疲劳源和疲劳扩展区均未发现其他腐蚀性元素存在。
用光谱法对断口附近材料作化学成分检测,表明螺栓材料成分符合《GB/T 3077-1999》标准中关于40Cr钢化学成分要求取断口附近横截面进行低倍缺陷分析,按照《GB/T1979-2001》标准进行评级可评为中心疏松1.5级(图11-26)在断口附近进行硬度检测,表面硬度相对心部硬度要低,检测结果:表面硬度(HV0.3)238/227/225;心部硬度(HV10) 296/295/295,螺栓表面硬度和心部硬度均符合《GB/T 3098.1-2000》标准要求,金相检查,螺栓断口附近的组织为正常回火索氏体(图11-27);断口附近杆部表面粗糙有细微缺陷,同时还有脱碳,脱碳层深度为0.07mm(图11-28)。
螺栓断裂原因分析及预防

螺栓断裂原因分析及预防摘要:本文通过对失效螺栓及同批次的零件进行理化分析和无损检测。
对断裂件进行了宏观、微观断口观察、金相组织检查、硬度、化学成分、破坏拉力等一系列试验,经分析找出螺栓失效原因,并提出预防措施。
关键词:螺栓断裂回火脆化螺栓作为飞机上重要的紧固件,其发生断裂危害较大。
我厂修理过程中使用的螺栓主要为M4、M5、M6、M8和M10等规格,然而在某产品装配和停放过程中,某批次30CrMnSiA M8的螺栓先后发生脆性断裂。
引起工厂高度重视,因为螺栓发生脆断,不论是氢脆断裂,还是热处理造成的脆性断裂大都与“批次性”问题有关,涉及数量多,危害大,组织专业人员对螺栓在装配过程中及装配一段时间后发生断裂的原因进行了分析,并对后续的预防工作,提出了建议和方案。
1 宏观、微观检查对断裂螺栓进行宏观观察:发现断裂位置接近于第一扣螺纹处见(图1)。
断裂处螺纹表面未发现有明显的机械接触痕迹,如压坑、啃刀、划伤等表面缺陷,也未发现热处理表面烧蚀痕迹、螺纹变形等现象,没有局部麻点、剥蚀等缺陷。
断裂螺栓螺纹牙底呈线性起源,放射棱线粗大,断口附近无明显宏观塑性变形,断口齐平,呈暗灰色,断面粗糙,具有金属光泽(图2)。
图1断裂螺栓图2螺栓断口图3 螺栓整体形貌对裂纹断口进行观察,断口特征呈现以沿晶为主+韧窝的混合断裂形貌,且断口源区未见冶金和加工等产生的缺陷。
对同批次的螺栓抽样进行了磁粉检测,在螺纹的根部没有发现表面或近表面裂纹,对螺栓进行X射线检测,也没有发现内部缺陷。
同批螺栓见图3。
2 材质检验2.1成份分析抽取同批次的螺栓去掉镀层后制取化学粉末,采用碳、硫联合测定仪对碳、硫含量进行了检测,利用QSN750光谱仪对其它元素进行了检测,结果见(表1),螺栓的化学成分符合技术要求,但含碳量较高。
表1 化学成份检测结果表2.2 金相分析在靠近断口位置切取金相试样,镶嵌、磨抛、腐蚀后,显微镜对试样进行组织观察,螺栓显微组织为较粗大的回火马氏体(图4)。
制动器拉杆螺杆断裂分析

制动器拉杆螺杆断裂分析程琴;曾蓉;刘德林【摘要】车辆制动器经维修反复拆装后发现拉杆部件的螺杆发生断裂。
通过断口宏微观观察、金相和显微硬度检测等方法,并根据金相检查结果进行热模拟试验,确定了45钢制动器拉杆螺杆的断裂性质,分析了制动器拉杆螺杆断裂失效的原因。
研究结果表明:制动器拉杆螺杆的断裂性质为过载断裂,未进行调质处理导致材料强度低、韧性差,加上在服役过程中可能受到异常的弯曲和冲击载荷复合作用,导致螺母与螺杆的交接处发生断裂。
建议严格按照螺杆的热处理工艺规程,提升螺杆的强度和韧性。
%A screw of the brake drag link of a car was found to have broken after repeated dismounting. The failure cause of the screw was analyzed by macroscopic and microscopic examination of fracture surface, metallographic examination, microhardness testing, and thermal simulation testing. The results show that the failure mode of the crew is over-loading fracture. Without modified treatment, the strength of the material and the toughness was poor. Besides, the screw might have experienced the coeffect of abnormal impact load and flexural load during service. As a result, the screw fractured at the joint of nut and screw. Strict heat treatment processing should be carried out to improve the strength and toughness of the material.【期刊名称】《失效分析与预防》【年(卷),期】2015(000)001【总页数】4页(P47-50)【关键词】制动器拉杆螺杆;45钢;过载断裂;应力集中;调质处理【作者】程琴;曾蓉;刘德林【作者单位】北京航空材料研究院,北京100095; 航空材料检测与评价北京市重点实验室,北京100095; 中航工业失效分析中心,北京100095;萍乡学院材料与化学工程系,江西萍乡337055;北京航空材料研究院,北京100095; 航空材料检测与评价北京市重点实验室,北京100095; 中航工业失效分析中心,北京100095【正文语种】中文【中图分类】TG115.20 引言随着汽车工业的发展,紧固件行业得到飞速发展,同时对汽车紧固件要求也越来越高。
螺栓断裂分析报告

螺栓断裂分析报告一、引言螺栓是一种常见的连接元件,在机械设备和结构工程中得到广泛应用。
然而,螺栓在使用中可能会发生断裂,给机械设备和结构的安全运行带来隐患。
本报告旨在对螺栓断裂进行分析,并提供解决方案,以确保设备和结构的安全性。
二、螺栓断裂原因分析1.质量问题:螺栓断裂可能是由于螺栓本身存在质量问题所致,如材料强度不符合标准、制造工艺不良等。
为此,应关注螺栓的采购渠道和制造工艺,并严格按照相关标准进行选择和检测。
3.腐蚀问题:腐蚀是导致螺栓断裂的常见原因之一、在潮湿、酸性或碱性环境中,螺栓易受到腐蚀,使其材料的强度降低。
因此,在腐蚀环境中应选择抗腐蚀性能良好的螺栓材料,并进行定期维护保养。
4.紧固力不均匀:不正确的紧固力分布可能导致螺栓在负载过程中承受不均匀的力,从而引发断裂。
在安装过程中,应根据设备或结构的要求,采用正确的紧固力分布方案,并进行定期检查和调整。
三、螺栓断裂的解决方案1.优化选材:根据设备或结构的负荷、工作环境等要求,选择合适的螺栓材料。
关注材料的强度、韧性、抗腐蚀性等指标,并遵循标准进行选材。
2.合理设计螺栓连接:根据实际负荷情况和工作要求,合理选用螺栓的规格、数量和布置方式,并确保紧固力的均匀分布。
在设计过程中,可以借助有限元分析等工具来验证螺栓连接的安全性。
3.定期检查和维护:对于暴露在恶劣环境中的螺栓,应定期进行检查和维护,特别是针对腐蚀环境。
清洁螺栓表面,涂覆抗腐蚀涂层,必要时更换受损螺栓,以延长其使用寿命。
4.强化管理和培训:通过建立规范的螺栓管理制度和培训机制,提高操作人员的专业水平,加强螺栓使用和维护的知识宣传,以减少螺栓断裂的发生。
四、结论螺栓断裂是机械设备和结构工程中常见的问题,但可以通过合理选材、优化设计、定期维护和加强管理来减少其发生。
对于已经断裂的螺栓,应及时进行更换,并对其断裂原因进行调查分析,以避免类似问题再次发生。
通过以上措施的综合应用,能够提高螺栓连接的安全性和可靠性,保证设备和结构的正常运行。
刚性抽油杆螺纹连接处断裂失效分析

刚性抽油杆螺纹连接处断裂失效分析摘要在石油工业中,抽油杆是一种常见的设备,用于从油井中提取石油。
然而,抽油杆螺纹连接处的断裂失效是一个经常出现的问题,对生产造成了严重的影响。
本文通过实验和数值模拟的方法,对刚性抽油杆螺纹连接处断裂失效进行了分析,并提出了相应的改进措施,以提高系统的可靠性和安全性。
1. 引言抽油杆被广泛应用于石油工业中的油井开采过程中,在高温、高压和恶劣的环境下工作。
抽油杆的螺纹连接处是其中最容易发生断裂失效的部分,因为在工作过程中会受到巨大的拉力和扭矩,同时还要承受石油液体的冲击和腐蚀。
因此,了解抽油杆螺纹连接处的断裂失效机理,并采取相应的改进措施,对于提高抽油杆系统的可靠性和安全性至关重要。
2. 断裂失效机理2.1 材料特性抽油杆通常采用高强度的碳素钢制造,具有较高的拉伸强度和抗疲劳性能。
然而,由于长期工作在高温、高压和腐蚀的环境下,抽油杆的材料会发生相应的蠕变和腐蚀疲劳现象。
2.2 螺纹连接处的应力状况在抽油杆的螺纹连接处,由于受到拉力和扭矩的作用,会导致应力集中。
应力集中会引起连接处产生微裂纹,当裂纹扩展到一定程度时,就会导致断裂失效。
3. 断裂失效分析方法3.1 实验方法为了研究抽油杆螺纹连接处的断裂失效机理,可以进行拉力试验和扭矩试验。
通过调节载荷大小和频率,可以模拟实际工作条件下的应力状态,观察连接处的断裂情况。
同时,可以将断裂样品进行金相显微镜观察和扫描电子显微镜分析,以了解断裂形貌和微观组织的变化。
3.2 数值模拟方法利用有限元分析软件可以对抽油杆螺纹连接处的应力分布进行模拟和分析。
通过建立合理的材料本构模型和几何模型,可以计算出连接处的应力和位移分布。
通过对模型的优化调整,可以得到最大的应力和应力集中区域。
4. 改进措施4.1 强化材料性能为了提高抽油杆的抗蠕变和抗腐蚀性能,可以选择更高强度的材料,并进行相应的热处理和表面处理。
此外,还可以采用涂层技术,在连接处形成保护层,以减少外界的腐蚀和磨损。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。