碳纳米管介绍

合集下载

碳纳米管的亲疏

碳纳米管的亲疏

碳纳米管的亲疏碳纳米管是一种具有特殊结构和性质的纳米材料,因其独特的亲疏性在许多领域都有广泛应用。

本文将介绍碳纳米管的亲疏性及其在不同领域的应用。

一、什么是碳纳米管碳纳米管是由碳原子构成的纳米管状结构,具有直径纳米级别、长度可达微米级别的特点。

根据结构形式的不同,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。

在碳纳米管的结构中,碳原子以六角形方式连接,形成了稳定的管状结构。

二、碳纳米管的亲性1. 疏水性碳纳米管表面由于碳纳米管内部和外部的原子结构,其表面呈现出疏水性。

由于其表面的疏水性,碳纳米管对于水分子有排斥作用。

2. 亲水性碳纳米管的亲水性主要表现在其内部的通道结构中,通道的内部可以与水分子形成氢键,使得碳纳米管对于水分子有亲和力。

三、碳纳米管的应用领域1. 生物医学领域由于碳纳米管的独特结构和良好的生物相容性,它被广泛应用于生物医学领域。

碳纳米管可以用作生物传感器、药物运输载体、组织工程等方面。

在药物传递方面,由于碳纳米管具有良好的载药能力和温敏性,可以实现药物的定向释放和靶向治疗。

2. 环境治理碳纳米管在环境治理中也有重要应用。

碳纳米管可以作为吸附剂吸附重金属离子、有机物等污染物质,从而净化水体和土壤环境。

此外,碳纳米管还可以作为催化剂催化有机废气等。

3. 功能材料由于碳纳米管具有优异的电、热、力学性能,它被广泛应用于电子、能源等领域。

碳纳米管可以用于制备电池、超级电容器、导电薄膜等功能材料。

4. 纳米电子器件碳纳米管的亲疏性使其成为制备纳米电子器件的理想材料。

碳纳米管可以用于制备场效应晶体管、光电二极管、柔性显示器等纳米电子器件。

5. 复合材料碳纳米管可以与其他材料进行复合,形成性能优良的复合材料。

碳纳米管被广泛用于制备高性能的复合材料,如碳纳米管增强的高强度塑料、碳纳米管增强的复合导电材料等。

结语碳纳米管的亲疏性使其在多个领域具有广泛应用。

生物医学、环境治理、能源电子等领域都能发挥碳纳米管的独特作用。

碳纳米管电热

碳纳米管电热

碳纳米管电热
碳纳米管是一种由碳原子构成的纳米管状结构,具有优异的导电性、机械性能和热传导性能。

这些独特的性质使得碳纳米管在许多领域都有着广泛的应用。

在电热领域,碳纳米管的应用也备受关注。

碳纳米管的导电性能非常好,可以作为导电材料用于电热设备中。

例如,将碳纳米管涂覆在导电基底上,可以制备出具有高导电性和高热稳定性的电热膜。

这些电热膜可以用于加热、除霜、除雾等应用。

此外,碳纳米管还可以用于制备柔性电热材料。

由于碳纳米管具有良好的柔韧性和机械强度,可以将其制备成柔性电热膜或电热线,用于可穿戴设备、柔性显示器和柔性传感器等领域。

这些柔性电热材料可以在弯曲、拉伸等情况下保持良好的导电性能和加热效果。

碳纳米管的电热性能还可以通过控制其结构和形貌来进行调控。

例如,通过改变碳纳米管的直径、长度和管壁厚度等参数,可以调整其导电性能和热传导性能。

此外,还可以通过对碳纳米管进行功能化修饰,如掺杂其他元素或负载催化剂等,来进一步优化其电热性能。

需要注意的是,虽然碳纳米管具有优异的电热性能,但在实际应用中还需要考虑其制备成本、稳定性和可靠性等因素。

此外,碳纳米管的
电热性能也会受到环境因素的影响,如温度、湿度等,因此在设计和使用碳纳米管电热材料时需要综合考虑各种因素。

总的来说,碳纳米管在电热领域具有广阔的应用前景。

随着研究的不断深入和技术的不断发展,碳纳米管电热材料将有望在更多领域得到应用,并为人们的生活带来便利。

碳纳米管 电芯材料

碳纳米管 电芯材料

碳纳米管电芯材料
碳纳米管是一种由碳原子构成的纳米结构,具有许多独特的性质,因此被广泛研究用于各种领域,包括电子学、材料科学和能源
存储等。

在电子学领域,碳纳米管被认为是一种潜在的电芯材料,
具有许多引人注目的特性。

首先,碳纳米管具有优异的电导率,这意味着它们能够有效地
传输电荷。

这使得碳纳米管在电子器件中可以作为高性能的导电材
料使用,例如在晶体管和集成电路中发挥作用。

其次,碳纳米管具有优异的机械性能,具有很高的强度和韧性。

这使得它们在制备纳米尺度的电子器件时能够提供稳定的支撑和结构。

此外,碳纳米管还表现出优异的热导率,这对于一些需要高效
散热的电子器件来说是非常重要的。

另外,碳纳米管的尺寸和形状可以通过控制合成条件进行调控,使其具有可调控的带隙特性,这对于一些需要特定能隙的电子器件
设计来说具有潜在的应用前景。

此外,碳纳米管还具有较高的化学稳定性和表面活性,这使得它们可以被用作电极材料或者催化剂支持材料等。

综上所述,碳纳米管作为电芯材料具有许多独特的优势,但同时也面临着一些挑战,例如大规模制备和集成等方面的技术难题。

然而,随着对碳纳米管性质和合成方法的深入研究,相信碳纳米管在电子学领域的应用前景将会更加广阔。

碳纳米管材料的介绍

碳纳米管材料的介绍

碳纳米管材料的介绍碳纳米管是一种由碳原子构成的纳米材料,具有许多独特的性质和应用潜力。

它的发现引起了科学界的广泛关注和研究。

碳纳米管具有极高的强度和刚度。

由于碳原子之间的键合非常强大,碳纳米管能够承受很大的拉伸力和压缩力,使其具有很强的抗弯曲性能。

这使得碳纳米管成为一种理想的材料,用于制造轻巧但坚固的结构,如飞机和汽车部件。

碳纳米管具有优异的导电性和导热性。

碳纳米管内部存在着一维的碳原子排列,使得电子在其内部能够自由传输,形成了高效的电子输运通道。

因此,碳纳米管被广泛应用于电子器件领域,如晶体管和纳米电线等。

同时,碳纳米管还具有良好的热导性能,使其成为制造高效散热器和热电材料的理想选择。

碳纳米管还具有丰富的表面化学活性和高比表面积。

碳纳米管的表面可以通过化学修饰来引入不同的功能团,从而赋予其特定的化学性质和应用功能。

例如,通过在碳纳米管表面引入亲水性团体,可以制备出具有优异吸附能力的纳米过滤器。

而碳纳米管的高比表面积则使其成为一种理想的催化剂载体,可用于提高化学反应的效率和选择性。

碳纳米管还具有良好的光学性能和生物相容性。

由于碳纳米管具有一维结构,使得它们能够吸收和发射可见光和红外光。

这使得碳纳米管在光学传感器和光电器件领域具有广泛的应用前景。

此外,碳纳米管还具有良好的生物相容性,可以用于生物医学领域,如药物传递和组织工程等。

碳纳米管具有多种优异的性质和应用潜力,使其在材料科学、电子学、化学和生物医学等领域具有广泛的应用前景。

随着对碳纳米管性质和制备方法的深入研究,相信碳纳米管将会在未来的科技发展中发挥更加重要的作用。

碳的一维材料

碳的一维材料

碳的一维材料一维材料是指在一维空间中具有特殊结构和性质的材料,碳的一维材料是指由碳原子组成的具有一维结构的材料。

碳的一维材料包括纳米管和纳米线。

本文将对碳的一维材料进行详细介绍。

一、碳纳米管碳纳米管是由碳原子构成的中空圆筒状结构,具有极高的强度和导电性能。

碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种。

单壁碳纳米管是由一个或数个层的碳原子构成的管状结构,直径通常在1到100纳米之间。

单壁碳纳米管具有较高的强度和导电性能,具有巨大的应用潜力。

它可以应用于电子器件、传感器、储能材料等领域。

多壁碳纳米管是由多层碳原子构成的管状结构,直径通常在10到100纳米之间。

多壁碳纳米管具有较高的力学强度和导电性能,可以应用于材料增强、催化剂载体等领域。

二、碳纳米线碳纳米线是由碳原子构成的直径在1到100纳米之间的线状结构,具有较高的强度和导电性能。

碳纳米线可以分为多种形态,包括直线状、弯曲状和分支状等。

碳纳米线具有较高的比表面积和活性,可以应用于催化剂、传感器、储能材料等领域。

此外,碳纳米线还具有良好的柔性和可拉伸性,可以应用于柔性电子器件和可穿戴设备等领域。

三、碳的一维材料的制备方法碳纳米管的制备方法主要包括化学气相沉积、电弧放电法和悬浮液层析法等。

化学气相沉积是最常用的制备方法,通过在高温下将碳源气体分解成碳原子,再在催化剂的作用下形成碳纳米管。

电弧放电法是将含有碳源的阳极和阴极放电,产生高温和高压的条件下形成碳纳米管。

悬浮液层析法是将碳纳米管的前体溶液通过离心或过滤等方法分离出来。

碳纳米线的制备方法主要包括电化学沉积、化学气相沉积和拉伸法等。

电化学沉积是通过在电解质溶液中使用电流控制碳纳米线的生长。

化学气相沉积是在高温下将碳源气体分解成碳原子,再在催化剂的作用下形成碳纳米线。

拉伸法是通过拉伸碳纤维或碳纳米管,使其在纳米尺度下形成碳纳米线。

四、碳的一维材料的应用碳纳米管和碳纳米线具有独特的结构和性能,具有广泛的应用前景。

碳纳米管的工作原理

碳纳米管的工作原理

碳纳米管的工作原理碳纳米管作为一种具有材料学和纳米科技领域重要应用前景的纳米材料,其独特的结构和优异的性能引起了广泛的关注和研究。

本文将介绍碳纳米管的工作原理,包括结构形貌、电子结构及其在电子学、能源和材料等领域的应用。

一、碳纳米管的结构形貌碳纳米管是由碳原子按照特定方式排列而形成的一种纳米材料。

其结构可分为单壁碳纳米管(Single-walled carbon nanotubes, SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes, MWCNTs)两种。

单壁碳纳米管由一个层状的碳原子构成,形成一个中空的圆筒状结构;而多壁碳纳米管则是由多个套在一起的单壁碳纳米管形成。

碳纳米管的直径可在纳米尺度下,长度则可从纳米到微米不等。

二、碳纳米管的电子结构碳纳米管的电子结构由它特殊的晶格结构所决定。

SWCNTs的电子结构可以分为金属型和半导体型。

金属型SWCNTs具有导电性能,其带电子结构中存在不同对于带底和带顶的π键态。

而半导体型SWCNTs则具有带隙,在带电子结构中存在占据和未占据的π键态之间的能隙。

MWCNTs的电子结构则比SWCNTs复杂,由于多层的存在,形成了更多的能带结构。

三、碳纳米管在电子学中的应用由于碳纳米管具有良好的电导性和导热性能,使得它在电子学领域具有广泛的应用潜力。

碳纳米管可以作为电子器件的导线或晶体管的栅极,实现电流的快速传输和控制。

其极小的尺寸和高度延展性也使得碳纳米管可以用于构建高密度的集成电路,并在纳米尺度上实现电子元件的微缩和高性能的实现。

四、碳纳米管在能源领域的应用碳纳米管在能源领域的应用主要集中在电池、超级电容器和燃料电池等方面。

碳纳米管具有高比表面积和优异的导电性能,这使得它在电化学能量转换和储存中具有重要的作用。

碳纳米管可以用作电极材料,提高电池和超级电容器的性能,并且可以提高储能密度和充放电速度。

五、碳纳米管在材料领域的应用碳纳米管以其高强度、高刚性和轻质的性质在材料领域有着广泛的应用前景。

碳纳米管结构

碳纳米管结构

碳纳米管结构碳纳米管是一种由碳原子构成的纳米材料,具有非常特殊的结构和性质。

碳纳米管结构的独特之处在于其呈现出类似于卷曲的螺旋形状,这种形态使得碳纳米管具有极高的比表面积和优异的导电性能。

碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种结构,它们的性质和用途有所不同。

单壁碳纳米管是由一个原子层厚度的石墨片卷曲而成的碳纳米管,具有直径非常细小的特点。

单壁碳纳米管的直径通常在1到3纳米之间,而长度可以达到数百微米。

单壁碳纳米管具有优异的导电性和导热性,同时还具有很高的机械强度和化学稳定性,因此在电子器件、传感器、储能材料等领域有着广泛的应用。

由于其独特的结构和性质,单壁碳纳米管还被认为是未来纳米科技领域的重要研究对象。

多壁碳纳米管则是由多层石墨片卷曲而成的碳纳米管,相对于单壁碳纳米管来说,多壁碳纳米管的直径较大,且层间距也比较宽。

多壁碳纳米管的层数可以从几层到数十层不等,每增加一层就增加了一层新的电子结构,因此多壁碳纳米管的性质会随着层数的增加而发生变化。

多壁碳纳米管的导电性和机械强度要略低于单壁碳纳米管,但是其更适合用于储能材料、复合材料等领域。

除了单壁和多壁碳纳米管之外,还有一种被称为纳米角石墨烯管的结构,它是由石墨烯卷曲而成,具有介于单壁和多壁碳纳米管之间的结构特点。

纳米角石墨烯管具有优异的导电性和机械性能,同时还具有石墨烯的高比表面积和化学稳定性,因此在储能、传感器、生物医药等领域有着广泛的应用前景。

总的来说,碳纳米管结构的独特性使其在纳米科技领域具有重要的地位和广泛的应用前景。

随着人们对碳纳米管结构和性质的深入研究,相信碳纳米管将会在未来的科技发展中发挥越来越重要的作用,为人类社会的进步和发展做出贡献。

碳纳米管在锂离子电池中的应用研究

碳纳米管在锂离子电池中的应用研究

碳纳米管在锂离子电池中的应用研究在如今这个人类普遍使用电子设备的时代,锂离子电池是不可或缺的一个组成部分。

在锂离子电池中,电解质和电极材料是至关重要的。

在此,我们将重点讨论电极材料中碳纳米管(Carbon Nanotubes,CNTs)的应用。

一、碳纳米管的介绍碳纳米管是由碳原子在长度方向上形成的中空圆柱体,其直径可以在几纳米至几十纳米之间变化。

碳纳米管分为单壁碳纳米管与多壁碳纳米管两种。

碳纳米管有很强的机械强度、尺寸稳定性和高导电性,这些特性使得碳纳米管在电化学领域中有着广泛的应用,如在锂离子电池中的应用、电化学传感器中的应用等。

二、碳纳米管在锂离子电池中的应用制备碳纳米管复合材料能够提高锂离子电池的性能。

碳纳米管的应用可以通过分散在电极材料中或涂覆在电极材料上来实现。

与传统电极材料相较而言,碳纳米管复合材料在锂离子电池中的应用具有以下优势:1. 碳纳米管具有高导电性、高机械强度和高化学惯性,这些特性有助于改善电极材料的表面活性,从而提高电极材料的循环稳定性和容量特性。

2. 碳纳米管复合材料可以改善电极材料的导电性,使其更易于电子传输。

此外,由于碳纳米管的高比表面积,材料中更容易存在锂离子扩散,因此具有更高的离子传输性能。

基于上述好处,碳纳米管已经被广泛应用于锂离子电池中,如在锂离子电池的电极材料中作为添加剂,以改善电极材料的性能。

三、结论总的来说,碳纳米管在锂离子电池中的应用研究越来越深入。

这些研究不仅可以改善电极材料性能,而且可以改进电池的循环稳定性和容量特性。

伴随着碳纳米管的不断发展和研究,我们相信碳纳米管在电池领域中将会有更广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管
Carbon Nanotubes
吕岩
一. 碳纳米管简介及其分类
二.
碳纳米管的性能
三. 碳纳米管的制备方法
四.
碳纳米管的应用
一.碳纳米管简介
• 又叫巴基管,碳的同素异形体 • 由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、
中空纳米管
单壁碳纳米管
多壁碳纳米管
碳纳米管的结构
与金刚石、石墨、富勒烯一样,是碳的一种同素异形体 。它 是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之
碳纳米管有望代替ITO,二者的性能非常相似, 但碳纳米管要便宜得多。相较之下碳有可再生、低 价、来源广、可塑性强的优点,这使得碳纳米管比 ITO更适合于制作触摸屏。
其他 应用
……
储氢材料 Li离子电池 生物材料 微型反应器(纳米试管)
存在的问题
1、碳纳米管的生长机理不明确 CNT的结构可控生长 CNT的长径螺旋角均匀 特殊结构和功能的CNT
这种新型碳纳米管“橡 胶”其实是一种名为粘 弹性物质传统材料。这 种材料无论被怎样扭曲 、拉伸,弯曲,甚至被 穿透,到最后都会恢复 到原始状态。它能抗低 温,耐高温。
任何极端温度下都不会损坏的特殊 的“钢筋铁骨橡胶”
扫描隧道显微镜和原子力显微镜针尖
优点: • 纳米级直径,高的长径比,高的机械柔软性、电子稳定性。 • 分辨率高,探测深度深,可进行狭缝和深层次探测
1.按形态分类
碳纳米管的分类
实际制备的碳纳米管的管身并不完全是平直或均匀的,有时会出现各 种结构,如弯曲、分叉、螺旋等。这些结构的出现多是由于碳六边形网格
中引入了碳五边形和碳七变形所致。碳五边形引起正弯曲,碳七边形引起
负弯曲。
普通封口型 变径型 洋葱型
海胆型
竹节型
念珠型
纺锤型
螺旋型 其他异型
2.按层数分类
1 非手性型(对称)
扶手椅型 锯齿型
2 手性型(不对称)
4.按定向性分类
1 定向碳纳米管
2 非定向碳纳米管
ห้องสมุดไป่ตู้
二.碳纳米管材料的性能
力学性能
电学性能
热学性能
储氢性能
其他性能
碳纳米管主要的性能 可以从五个方面说明
碳纳米管材料的性能
力学性能
金刚石是我们所知道的自然界中最 为坚硬的物质。而作为金刚石的同素 异形体,碳纳米管具有良好的力学性 能。
2.激光蒸发法(Laser Ablation)
在一长条石英管中间放置一 根金属催化剂/石墨混合的石墨 靶,该管则置于一加热炉内。当 炉温升至一定温度时,将惰性气 体充入管内,并将一束激光聚焦 于石墨靶上。在激光照射下生成 气态碳,这些气态碳和催化剂粒 子被气流从高温区带向低温区时 ,在催化剂的作用下生长成碳纳 米管。
度高,但产量不高,阴极上除了碳纳米管还沉积有富勒烯、石 墨颗粒、无定形碳和其他形式的炭颗粒。而且由于电弧温度 高达3000~3700 ℃, 形成的碳纳米管会被烧结成一体,烧结 成束, 束中还存在很多非晶碳杂质, 造成较多的缺陷。
电弧法目前主要用于生产单壁碳纳米管。选择合适的催 化剂组合与含量, 是电弧法制备单壁碳纳米管研究的主要方 向之一。
径的单壁碳纳米管套构而成。 形状象个同轴电缆。其层数从 2~50不等, 层间距为0.34±0.01nm,与石墨层间距 (0.34nm)相当。多壁管的典型 直径和长度分别为2~30 nm和 0.1~50μm。
单壁碳纳米管
多壁碳纳米管
3.按手性分类
根据构成单壁碳纳米管的石墨层片的螺旋性,可以将单壁碳纳米管分为:
对碳纳米管的端部有选择性 地进行化学修饰,可以进一步拓 展显微镜在蛋白质、生物大分子 结构和表征中的应用。
分子传感器
碳纳米管已被证明是一种常温常压下的新型化学传感器。其原理是 电子施主(如NO2、O2等)和电子受主(如NH3)分子在碳纳米管上 的吸附导致碳纳米管导电性能的变化。通过这种效应,可以探测这些气 体在某些环境中的含量。
新型芯片 在硅芯片晶体管接近其物理性能极限的当今, 碳纳米管是未来替代硅芯片极具竞争力的候选材 料之一。科学家预计碳纳米晶体管的运算速度将 比目前看好的下一代硅芯片的还要快10倍,而且 耗能更少,这将有助于研发具有超级运算速度和 低能耗的微处理器。
触摸屏
在消费性电子产品中,常见的是电容性触摸屏, 而它常用的材料则是ITO(纳米铟锡金属氧化物) 导体。ITO薄膜是制造触摸屏导体的理想材料。但 铟非常稀有,且ITO薄膜还有易碎、可塑性差的缺 点,处理过程需要在真空环境下进行,导致价格非 常昂贵。
利用碳纳米管极好的导电特性、电致发光等其他性能,可制备功能复 合材料。可将其用作防静电材料,这种导电性碳纳米管复合材料有望用于 汽车车体上。
另外,经化学修饰的碳纳米管衍生物与聚合物共混纺制碳纳米管复合 纤维,其不仅具有导电或抗静电性,还具有高的强度和模量,该类复合纤 维可望应用于轻便且刀枪不入的装甲和防弹背心或服装材料。
其他性能
碳纳米管还具有光学和毛细,化学 等其他良好的性能,也正是这些特性 使得碳纳米管成为许多新材料的基础。
三.碳纳米管的制备方法
CNTs的制备方法有多种,主要有: 电弧法 激光蒸发法 化学气相沉积法 燃烧火焰法 电解法
通过各种外加能量,将碳源分解为原子或离子形式, 然后在凝聚就可以得到这种碳的一维结构。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能, 由于是一维材料,其在径向上的导热 性能优越,我们甚至可以在复合材料 中掺杂微量的碳纳米管 ,使得复合材料 的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且 具有大量的微孔,其储氢量远远大于 传统材料的储氢量,因此被认为是良 好的存储材料。
此法特点:操作简单, 工艺参数更易控 制,生长温度相对较低,成本低,产量大, 可规模化生产。
但由于其制备的碳纳米管含有许多杂质, 且碳纳米管缠绕成微米级大团,需要进一 步纯化和分散处理。
四.碳纳米管的应用
……
复合材料
由于碳纳米管具有极好的力学性能,因此将其用作复合材料的增强体, 能有效提高金属、高分子聚合物或陶瓷基体的力学性能。
间以碳-碳σ键结合起来。
碳纳米管材料构
碳纳米管的发现
碳纳米管于1991年由日本NEC公司基础研究 实验室的电子显微镜专家饭岛澄男首先发现。 他在高分辨透射电子显微镜下检验石墨电弧设 备中产生的球状碳分子时,意外发现了由管状 的同轴纳米管组成的碳分子,这就是今天被广 泛关注的碳纳米管。

碳纳米管材料的性能
电学性能
碳纳米管在电学性能上也有很大的 发展空间。
实验表明不同类型的碳纳米管,导 电性能也不相同,例如,单壁纳米管总 是金属性的,手性形纳米管中则部分为 半导体性,部分为金属性的。
有报道说Huang通过计算认为直径 为0.7nm的碳纳米管具有超导性,尽管 其超导转变温度只有1.5×10-4K,但是 预示着碳纳米管在超导领域的应用前景。
激光蒸发法制备碳纳米管的装置
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相 比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得 到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无 无定形碳出现。
这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结, 且需要昂贵的激光器,耗费大。
1.电弧法(Arc Discharge Methods)
主要工艺:
在真空容器中充满一定压力的 惰性气体或氢气,以掺有催化剂 (金属镍、钴、铁等) 的石墨为电 极,在电弧放电的过程中,两石墨 电极间总保持一定的间隙。阳极石 墨被蒸发消耗,同时在阴极石墨上 沉积碳纳米管,从而生产出碳纳米 管。
优缺点: 电弧法的特点是简单快速, 制得的碳纳米管管直, 结晶
1)单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨
烯片组成。单壁管典型的直径和长度分别为 0.75~3nm和1~50μm。 又称富勒管(Fullerenes tubes)。
2)多壁碳纳米管(Multi-walled nanotubes, MWNTs):为由不同直
2、 量子效应的利用问题 利用=克服
3、 大规模工业化生产

Thank you!
这种传感器响应速度快,灵敏度要远远高于现有室温下的探测器 (较常规高1000倍),经过加温或在大气气氛中存放一定时间可使传 感器作用恢复。
隐形材料
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于 红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得 多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉 大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得 红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于 隐形材料、电磁屏蔽材料或暗室吸波材料。
硬度:碳-碳共价键是自然界中最稳定 的化学键,而碳纳米管的强度接近于 碳-碳键的强度,因此单壁碳纳米管的 抗拉强度达到50~200GPa,杨氏模量 与金刚石相当,强度是钢的100 倍。
碳纳米管材料的性能
力学性能
弹性:与金刚石的三维结构不同,碳 纳米管作为一维纳米材料可弯可拉具 有相当好的弹性。实验表明碳纳米管 在拉升达原来长度的136%时仍 然可以 恢复到原来的样子。而且即使受到了 很大的外加应力,碳纳米管也不会发 生脆性断裂 。
LA制备的SWNT束的TEM照片
Science 273 , 483–487(1996)
3.化学气相沉积法(CVD)
化学气相沉积法又名催化裂解法, 其原理是通过烃类(如甲烷、乙烯、 丙烯和苯等) 或含碳氧化物(如CO) 在催化剂的催化下裂解为碳原子,碳原 子在催化剂作用下,附着在催化剂微粒表面上形成碳纳米管。
相关文档
最新文档