提升管内气固双流体模型的计算模拟

合集下载

旋风分离器气固两相流数值模拟及性能分析共3篇

旋风分离器气固两相流数值模拟及性能分析共3篇

旋风分离器气固两相流数值模拟及性能分析共3篇旋风分离器气固两相流数值模拟及性能分析1旋风分离器气固两相流数值模拟及性能分析旋风分离器是一种广泛应用于化工、环保、电力等领域的气固分离设备,其利用离心力将气固两相流中的颗粒物分离出来,一般被用作除尘和粉尘回收设备。

本文将介绍旋风分离器的气固两相流数值模拟及性能分析。

气固两相流是指气体与固体颗粒混合物流动的状态。

旋风分离器中的气固两相流在进入设备后,经过导流装置后便会进入旋风筒,此时气固两相流呈螺旋上升流动状态,颗粒物受到离心力的作用被抛向旋风筒壁,而气体则从旋风筒顶部中心脱离,从出口排放。

因此,旋风分离器气固两相流的流体物理特性显得尤为重要。

本文采用计算流体力学(Computational Fluid Dynamics,CFD)方法对旋风分离器气固两相流进行数值模拟。

对于气体流动部分,采用了二维轴对称的控制方程式,包括连续性方程、动量方程和能量方程,而对于颗粒物流动部分,采用了颗粒物轨迹模型(Particle Tracking Model,PTM)。

在数值模拟过程中,采用了FLUENT软件进行求解,其中的数值算法采用双重电子数法(Electron Electrostatic Force Field,E3F2)。

数值模拟结果显示,在旋风分离器中,气体的流速主要集中在筒壁附近,而在离筒中心较远的地方,则流速较慢,颗粒物则以螺旋线的方式向旋风筒壁移动,并沿着筒壁向下运动。

颗粒物在旋风筒中受到离心力的作用后,其分布状态将随着离心力的变化而变化,最终沉积在筒壁处。

数值模拟结果还表明,旋风分离器的分离效率随着旋风筒直径的增加而增加。

为了验证数值模拟结果的可信度,实验室制作了一个小型旋风分离器进行了实验研究。

实验结果表明,数值模拟与实验结果相比较为一致,通过数值模拟可以较好地描述旋风分离器中气固两相流动的情况并用于性能预测。

综合来看,数值模拟是一种较为有效的旋风分离器气固两相流性能分析方法,可以较好地预测旋风分离器的分离效率和颗粒物的分布状态,为旋风分离器的设计和优化提供了有力支持综上所述,本文利用数值模拟方法和实验研究相结合的方式,对旋风分离器的气固两相流动性能进行了分析。

管道输送流体数值模拟优化计算方法

管道输送流体数值模拟优化计算方法

管道输送流体数值模拟优化计算方法引言:管道输送流体的数值模拟优化计算方法是一项重要的技术,它可以用于优化设计管道输送系统,提高输送效率和降低能耗。

本文将介绍管道输送流体数值模拟的基本原理、方法及其在优化计算中的应用。

一、管道输送流体数值模拟的基本原理管道输送流体数值模拟是通过数学模型和计算方法来模拟管道内流体的运动和特性。

其基本原理包括流体力学方程的建立、网格生成和离散化以及求解算法的选择。

1. 流体力学方程的建立管道输送流体数值模拟的基础是流体力学方程,包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体的质量守恒关系,动量守恒方程描述了流体的运动和力的平衡关系,能量守恒方程描述了流体的能量转化和守恒关系。

通过这些方程,我们可以建立描述管道内流体运动的数学模型。

2. 网格生成和离散化为了进行数值计算,需要对管道和流体进行离散化处理。

网格生成是将管道几何形状划分为一系列小的子区域,这些子区域被称为网格。

离散化是将流体力学方程中的连续变量转化为离散形式,通过对网格节点上的变量值进行计算和求解。

3. 求解算法的选择数值模拟的求解算法直接影响计算结果和计算效率。

常用的求解算法包括有限差分法、有限体积法和有限元法等。

根据具体情况选择合适的算法可以提高计算精度和效率。

二、管道输送流体数值模拟的方法管道输送流体数值模拟的方法主要有数值迭代法、时间步进法和修正高斯赛德尔迭代法等。

这些方法可以根据具体问题的要求选择。

1. 数值迭代法数值迭代法包括雅可比迭代法和高斯赛德尔迭代法。

这些方法通过迭代计算来逼近方程的解。

数值迭代法在实际应用中计算效率高,但对于复杂问题可能需要较长的计算时间。

2. 时间步进法时间步进法是一种求解时间相关问题的数值方法。

通过将时间离散化为一系列小的时间步长,可以逐步求解流体力学方程。

时间步进法适用于瞬态问题和非平衡问题的模拟。

3. 修正高斯赛德尔迭代法修正高斯赛德尔迭代法是一种结合了数值迭代法和时间步进法的求解方法。

气固两相流压降探讨计算

气固两相流压降探讨计算

气固两相流压降探讨计算气固两相流压降是指气体和固体颗粒一起流动时,在流动过程中固体颗粒对气体施加的阻力所造成的流体压力降低。

这种现象在化工、石油、冶金等领域中经常出现,研究气固两相流压降对于优化工艺参数、提高生产效率具有重要意义。

气固两相流压降的计算可以采用经验公式和数值模拟等方法。

其中经验公式是根据大量的实验数据总结出来的经验关系式,简单实用。

而数值模拟则是通过计算流体力学方程组来模拟流体流动的整个过程,能够提供较为精确的结果。

在气固两相流压降的计算中,两相之间存在着颗粒与气体的相互作用力。

主要包括静压力、浮力、颗粒间的互作用力、阻力等。

其中静压力是由于颗粒间距产生的压力差造成的;浮力是指颗粒在气体中受到的浮力,与颗粒的密度和气体的密度有关;颗粒间的互作用力是指颗粒之间的相互作用力,包括颗粒间的排斥力和吸引力;阻力是指颗粒在气体中受到的阻力。

在计算中,需要考虑颗粒与气体之间的速度变化、颗粒浓度分布、颗粒直径大小等因素。

同时,颗粒与气体之间的相互作用和流体流动特性也需要纳入考虑范围。

为了计算气固两相流压降,可以采用基本的力平衡原理。

即流体流动的总阻力等于颗粒与流体之间的阻力与颗粒的重力之和。

根据此原理,可以建立相应的数学模型进行计算。

在计算中,需要确定气体和固体颗粒的性质参数,如气体的密度、颗粒的密度、颗粒的直径等。

这些参数可以通过实验测定或者根据经验值来确定。

另外,计算气固两相流压降时,还需要考虑流体流动的速度、管道尺寸等参数。

这些参数可以通过实际工艺流程中的测量值或者根据设计要求来确定。

总的来说,气固两相流压降的计算是一个复杂的过程,需要考虑多个因素的综合影响。

通过合理的数学模型和适当的实验数据,可以准确计算出气固两相流压降,为相关工程的设计和优化提供依据。

螺旋式旋风分离器气_固两相流的数值模拟

螺旋式旋风分离器气_固两相流的数值模拟
[ 1] 刘新海 , 于书芳 . 模糊控制在大型风力发电机控 制中的 机械与电子 2009( 1)
27
用, 实验数据不易测量等因素 , 所以关于旋风分离 器的研究至今大多采用经验、 半经验方法. 本文旨在 借助 CFD 商业软件中的 F LU ENT 软件包, 对螺旋 式旋风分离器内部流场进行分析研究, 充分认识其 内部气、 固两相的分布特点, 为以后相关方面的科学 研究提供一定的理论借鉴 .
0
引言
螺旋式旋风分离器是一种已被实验证实高效、 实用、 新颖的除尘设备 , 与传统旋风分离器相比具有 体积小、 高度低、 收尘效率高、 气流阻力低和分离能 力大等优点[ 1] . 因其对颗粒物的分离、 捕集过程是一 复杂的三维、 二相湍流运动 , 并涉及到气- 固相互作
应用 [ J] . 自动化仪表 , 2004, 25( 5) : 13- 17. [ 2] [ 3] [ 4] [ 5] [ 6] 李发海 , 王 岩 . 电机与拖动基础 [ M ] . 北京 : 清华大 学 出版社 , 2005. 苏绍禹 . 风力发 电机设 计与运 行维 护 [ M ] . 北京 : 中 国 电力出版社 , 2002. 张国良 , 曾 静 , 柯 熙政 , 邓方 林 . 模糊 控制 及其 M at lab 应用 [ M ] . 西安 : 西安交通大学出版社 , 2002. 叶杭冶 . 风力发 电机组 的控制 技术 [ M ] . 北 京 : 机械 工 业出版社 , 2002. 姚 骏, 廖 勇 . 基 于全模糊控制器的交流励磁发电 机 励磁控制 系 统研 究 [ J] . 中 国 电 机工 程 学报 , 2007, 27 ( 33) : 36- 41. [ 7] 郭洪澈 , 郭庆鼎 . 模 糊控制在大型风力发电机并网控 制 中的应用 [ J] . 节能 , 2002, 12: 41- 43. 作者简介 : 高文元 ( 1949 - ) , 男 , 江苏无 锡人 , 高 级工程 师 ,

文丘里管内气固两相流离散相仿真模型优化

文丘里管内气固两相流离散相仿真模型优化

⽂丘⾥管内⽓固两相流离散相仿真模型优化
⽂丘⾥管内⽓固两相流离散相仿真模型优化
李红⽂,张涛
【摘要】⽂章针对Fluent中⽓固两相流离散相模型(DPM)仿真,以⽂丘⾥管内流场为例,在结合⽓相流场分析与固相颗粒受⼒分析的基础上,提出DPM 模型优化的4项措施,即从颗粒所受各个⼒的合理取舍、⽓相速度⼊⼝模型、颗粒曳⼒模型及颗粒碰壁关系4个⽅⾯进⾏优化,以提⾼通⽤模型对管道节流复杂流场问题仿真时的准确性。

通⽤模型的优化通过调⽤Fluent 相关宏并编制UDF程序实现。

对⽂丘⾥管的⼯况进⾏仿真模拟,并与国家标准中的数据进⾏对⽐,结果验证了优化DPM模型的准确性明显优于通⽤DPM模型。

模型优化的⽅法对于其他类似的复杂流场⼯况具有通⽤性,具有⼯程实⽤价值。

【期刊名称】合肥⼯业⼤学学报(⾃然科学版)
【年(卷),期】2014(000)001
【总页数】6
【关键词】计算流体⼒学;⽓固两相流;离散相模型;⽤户⾃定义函数;⽂丘⾥管
0 引⾔
在以能源动⼒及化⼯为代表的许多⼯业领域,⽓固两相流有着⾮常⼴泛的应⽤,其中稀相⽓固两相流的管道流动中,流量测量⾮常常见,如燃煤电站煤粉输送管道的在线测量、锅炉系统中含尘烟⽓的流量测量、设备中含有粉尘⽓体的管道测量等等。

⽂献[1]采⽤在煤粉吹送管道中加装标准⽂丘⾥管等节流元件,通过差压法测量煤粉浓度;⽂献[2-3]采⽤⽂丘⾥管测量煤粉⽓固两相流流量。

由于节流。

气固两相流模拟技术的研究及应用

气固两相流模拟技术的研究及应用

气固两相流模拟技术的研究及应用气固两相流模拟技术,是指模拟气体和固体颗粒同时运动的过程。

其应用场景非常广泛,比如化工制造领域中的气力输送、固体颗粒混合、喷雾干燥等过程,以及环境科学领域中的大气污染、沙尘暴等问题。

因此,气固两相流模拟技术的研究和应用具有重要的实际意义。

目前,气固两相流模拟技术主要采用计算流体力学(CFD)方法或离散元法(DEM)实现。

CFD方法主要基于对流方程,通过数值方法对流体动力学方程进行求解,得出流体的流速、压力等物理参数,以及气体与颗粒之间的相互作用力等参数。

DEM方法则主要基于颗粒运动力学原理,把物质看作是由相互作用的颗粒组成的离散体系,通过求解颗粒的受力情况,来计算颗粒之间的相互作用力、碰撞等参数。

虽然两种方法各有优缺点,但在处理气固两相流时,通常采用CFD-DEM耦合方法。

该方法主要是将CFD和DEM方法的数值模型进行耦合,实现同时对气体和颗粒的运动进行模拟,从而更加准确地模拟气固两相流动态过程。

在气固两相流模拟技术中,最关键的是气体与颗粒之间的相互作用力。

气体与颗粒之间的相互作用力可以分为两类:杆状作用力和碰撞作用力。

杆状作用力主要是指气体因速度梯度而对颗粒施加的作用力;碰撞作用力则是指颗粒之间或颗粒与壁面之间发生的碰撞,由此产生的反作用力。

在气固两相流模拟技术的应用中,最常见的是喷雾干燥领域。

喷雾干燥是指在高速气流中喷入悬浮颗粒,通过颗粒与气体的相互作用,使颗粒与气体之间的热量、质量交换,从而实现悬浮物质的干燥过程。

针对喷雾干燥的气固两相流模拟技术,通常采用CFD-DEM二元模型,考虑气固两相流的微观动力学过程,并通过模拟颗粒与气体之间的传热、传质等物理过程,来研究喷雾干燥的机理和优化干燥过程。

研究表明,采用气固两相流模拟技术可以更好地解释和深入研究喷雾干燥过程中颗粒的运动、热量传递和干燥效果等重要问题。

除了喷雾干燥领域之外,气固两相流模拟技术在环境科学领域,特别是大气环境领域也有重要的应用。

分叉流道中气固两相流动的实验研究和数值模拟

分叉流道中气固两相流动的实验研究和数值模拟

分叉流道中气固两相流动的实验研究和数值模拟随着工业的发展以及对环境保护的日益重视,对工业粉尘分离装置的要求越来越高。

工业粉尘不但危害人类的健康,而且会破坏工业设备,危害设备的安全运行,造成设备零部件的频繁更换,给国家财力带来了巨大的损失。

考虑到惯性分离设备无运动部件、流动阻力小,本文建立了分叉管道结构形式的惯性分离装置,研究其内部气固两相流动规律。

分叉管道中气固两相流动,由于壁面带有曲率,流动速度大,完全依靠固体颗粒惯性形成气固分离,故流动较为复杂,导致流场实验测量和数值模拟的困难。

论文采用高速摄影,结合数字图像处理技术跟踪固体颗粒的运动轨迹,通过标定轨迹图像中颗粒位置,实现了图像法对颗粒运动速度的研究。

通过工况对比,发现较大颗粒对空气的跟随性不好,且其分离效果受到很多因素影响,包括颗粒进入管道的位置、速度大小和方向(速度角)、以及颗粒的球形度。

在所有的工况下,颗粒速度角较小时分离效果较好;同密度下的块状颗粒分离效果总体上较球形颗粒好;随着进口空气流速增加,颗粒分离的效果也更好。

这些都是由于颗粒在收缩管道内主流方向上惯性力分量的增大,使颗粒有足够的惯性力被甩入清除流道中。

在分析单个球形颗粒受力以及颗粒同壁面碰撞模型的基础上,运用数值计算软件对分叉管内部气固两相流场进行了计算。

采用k-ε紊流模型和固相的离散相模型研究分叉管道内的气固分离现象,分析了分叉管道内连续相流场随进口速度和清除流量系数的变化规律,得到随着清除流量系数的增大,压力损失系数出现急剧下降,而中心流道的压力损失降低的幅度较小。

这是因为随着清除流量系数的增大,虽然清除流道中流速的增加,但回流的区域出现减小,流动的阻力减小,损失减少。

这些都说明了清除流道和中心流道压力损失的主要因素不同:清除流道中回流是引起压力损失的主要原因,而中心流道的压力损失主要受流动速度的影响。

在颗粒的分离效率方面,研究了直径在100μm以上的光滑球形颗粒,分析了影响分离效率的因素。

基于不同亚格子尺度过滤模型下提升管内颗粒流动的数值模拟

基于不同亚格子尺度过滤模型下提升管内颗粒流动的数值模拟

基于不同亚格子尺度过滤模型下提升管内颗粒流动的数值模拟王淑彦;房建宇;邵宝力;董群;刘扬;杨树人【期刊名称】《高校化学工程学报》【年(卷),期】2016(030)002【摘要】固相亚格子尺度过滤模型是在高精度的网格下,系统地过滤了基于结合颗粒动理学的双流体模型的模拟结果而得到的曳力和固相应力等本构关系的计算模型。

今分别采用固相亚格子尺度过滤模型(Filtered Model I)、壁面修正固相亚格子尺度过滤模型(Filtered Model II)和改进的固相亚格子尺度过滤模型(Filtered Model III)模拟NETL/PSRI挑战问题中的提升管内的颗粒流动特性,得到了时均气体压力梯度和时均轴向颗粒速度等分布。

亚格子尺度模型和均匀流动模型(Huilin-Gidaspow model)的研究结果相比,改进的固相亚格子尺度过滤模型(Filtered Model III)与实验值更接近,尤其是对于高颗粒浓度流动。

壁面修正可以提高压力梯度,从时均轴向颗粒速度分布曲线,可以看出在提升管内颗粒流动结构呈现更为明显的环核流动结构;同时,研究了提升管内气体压缩性、壁面修正和计算网格对模拟结果的影响,分析表明气体的可压缩性对提升管内轴向气体压力梯度有影响,在模拟计算时考虑气体的压缩性,可以提高计算精度。

%Three sets of filtered gas-particle two-fluid models were obtained by systematically filtering results generated through highly resolved simulations of a kinetic theory based two-fluid model (TFM). Flow behaviors of particles in a three-dimensional riser in NETL/PSRI challenge problems of circulating fluidized beds (CFBs) were studied using filtered two-fluid model (Filtered Model I), wall-correction model (Filtered Model II) and modified filtered model(Filtered Model III). The distributions of time-averaged gas pressure gradient along height and time-averaged axial velocities of particles in the radical direction at different elevations were obtained and compared with experimental data. By comparison of simulation results obtained from the three filtered two-fluid model and the homogeneous drag model (Huilin-Gidaspow model), we found that the Filtered Model III is better than others, in particular, for dense gas-solid flow. Wall correction of filtered TFM affects pressure gradient, and can clearly capture the core-annular structure for the flow behavior of particles in riser. In addition the effectsof gas compressibility, wall corrections and grid resolution on predicted results were discussed. It was found that the gas compressibility had a quantitative effect on the simulation results. Such findings show that the consideration of gas compressibility can improve the simulation predictions.【总页数】7页(P325-331)【作者】王淑彦;房建宇;邵宝力;董群;刘扬;杨树人【作者单位】东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆163318;东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆 163318【正文语种】中文【中图分类】Q813.11【相关文献】1.熵格子Boltzmann方法的亚格子尺度模型 [J], 邵菲;韩端锋;刘强;谢伟2.基于非Favre过滤的动力学非线性亚格子模型 [J], 李斌;吴颂平3.基于REV尺度格子Boltzmann方法的页岩气流动数值模拟 [J], 张烈辉;贾鸣;郭晶晶4.不同亚格子尺度模型对气动噪声仿真精度的影响 [J], 殷想; 汪怡平; 杜敏韬; 苏楚奇; 孙浩5.双尺度二阶矩颗粒湍流模型和提升管内稠密两相流动的模拟 [J], 曾卓雄;周力行;张健因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档