原油乳状液及化学破乳剂

合集下载

高含水原油的热化学破乳方法

高含水原油的热化学破乳方法

收稿日期:2006-01-09作者简介:杨小刚(1980-),男,河北昌黎人,硕士研究生。

联系人:谭 蔚,电话:(022)27408728,E -mail:wtan@ 。

文章编号:1004-9533(2007)03-0236-04高含水原油的热化学破乳方法杨小刚,谭 蔚,谭晓飞(天津大学化工学院,天津300072)摘要:针对高含水原油破乳中广泛采用的热化学法,试验研究了加热温度、加入破乳剂量对破乳效果和破乳速率的影响。

试验结果表明,对一定量的原油乳状液,破乳剂用量均在一个最佳值;温度会影响破乳剂的最佳值,随温度升高,原油乳状液破乳时所使用的破乳剂用量的最佳值降低;同时,加入的破乳剂量对乳状液脱水速率也有一定的影响。

关键词:原油;乳状液;热化学法;破乳中图分类号:TE868 文献标识码:AThermochemical Demulsification of High Water -Content Crude OilYANG Xiao -gang,TAN Wei,TAN Xiao -fei(School of Che mical Engi neering and Technology,Tianjin Uni versity,Tianjin 300072,China)Abstract :In consideration of thermochemical method in demulsification of high water -content crude oil,the influences of temperature and quantity of demulsifier on the de mulsification efficiency and demulsification velocity were investigated.I t is sho wn that for a fixed amount of crude oil,there is an optimum quantity of demulsifier and it is affected by temperature.The optimal quantity of the de mulsifier for crude oil decreases with the increase of temperature.The quantity of de mulsifiers can also affec t the dehydration velocity of the e mulsion.Key words :crude oil;e mulsion;thermochemical method;demulsification 石油是一种重要资源和优质能源,随着工业的迅速发展,对石油的需求量越来越大,为了满足世界对石油日益增长的需求,提高石油采收率,充分利用可采石油资源,具有特别重要的意义。

原油破乳剂原理

原油破乳剂原理

原油破乳剂原理一、引言原油是一种复杂的混合物,其中含有多种组分,如沥青质、蜡质、树脂、胶质等。

这些组分会在原油中形成乳状液,使得原油的流动性变差,给石油开采、输送和加工带来很大的困扰。

为了解决这一问题,人们研发了原油破乳剂,通过改变原油乳状液的物理和化学性质,使其破乳并恢复其原本的流动性。

二、原油破乳剂的作用机制原油破乳剂的作用机制主要包括两个方面:物理作用和化学作用。

1. 物理作用原油破乳剂通过改变原油中乳状液的物理性质,使其破乳。

原油乳状液的稳定性是由于乳状液中的水相和油相之间存在着界面活性物质,如表面活性剂和胶体颗粒等。

原油破乳剂中的活性成分与界面活性物质相互作用,改变乳状液的表面张力和胶体稳定性,从而破乳。

2. 化学作用原油破乳剂中的活性成分可以与原油中的乳状液组分发生化学反应,改变其结构和性质,从而破乳。

例如,原油中的胶质物质会形成胶体颗粒,原油破乳剂中的活性成分可以与胶质物质发生反应,使其转化为可溶性物质,从而破乳。

三、原油破乳剂的分类根据原理和成分的不同,原油破乳剂可以分为表面活性剂型、胶体颗粒型和光催化型等。

1. 表面活性剂型表面活性剂型原油破乳剂的作用机制是通过改变乳状液的表面张力,使其破乳。

表面活性剂型原油破乳剂中的活性成分具有亲水性和疏水性基团,可以在水相和油相之间形成胶束结构,降低乳状液的表面张力,促使乳状液的破乳。

2. 胶体颗粒型胶体颗粒型原油破乳剂的作用机制是通过胶体颗粒的吸附和聚集作用,使乳状液破乳。

胶体颗粒型原油破乳剂中的活性成分是一种具有胶体性质的固体颗粒,可以吸附在乳状液的界面上,形成胶体颗粒,进而聚集形成较大的胶体团簇,最终破乳。

3. 光催化型光催化型原油破乳剂的作用机制是通过光催化反应,改变乳状液的结构和性质,使其破乳。

光催化型原油破乳剂中的活性成分可以吸收特定波长的光线,产生光催化反应,与乳状液中的组分发生化学反应,改变其结构和性质,从而破乳。

四、原油破乳剂的应用领域原油破乳剂广泛应用于石油勘探、开采、储运和炼油等领域。

油田化学药剂-破乳剂

油田化学药剂-破乳剂
单位名称-序号
24
破乳剂的筛选方法
A 原油组成与水清、油净的 关系
B 化学破乳剂合成段数与水 清、油净的关系
C 引发剂结构与脱水能力的 关系
D 合成物分子量与脱水效果 的关系
E HLB值(亲油亲水平衡值) 与破乳性能的关系
单位名称-序号
25
破乳剂的筛选方法
单位名称-序号
26
典型破乳剂案例
酸化原油乳化稳定机理和脱水困难原因分析
单Re位su名lts称a-fte序r 5号minutes of settling with inhibitor
34
典型破乳剂案例
多元热流体返出液处理
—— 渤海稠油油藏(QHD32-6、SZ36-1)氮气泡沫压锥控水增油技术
单位名称-序号
35
典型破乳剂案例
氮气泡沫压锥作业后,经过一定周期后,其 返出液进入流程,对油气水的处理产生很大的 影响。
破除乳化的过程一般分为两个阶段.
絮凝阶段
将细小的乳化颗粒聚合在一起从而形成比较大的颗粒 较大的颗粒快速上升或下沉
聚集阶段
达到破除乳化的目的
单位名称-序号
7
原油乳状液
单位名称-序号
8
原油乳状液
单颗聚集颗粒破乳过程示意图
单位名称-序号
9
原油乳状液
水包油乳化破乳过程示意图
Formation of creamed layer
原油乳状液
影响因素
说明
如脂肪酸、环烷酸和部分低分子胶质,它们有较强的表面活性,分散度很高,易在内
低分子有机物
相颗粒界面形成界面膜。但由于分子量低,形成界面膜强度不高,形成的乳化液稳
定性较弱
高分子有机物

原油破乳方法

原油破乳方法

原油破乳剂的破乳机理介绍一种乳液由至少两种不相混溶的液体组成。

随着原油开采中重稠油比例的不断增加以及三次采油采出的原油乳液愈来愈复杂、愈来愈稳定,石油试剂破乳剂的研究开发也不断地向提高破乳能力,降低破乳温度,减少破乳剂使用浓度和增强适应性方向发展。

破乳机理:原油本身是一种多组分混合物,主要由不同相对分子质量、不同结构的烃以及少量非烃化合物质,主要是水以及溶解于水的无机盐、机械杂质(砂、粘土等)、游离的硫化氢、氯化氢等,以不同形式分散于原油中的胶质、沥青质含量增加,使得原油乳状液更加稳定,加上采油技术的不断开发和应用,大量表面活性剂用来驱油、使原油的组分变得更加复杂,油田采出的原油含水含盐率逐渐增加。

破乳的缘由:原油中含有以上杂质,会增加泵和管线负荷,引起金属表面腐蚀和结聚;而排放的水中含油也会造成环境污染和原油浪费。

不论从经济还是从环境角度均需对原油进行破乳脱水和污水除油,原油破乳都是必需的。

石油试剂乳状液的破乳脱水脱盐是石油生产和加工过程中重要的环节之一,目前石油工业最重要的破乳方法是在原油中加入石油试剂破乳剂原油乳液在油品的生产和炼制中经常出现,世界上主要的粗品油都以一种乳液的形态产出。

目前公认的破乳机理:相转移——反向变形机理,加入石油试剂破乳剂后发生了相转变,这类破乳剂产生与乳化剂形成的乳状液类型相反的表面活性剂碰撞击破界面膜机理。

在加热或搅拌的条件下,石油试剂破乳剂有许多的机会碰撞乳状的界面膜,或吸附在界面膜上,或排除替代部分表面活性物质,从而使其稳定。

增溶机理使用的破乳剂一个或少数几个分子即可形成胶束,这种高分子线团或胶束可增溶乳化剂分子,引起乳化原油破乳褶皱变形机理显微镜观察结果表明,W/O型乳状液具有双层或多层水圈,两层水圈之间是油圈液滴在加热搅拌和破乳剂的作用下,液滴内部各层相互连通,使液滴发生凝聚而破乳此外,国内在对O/W型乳化原油体系的破乳机理研究方面也有一些研究工作,认为理想的石油试剂破乳剂必须具备下列条件:较强的表面活性;良好的润湿性能;足够的絮凝能力;较好的聚结效果石油试剂破乳剂在油品生产和炼制中的应用具有十分重要的意义. 超声波破乳法原理原油破乳脱水脱盐是炼油工艺的重要课题之一。

原油破乳剂作用原理

原油破乳剂作用原理

原油破乳剂作用机理关于如何破乳的理论有多种,基本的一种是在乳状液中有两种相对抗的力在连续不断地做功。

这种理论认为,水的界面张力可使其液滴趋向彼此聚结,形成粒径较大的液滴,靠重力从油中分离出来。

另一方面,乳化剂存在于液滴周围,促使液滴悬浮并彼此稳定,必须破坏乳化剂的这种稳定作用才能破乳。

破乳理论的中心是关于应用化学剂、加热和电力改变乳化物原来的状态。

化学破乳理论认为:化学破乳剂能中和存在着的乳化剂,破坏油包水型乳状液,并使固相聚集,从而破乳。

另一种理论认为,化学破乳剂能引起乳化剂变得脆弱并降低它膨胀的能力,破乳剂破乳作用的关键是取代吸附在油水界面上的天然乳化剂,降低界面膜的弹性和粘性,从而降低其强度,加速液滴的聚结.当加热时,使被包裹的水膨胀,打破了易碎的乳化膜。

使乳状液解体。

但是有些化学剂不必加热也可破乳,为了解释这一点,热理论的信奉者认为,化学破乳剂不仅使界面膜变得脆弱,而且也引起界面膜充分收缩而产生破碎作用.热学理论认为:该领域存有两种基本理论。

第一种是假设微小液滴有着类似于布朗运动的现象,加热增加液滴的动量,导致更大力量的碰撞,使膜破裂,水滴聚结。

第二种是认为加热降低了连续相油的粘度,促使碰撞力加大,同时,热可以使水滴的沉降速度加快.电学理论认为:乳状液的界面膜是由外部带电的极性分子组成,它们很容易干扰或吸引水滴.而电场能导致乳状液微粒相互吸引,它们沿着静电力线重新排列,使界面膜不能长期稳定下来,促使附近的水滴游离聚结,直到它们变得足够大时,靠自身的重力沉降下来。

较长时间以来,国外报道了大量原油破乳剂的研究结果,但对于原油破乳机理及影响因素的相关性规律研究甚少。

进入20世纪80年代以来,这方面的研究逐渐增多。

由于破乳剂的作用机理比较复杂,所提出的各种见解也只能供读者参考。

破乳剂破乳过程一般认为破乳剂的破乳过程可分为三个阶段:1加入破乳剂将破乳剂加到原油乳状液中,让它分布在整个油相中,并进入到要被破坏的乳状液水滴上。

原油破乳剂原理

原油破乳剂原理

原油破乳剂原理一、引言原油破乳剂是石油开采和炼油过程中常用的一种化学剂,用于破乳原油中的乳状液体,以便更好地分离油水两相和提高石油的品质。

本文将介绍原油破乳剂的原理及其在油田开发中的应用。

二、原油破乳剂的原理原油中的乳状液体是由水和油形成的胶体体系,其中水分散在油中形成小液滴。

原油破乳剂的作用是通过改变乳状液体的表面性质,使水和油相互分离,从而加快石油分离过程。

原油破乳剂的主要成分是表面活性剂,它能够在水和油的界面处形成一层薄膜,降低乳状液体的表面张力,使水和油能够更好地分离。

表面活性剂分为阳离子、阴离子和非离子三种类型,不同类型的表面活性剂适用于不同种类的原油。

在原油中添加表面活性剂后,它会吸附在水油界面处,形成一个类似于胶束的结构。

这种结构能够将分散的水液滴包裹在内部,形成稳定的乳状液体。

当添加原油破乳剂时,表面活性剂会破坏这种结构,使水液滴相互融合,从而分离出水相和油相。

三、原油破乳剂的应用1. 油田开采在油田开采过程中,原油破乳剂可以帮助分离原油中的水相和油相。

油井中的油水乳状液体会降低油井的产能,影响油田的开发效果。

通过添加原油破乳剂,可以破坏乳状液体的结构,使水和油相分离,提高油井的产能。

2. 炼油过程在炼油过程中,原油破乳剂可以帮助分离原油中的水相和油相,减少残留水分对炼油设备的腐蚀,提高炼油产品的品质。

同时,原油破乳剂还可以降低炼油过程中的能耗,提高炼油的经济效益。

3. 环境保护原油中的水相含有大量的盐分和有机物,对环境造成污染。

通过使用原油破乳剂,可以有效地分离水相和油相,减少水相的排放,降低环境污染。

四、总结原油破乳剂通过改变原油中乳状液体的表面性质,使水和油相互分离,提高石油的品质和开采效果。

它在油田开采和炼油过程中起到了重要的作用,并对环境保护起到了积极的推动作用。

随着科技的不断进步,原油破乳剂将会在石油工业中发挥更大的作用。

油田常用化学药剂作用原理全解

油田常用化学药剂作用原理全解
泡沫危害:
原油消泡剂的作用机理:
(1)原油消泡剂降低气液界面张力的能力大于起泡剂,通过顶替和增溶 起泡剂破坏泡膜,使液膜破裂。
(2)促进液膜排液速度,使液膜迅速变薄而消泡。
(3)破坏膜的弹性,气泡受压时会变形,局部活性剂膜变稀薄而使表面张力, 这种表面张力差使其可自动修复,泡不致破裂,破坏这种弹性就易消泡, 消泡剂加入会向气液界面扩散,使原来的助泡剂难以有恢复膜弹性的能力。
降凝剂、防蜡剂
改善原油流动性能
清水剂
使含油污水中的微小有机颗粒絮状凝成较大粒子,使之沉降下来,达到净化污水的目的
原油处理常用化学药剂
一种液体以一定大小的液滴形式分散于另一种液体中,这一过程就叫乳化;形成的新液体就是乳化液。原油是一种常见的乳化液。 原油乳状液的危害: ① 增大了液流的体积,降低了 设备和管道的有效利用率。 ② 增加了输送过程中的动力消耗。 ③ 增加了升温过程的燃料消耗。
阳极(抑制型钝化剂)型缓蚀剂 这种缓蚀剂能够抑制腐蚀电池的阳极化学反应,很容易引起金属表面氧化形成一 种致密的氧化膜而阻滞金属溶解。在金属腐蚀介质中加入缓蚀剂,使金属腐蚀电位正移,腐蚀电流密度减小,进入了钝化区。如重铬酸钾、亚硝酸钠。 阴极型缓蚀剂 缓蚀剂的作用主要是增大电化学腐蚀中的阴极极化,阻碍阴极过程的进行,使腐 蚀电位向负的方向移动,降低腐蚀速度。(如亚硫酸钠)。
50
13
破乳剂
BH-20A
T-704
V-101入口
100
22.5
浮选剂
BHFX-04A
T-705
V-301入口 /T-301入口
10
8
T-706
T301入口
备用
缓蚀剂
BHH-02

原油破乳剂作用原理 ap ar型

原油破乳剂作用原理 ap ar型

原油破乳剂作用原理 ap ar型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、原油破乳剂的概念。

原油破乳剂是一种用于分散和破乳原油中乳状液滴的化学药剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原油乳状液及化学破乳剂7.1乳状液的基本知识 (2)7.1.1乳状液的基本概念 (2)7.1.2乳状液的性质 (6)7.1.3乳状液的稳定性理论 (8)7.2原油乳状液及其性质 (10)7.2.1原油乳状液的生成及危害 (10)7.2.2原油乳状液的性质 (14)7.2.3影响原油乳状液稳定性的因素 (16)7.3乳状液在油井施工中的应用 (16)7.3.1乳化钻井完井液 (17)7.3.2乳化酸 (17)7.3.3乳化压裂液 (18)7.3.4稠油乳化降粘开采 (18)7.3.5微乳液的应用 (18)7.4原油脱水方法和原理 (19)7.4.1沉降分离 (20)7.4.2电脱水法 (21)7.4.3润湿聚结脱水法 (22)7.4.4化学破乳法 (22)7.5原油破乳剂及其评价方法 (23)7.5.1原油破乳剂发展简况 (23)7.5.2原油破乳剂的分类 (24)7.5.3常用的W/O型原油破乳剂 (25)7.5.4常见的O/W型原油乳状液破乳剂 (30)7.5.5破乳剂的评价指标 (32)7.6原油破乳剂的协同效应 (34)7.6.1破如剂的基本特性 (34)7.6.2破乳剂的复配方式及性能 (34)7.6.3破乳剂复配使用的原则 (36)7.7原油破乳剂作用机理 (37)7.7.1破乳过程 (37)7.7.2几类常用原油破乳剂的作用机理 (39)7.7.3破乳机理研究进展 (41)7.7.4破乳剂的选择 (43)参考文献 (45)世界各地的油田,几乎都要经历含水开发期,特别是采油速度快和采用注水进行强化开采的油田,其无水采油期短,油井见水早,原油含水率增长速度快。

例如美国约有80%的原油含水。

我国1983年以前,开发油田144个,综合含水达63.8%;1990年,全国油田原油含水达78%。

但当原油含水率达50%~70%时,增长速度减慢,甚至较长时间地稳定下来。

此时原油仍然稳定高产,油田的大部分储量在这一阶段被采出。

到开采后期,蒸汽驱、聚合物驱、表面活性剂驱和三元复合驱等强化采油技术的应用,驱油剂的存在导致原油乳状液含水量剧增,含水率可高达90%以上,但仍然能继续开采一段时间。

因此可以认为,原油含水是油田生产的正常状态和普遍现象。

原油含水危害极大,不仅增加了储存、输送和炼制过程中设备的负荷,而且增加了升温时的燃料消耗,甚至因水中含有盐类而引起设备和管道的结垢或腐蚀,而排放的水由于含油也会造成环境的污染和原油的浪费。

由于水几乎成为油田原油的“永远伴随者”,水的危害又是如此之大,所以原油脱水就成为油田原油生产中一个不可缺少的环节,一直受到人们的重视。

本章主要介绍原油乳状液的成因及性质,乳状液的稳定性理论,破乳方法及化学破乳剂。

7.1乳状液的基本知识7.1.1乳状液的基本概念7.1.1.1乳状液的定义乳状液是一种非均多相体系,其中至少有一种液体以液珠的形式均匀地分散于另一种与它不相混溶的液体之中,液珠的直径一般大于0.1μm,这种体系皆有一个最低的稳定度,此稳定度可因有表面活性剂或固体粉末的存在而大大增加,因此,在该体系中加入表面活性剂或某些固体粉末可使其具有一定的稳定性。

我们把这种能使不相溶的油水两相发生乳化而形成稳定乳状液的物质叫做乳化剂,其大多是由亲水亲油基所组成的两亲结构表面活性剂。

通常,把乳状液中以液珠形式存在的那一相称为分散相(内相或不连续相),另一个相称为分散介质(外相或连续相)。

因此,一般乳状液是由分散相、分散介质和乳化剂所组成。

7.1.1.2乳状液的生成条件对于纯水和纯油无论怎样搅拌它们绝不会形成乳状液,因为这两种液体彼此强烈地排斥。

要想制备稳定的乳状液,必须满足下述三个条件,缺一不可:(1)存在着互不相溶的两相,通常为水相和油相。

(2)存在有一种乳化剂(通常是一类表面活性剂),其作用是降低体系的界面张力,在其微珠的表面上形成薄膜或双电层以阻止微液珠的相互聚结,增加乳状液的稳定性。

(3)具备强烈的搅拌条件,增加体系的能量。

7.1.1.3乳状液的类型常见的乳状液有两类,一类是以油为分散相,水为分散介质的称为水包油型(O/W)乳状液。

另一类是以水为分散相,油为分散介质的称为油包水(W/O)型乳状液。

根据“相体积”理论,当水油比相当时,即如果水相或者油相的体积占总体积的26%~74%时,将引起多重乳化现象。

所谓多重乳状液是W/O和O/W两种类型同时存在的乳状液,即水相中可以有一个油珠,而此油珠中又含有一个水珠,因此可用W/O/W 表示此种类型。

同样,也存在O/W/O型乳状液。

见图7-l。

图7-1乳状液的类型7.1.1.4乳状液类型的鉴别方法根据油包水(W/O)和水包油(O/W)乳状液的不同特点,可以鉴别乳状液的类型,但是,有时一种方法往往不能得出可靠的结论,可以多种方法并用。

常用的方法有:(1)稀释法乳状液能与其外相(分散介质)液体相混溶,故能与乳状液混合的液体应与其外相相同。

具体方法是:将两滴乳状液放在一块玻璃板上的两处,于其中一滴中加一滴水,另一滴中加一滴油,轻轻搅拌,若加水滴的能很好混合则为O/W型,反之则为W/O型。

如牛奶可用水稀释而不能用植物油稀释,所以牛奶是O/W型乳状液。

(2)染色法当乳状液外相被染色时整个乳状液都会显色,而内相染色时只有分散的液滴显色。

将少量油溶性染料(如苏丹Ⅲ)加入乳状液中,若乳状液整体带色则为W/O型;若只是液珠带色,则为O/W型。

用水溶性染料(如甲基蓝、甲基蓝亮蓝FCF等)进行试验,则情形相反。

(3)电导法一般而言,油类的导电性差,而水的导电性好,故对乳状液进行电导测量,与水导电性相近的即为O/W型,与油导电性相近的为W/O 型。

但有的W/O型乳状液,内相(水)的比例很大,或油相中离子性乳化剂含量较多时也会有很好的导电性,因此,用电导法鉴别乳状液的类型不一定很可靠。

(4)荧光法荧光染料一般都是油溶性的,在紫外光照射下会发产生颜色。

在荧光显微镜下观察一滴加有荧光染料的乳状液可以鉴别乳状液的类型。

倘若整个乳状液皆发荧光,为W/O型;若只有一部分发荧光为O/W型。

(5)滤纸润湿法此法对于重油和水的乳状液适用, 因为二者对滤纸的润湿性不同,水在滤纸上有很好的润湿铺展性能。

将一滴乳状液放在滤纸上,若液滴快速铺开,在中心留下一小滴油,则是O/W型,若不铺开,则为W/O型。

(6)粘度法由于在乳状液中加入分散相后,其粘度一般都是上升的,利用这一特点也可以鉴别乳状液的类型。

如果加入水,比较其前后粘度变化,则粘度上升的是W/O型乳状液,反之则为O/W型。

(7)折射率法使用光学显微镜观察测定乳状液的折射率,利用油相和水相折射率的差异也可以判断乳状液的类型。

令光从一侧射入乳状液,乳状液粒子起透镜作用,若为O/W型乳状液,则粒子起集光作用,用显微镜观察只能看到粒子的左侧轮廓;若为W/O型乳状液,则与上述情况相反,只能看到粒子的右侧轮廓。

7.1.1.5影响乳状液类型的因素乳状液是一个复杂的多分散体系,影响其类型的因素很多,早期的理论有:“相体积”理论、聚结速率理论、“定向锲”理论和Bancroft 规则。

总结起来,主要的影响因素有以下几个方面:(1)“相体积”理论1910年,Ostwald根据立体几何的观点提出“相体积”理论。

若分散相液滴是均匀的球形,根据立体几何原理可知,在最密集堆积时,液滴的最大体积只能占总体积的74.02%,其余25.98%为分散介质。

图7–2表示一个在理想情况下的均匀乳状液,其液珠占了74.02%的体积。

图7–3(a)表示在普通情况下的不均匀乳状液,图7–3(b)表示为极端情况下的乳状液示意图,其液珠被挤成大小形状皆不相同的多面体。

若分散相体积大于74.02%,乳状液就发生破坏或变型。

如果水相体积占总体积的26%~74%时,两种乳状液均可形成;若水相体积<26%,则只形成W/O型,若水相体积>74%,则只能形成O/W型。

图7–2均匀乳状液珠所形成的密集堆积示意图,液珠占总体积的74.02%(a)(b)图7–3 (a)不均匀液珠所形成的密集堆积乳状液示意图(b)非球形液珠所形成的密集堆积乳状液示意图(2)聚结速率理论1957年Davies提出了的一个关于乳状液类型的定量理论。

这一理论认为,当油、水和乳化剂一起振荡或搅拌时形成乳状液的类型取决于油滴的聚结和水滴的聚结两种竞争过程的相对速度。

在搅拌过程中油和水都可以分散成液滴状,并且乳化剂吸附在这些液滴的界面上,搅拌停止后,油滴和水滴都会发生聚结,其中聚结速度快的相将形成连续相,聚结速度慢的相被分散。

因此,如果水滴的聚结速度远大于油滴的聚结速度,则形成O/W型乳状液,反之形成W/O型乳状液。

如果两相聚结速度相近,则体积分数大的相将构成外相。

(3)乳化剂分子构型Harkins在1917年提出“定向楔”理论,乳化剂分子在油–水界面处发生单分子层吸附时,极性端伸向水相,非极性端则伸入油相。

若将乳化剂比成两头大小不同的“楔子”(如肥皂分子,其极性部分的横切面比非极性部分的横切面大),那么截面小的一头总是指向分散相,截面大的一头总是伸向分散介质。

经验表明:Cs+、Na+、K+等一价金属离子的脂肪酸盐作为乳化剂时,容易形成O/W型乳状液,因为这些金属皂的亲水性是很强的,较大的极性基被拉入水相而将油滴包住,因而形成了O/W型乳状液,见图7–4(a)。

而Ca2+、Mg2+、Al3+、Zn2+等高价金属皂则易生成W/O型乳状液,因为这些金属皂的亲水性比较K+、Na+等脂肪酸盐弱。

此外,这些活性剂分子的非极性基(共有两个碳链)大于极性基,分子大部分进入油相将水滴包住,因而形成了水分散于油的W/O型的乳状液。

见图7–4 (b)。

(a)(b)图 7–4定向楔示意图:O/W型乳状液(a)和W/O型乳状液(b)由图7–4可以看出,只有定向楔排列才能是最紧密堆积,故一价金属皂得O/W型,而用高价金属皂则得W/O型乳状液。

但也有例外,如Ag皂应为O/W型,实际上却得到的是W/O型。

(4)乳化剂的亲水性Bancroft提出乳化剂溶解度的经验规则,即Bancroft规则。

若乳化剂在某相中的溶解度较大,则该相将易于成为外相。

一般来说,亲水性强的乳化剂,其HLB值在8~18之间,易形成O/W型乳状液;而亲油性强的乳化剂,HLB值在3~6之间,易形成W/O型乳状液。

乳化剂在油–水界面膜上发生吸附与取向,可能使界面两边产生不同的界面张力,即γ膜-水和γ膜-油,在形成乳状液时,界面会倾向于向界面张力高的一边弯曲以降低其面积,从而降低表面自由能。

因而,γ时得到O/W型乳状液,γ膜-油<γ膜-水时得到W/O型乳状液。

膜-油>γ膜-水对于固体粉末作为乳化剂稳定乳状液时(将在7.1.3中详细介绍),只有润湿固体的液体大部分在外相时,才能形成较为稳定的乳状液,即润湿固体粉末较多的一相在形成乳状液是构成外相。

相关文档
最新文档