山东科技大学2005弹性力学考研试题

合集下载

2005年考研数学二真题答案解析

2005年考研数学二真题答案解析

1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得x xx x y ys i n 1c o s )s i n 1l n (1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即x x y x ln ][22=',两边积分得 Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k 【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算.6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。

2005考研数学二真题及参考答案

2005考研数学二真题及参考答案

2005考研数学(二)真题及参考答案2005年考研数学二真题与解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xx xdx ______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222y ux u ∂∂=∂∂.(C)222yuy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ](12)设函数,11)(1-=-x x e x f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C)01=λ.(D) 02=λ.[ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和y l . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 )93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C);令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=y x yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222yuy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(B) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和y l . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--ydtt t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20122121)1()1(πθrdrr d dy y xdx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r iαβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bxax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。

山东科技大学考研科目大纲

山东科技大学考研科目大纲
001 资源与环境工程学院
071101 系统理论
101 思想政治理论
201 英语一 202 俄语 203 日语
601 运筹学
808 系统工程
001 资源与环境工程学院
080102 固体力学
101 思想政治理论
201 英语一 202 俄语 203 日语
301 数学一
805 弹性力学
001 资源与环境工程学院
070105 运筹学与控制论
101 思想政治理论
201 英语一
603 数学分析
826 高等代数
006 信息科学与工程学院
080902 电路与系统
101 思想政治理论
201 英语一
301 数学一
825 电子技术
006 信息科学与工程学院
081201 计算机系统结构
101 思想政治理论
201 英语一
301 数学一
301 数学一
408 计算机学科专业基础综合
006 信息科学与工程学院
120502 情报学
101 思想政治理论
201 英语一
303 数学三
828 信息资源管理
006
430112
101 思想政治理论
204 英语二
302 数学二
827 数据结构与操作系统Z
006
430113
101 思想政治理论
204 英语二
101 思想政治理论
201 英语一 202 俄语
301 数学一
812 数字测图原理与方法
002 测绘科学与工程学院
081621 ★测绘仪器与系统
101 思想政治理论
201 英语一 202 俄语 203 日语
301 数学一

2005考研数二真题及解析

2005考研数二真题及解析

2005年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 设xx y )sin 1(+=,则π=x dy= ________________ .(2) 曲线x x y 23)1(+=的斜渐近线方程为___________.(3)=--⎰1221)2(xxxdx______________(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为________________.(5) 当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k =________________ .(6) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内 ( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.(8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有 ( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数. (C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x轴交点的横坐标是 ( )(A) 1ln 238+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+.(10) 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( ( )(A) πab . (B) π2ab . (C) π)(b a +. (D) π2b a + .(11) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有 ( )(A) 2222yux u ∂∂-=∂∂. (B) 2222y u x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂.(12) 设函数,11)(1-=-x xex f 则 ( ) (A) 0x =,1x =都是()f x 的第一类间断点. (B) 0x =,1x =都是()f x 的第二类间断点.(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点.(13) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是 ( )(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.(14) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为,A B 的伴随矩阵,则 ( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分11分)设函数()f x 连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点(,)M x y 分别作垂直于x 轴和y 轴 的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0))与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:)(I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数(,)z f x y =的全微分ydy xdx dz 22-=,并且(1,1)2f =. 求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D(22)(本题满分9分)确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0AX =的通解.2005年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【详解】先求出函数的导数,再求函数在某点的微分.方法1:利用恒等变形得xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法2:两边取对数,)sin 1ln(ln x x y +=,对x 求导,得1cos ln(1sin )1sin x x y x y x'=+++, 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故 π=x dy =.)(dx dx y ππ-='(2)曲线xx y 23)1(+=的斜渐近线方程为___________.【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:32())limlim 1,x x f x a x →+∞=== []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y(3)【详解】通过还原变换求定积分 方法1:令t x sin = (0)2t π<<,则=--⎰10221)2(x x xdx⎰-202cos )sin 2(cos sin πdt t t t t 220sin 2sin t dt t π=-⎰22200cos arctan(cos )1cos 4d t t t πππ=-=-=+⎰方法2t =,有221,x t =-所以有xdx tdt =-,其中01t <<.112001arctan 014dtt t π-===+⎰⎰(4)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx+=的解,有公式()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数). 将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dx x xy e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x-+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(5)【详解】由题设,00()lim()x x x x βα→→=)cos arcsin 1(cos 1arcsin lim 20x x x kx x x x x ++-+→ 201arcsin 1cos lim 2x x x x k x →+-=2001arcsin 1cos lim lim 2x x x x k x x →→-⎡⎤=+⎢⎥⎣⎦, 又因为 201cos 1lim 2x x x →-=,00arcsin lim arcsin lim 1sin x u x ux u xu →→ = =所以 0()11lim(1)()22x x x k βα→=+34k=由题设0→x 时()~()x x αβ,所以314k =,得.43=k(6)【答案】2 【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 123123123(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=.二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <时,≤≤,命n →∞取极限,得1n =,lim 1n →∞=,由夹逼准则得()1n f x ==;当||1x =时,()1n n f x ===;当||1x >时,33|||x x =<≤=,命n →∞取极限,得3||n x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+=所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 0()()()()()xxx F x f t dt C f k dk C f k dk C F x --=+=--+=+=⎰⎰⎰,从而 ⎰+=x C dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D);(9)【答案】A【详解】当3x =时,有322=+t t ,得121,3t t ==-(舍去,此时y 无意义),曲线()y y x =的导数为 2111222(1)dy dy dt t dx dx t t dt+===++, 所以曲线()y y x =在3x =(即1t =)处的切线斜率为18于是在该处的法线的斜率为8-, 所以过点(3,ln 2)的法线方程为)3(82ln --=-x y ,令y =0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)【答案】D【详解】由于积分区域D 是关于y x =对称的, 所以x 与y 互换后积分值不变, 所以有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=12D d σ⎰⎰ =212.2242Da b a b a b d σππ+++=⋅⋅⋅=⎰⎰ 应选(D).(11)【答案】B 【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B).(12)【答案】D【详解】由于函数()f x 在0x =,1x =点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以0x =为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以1x =为第一类间断点,故应选(D).(13)【答案】B 【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+=⎪⎝⎭, 因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭,故121220r λλ⎛⎫≤≤⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为 ()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭ ⇔()1112221,00x x λααλ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B)方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(14)【答案】(C) 【详解】方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E ==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()BE A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.三、解答题(15)【详解】 作积分变量代换,命x t u -=,则00()()()()xxxf x t dt f u du f u du -=-=⎰⎰⎰,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=洛必达法则⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=整理⎰⎰+→xxx x xf du u f dt t f 000)()()(lim0001()lim 1()()xx x x f t dt x f x f t dt x →=+⎰⎰上下同除 而 00000(())1lim ()lim lim ()(0)xxx x x f t dt f t dt f x f x x →→→'==='⎰⎰ 所以由极限的四则运算法则得,原式0001()lim1()()xx x f t dt x f x f t dt x →=+⎰⎰00001lim ()1lim ()lim ()x x x x f t dt x f x f t dtx →→=+⎰⎰(0)(0)(0)f f f =+(0)012f ≠=.(16) 【详解】由题设图形知,3C 在1C 的左侧,根据平面图形的面积公式得,⎰--=+-=xx t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydt t t y S 12))((ln )(ϕ,由)()(21y S x S =,得⎰-=--y xdt t t x e 1))((ln )1(21ϕ,注意到(,)M x y 是xe y =的点, 于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 整理上面关系式得函数关系为:.21ln )(yy y y x --==ϕ(17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的)一个拐点知(3)0.f ''=由分部积分公式,33220()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰ 3220(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-30330)(2)()12()()12(30(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】 由题设)0(cos π<<=t t x ,有sin dxt dt=-,由复合函数求导的链式法则得 dtdyt dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222t dt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,2222cos 111(1cos )[]()cos ()0sin sin sin sin t dy d y dyt t y t dt t dt t t dt--⋅---+=, 化简得022=+y dty d ,其特征方程为210r +=,特征根1,2r i =±, 通解为12cos sin y C t C t =+所以 221211sin cos x C x C t C t C y -+=+=,将初始条件01,x y==代入得,1210C C C =⨯+=,即21C =.而121y C x C C '''=+=+,将2x y ='=代入得112C C =+=,即12C =.将122,1C C ==代入通解公式得满足条件的特解为21 1.y x x =-<<(19)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)【详解】由ydy xdx dz 22-=知2,2z z x y x y ∂∂==-∂∂.对2zx x∂=∂两边积分得2(,)()z f x y x c y ==+. 将2(,)()z x y x c y =+代入2zy y∂=-∂得()2c y y '=. 所以2()c y y c =+. 所以22z x y c =-+.再由1,1x y ==时2z =知, 2c =. 于是所讨论的函数为222z x y =-+.求z 在2214y x +<中的驻点. 由2,2z zx y x y ∂∂==-∂∂得驻点(0,0),对应的(0,0)2z f ==.讨论222z x y =-+在D 的边界22=14y x +上的最值,有两个方法. 方法1:把224(1)y x =-代入z 的表达式,有2222=52z x y x =-+-,11x -≤≤10x z x '=命0x z '=解得0x =,对应的2y =±,0,22x y z==±=-还要考虑11x -≤≤的端点1x =±,对应的0y =,1,03x y z =±==由2,2,3z z z ==-=比较大小,故min 2z =-(对应于0x =,2y =±),max 3z =(对应于0x =,2y =±)方法2:用拉格朗日乘数法,作函数2222(,,)2(1)4y F x y x y x λλ=-+++-解方程组 2222(1)0,12022104xy f F x x x f y F y y y y F x λλλλλ⎧∂'=+=+=⎪∂⎪∂⎪'=+=-+=⎨∂⎪⎪'=+-=⎪⎩ 由上面的第一个方程解得0x =或1λ=-:当0x =时由最后一个方程解得2y =±;当1λ=-是由第二个方程解得0y =,这时由最后一个方程解得1x =±. 故解得4个可能的极值点(0,2),(0,2),(1,0),(1,0)--.计算对应z 的值:(0,2)(0,2)(1,0)(1,0)2,2,3,3zzzz--=-=-==再与(0,0)2z=比较大小,结论同方法1.(21) 【详解】D :2210x y +-=为以O 为中心半径为1 的圆周,划分D 如下图为1D 与2D .这时可以去掉绝对值符号222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dx y d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x后一个积分用直角坐标做,21122220(1)1)D x y dxdy dx x y dy +-=+-⎰⎰⎰312222011[(1)((1-)]33x x x dx =----⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 42012cos 33tdt π=-+⎰220121cos 2()332t dt π+=-+⎰2+y 2=1220121(12cos 2cos 2)334t t dt π=-+⨯++⎰201211cos 4(12cos 2)3342t t dt π+=-+⨯++⎰201211cos 4(12cos 2)33422t t dt π=-+⨯+++⎰20121321cos 4(2cos 2)33422342tt dt ππ=-+⨯⨯⨯+⨯+⎰12103834π=-++⨯⨯138π=-+.前一个积分用极坐标做,11222220011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 所以221Dx y d σ+-⎰⎰=8π+138π-+=.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ,再减去“扩充”的部分,就简化了运算. 即222(1)d D x y σ+-=⎰⎰22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 因此221D xy d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而 3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以 221Dx y d σ+-⎰⎰=28π⨯13-=.314-π(22)【详解】方法1:记123123(,,),(,,)A B αααβββ==. 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111a A a a =2222311111a a a a a+++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子11121(2)01031100a a a - +---行行行行13013(2)(1)11a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0=(其中13(1)+-指数中的1和3分别是1所在的行数和列数)从而得1a =或2a =-.当1a =时,1231[1,1,1]Tαααβ====,则12312300αααβββ===+⋅+⋅,故123,,ααα可由123,,βββ线性表出,但2[2,1,4]Tβ=-不能由123,,ααα线性表出(因为方程组2123211111114111k k k β-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即123123123214k k k k k k k k k ++=-⎧⎪++=⎨⎪++=⎩无解),故1a =符合题意.当2a =-时,由于122112[]122121242211B A ---⎡⎤⎢⎥=---⎢⎥⎢⎥---⎣⎦12211221000033312006000---⎡⎤-⎢⎥--⎢⎥+⨯⎢⎥-⎣⎦行行,行行 因2()2()3r B r B α=≠=,系数矩阵的秩和增广矩阵的秩不相等,故方程组2BX α=无解,故2α不能由123,,βββ线性表出,这和题设矛盾,故2a =-不合题意.因此1a =.方法2:对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a1221121022010*********a a a a a a a a a --⎡⎤-⎢⎥++-⎢⎥-⨯⎢⎥+--⎣⎦行行,行行 1221132202201000403(1)1a a a a a a a --⎡⎤⎢⎥-⨯++-⎢⎥⎢⎥---⎣⎦行行, 当2a =-时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 不存在非零常数123,,k k k ,使得123112230003006k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,2α不能由321,,βββ线性表示,因此2-≠a ;当4a =时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,3α不能由321,,βββ线性表示,不存在非零常数123,,k k k ,使得123412200663000k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. 因此4≠a . 而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα21112221011022310110423a a a a a a a aa a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦行行,行行2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行, 由题设向量组321,,βββ不能由向量组321,,ααα线性表示,则方程组()1231x αααβ =或()1232x αααβ =或()1233x αααβ =无解,故系数矩阵的秩≠增广矩阵的秩,故()123()r B r ααα≠ .又当2-≠a 且4≠a 时,()3r B =,则必有01=-a 或022=--a a ,即1a =或2-=a .综上所述,满足题设条件的a 只能是:1a =.方法3:记()()123123,,,,,A B αααβββ==,对矩阵()A B 作初等行变换,得()12312311122(,,,,)111114aA B a a a a a a αααβββ--⎡⎤⎢⎥ ==⎢⎥⎢⎥⎣⎦ 21112221011022310110423a a a a a a a a a a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦行行,行行 2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行, 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111a A a a =2222311111a a a a a +++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子 11121(2)01031100a a a -+---行行行行13013(2)(1)110a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0=从而得1a =或2a =-.当1a =时,()111122000033000096A B -⎛⎫ ⎪ = ⎪ ⎪⎝⎭,则12312300αααβββ===+⋅+⋅,123,,ααα可由123,,βββ线性表出,但由于()()212r A r A β=≠ =,系数矩阵的秩和增广矩阵的秩不相等,方程组2Ax β=无解,2[2,1,4]T β=-不能由123,,ααα线性表出. 或由于()()312r A r A β=≠ =,系数矩阵的秩和增广矩阵的秩不相等,方程组3Ax β=无解,3β不能由123,,ααα线性表出,即123,,βββ不能由123,,ααα线性表出,故1a =符合题意.当2a =-时,()112122033000000006A B --⎛⎫ ⎪ =- ⎪ ⎪-⎝⎭,因()()323r A r A β=≠ =,,系数矩阵的秩和增广矩阵的秩不相等,123,,βββ不能由123,,ααα线性表出,但()()223r B r B α=≠ =(或()33r B α =),系数矩阵的秩和增广矩阵的秩不相等,即2BX α=(或3BX α=)无解,即123,,ααα不能由123,,βββ线性表出,与题设矛盾,故2a =-不合题意.故1a =.(23)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠, 13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.。

哈工大2005年秋季学期弹性力学试题

哈工大2005年秋季学期弹性力学试题

哈工大 2005 年 秋 季学期
弹性力学 试题
一、推导出按位移求解弹性力学问题时所用的基本微分方程(Lame 方程)。

(15分)
二、给出如图所示平面应力问题的定解条件 1、简支梁受均布荷载q (10分)
qL
q
2、楔型体双边受对称均布剪力q (10分)
三、
1、闭合薄壁杆的横截面如图所示,均匀厚度为δ,受扭矩M ,试求最大剪应力及扭转角,并画出剪力图。

(10分)
2、解决弹性力学问题的五个基本假设是什么? (5分)
y
四、设图中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用3223Dy Cxy y Bx Ax +++=ϕ的应力函数求解。

(15分)
五、如图所示,铅直平面内的正方形薄板,边长为2a ,四边固定,只受重力ρɡ的作用。

设μ=0,试用位移分量表达式为
12222)1)(1(A a
y a x a y a x u --=
122
22)1)(1(B a
y a x v --=求解。

05山东科技大学高等代数

05山东科技大学高等代数

二. (20 分) 设 A 是 n 级方阵, 证明: 存在一个 n 级方阵 B 0 使 AB 0 的充分必要条件是 A 0 。 三. (20 分) M n ( F ) 表示数域 F 上的全体 n 级方阵构成的线性空间, 试证: 1. N 级对称矩阵的集合 W1 和 n 级反对称矩阵的集合 W2 都是 M n ( F ) 的 线性了空间; 2. M n ( F ) W1 W2 四. (20 分)设
科目代码:401
请在答题纸(本)上做题, 在此试卷及草入纸上做题无效!
山东科技大学 2005 年招收硕士学位研究生入学考试
高等代数试题
(共 2 页)
一. (共 70 分,每小题 14 分) 1.试确定 A,B,使得 x 1 是多少项式
f ( x) Ax n 1 Bx n 1(n 1)
为正定二次型 4.已知 a1a2…as 的秩为 r (r 0) ,证明:a1a2…as 中任意 r 个线性 无关的向量都构成它的一个极大线性无关组。 5.设 T 是 R2 的一个线性变换,向量
中 A 是 V 上的任一正交变换。
a1
Ta1
e1
, e
1 0 2
,Ta
0 1 2
, a
0 1
2
ቤተ መጻሕፍቲ ባይዱ

2 1
在变换 T 下的像是
2 3 ,试求:T 在基
0 1 下的矩阵。
第 1 页
第2页
的二重因式。 2.证明方阵 A 的最小多项式是唯一的。 3.证明实二次型
2 2 f ( x1, x2 , x3 ) 5x12 x2 5x3 4 x1x2 8x1x3 4 x2 x3
1 4 2 A 0 3 4 0 4 3

青岛科技大学材料力学2005--2012,2016,2017年考研真题

第 页(共33页)1 青 岛 科 技 大 学二○一七年硕士研究生入学考试试题考试科目:材料力学注意事项:1.本试卷共 四 道大题(共计 31 个小题),满分150分;2.本卷属试题卷,答题另有答题卷,答案一律写在答题卷上,写在该试题卷上或草纸上均无效。

要注意试卷清洁,不要在试卷上涂划;3.必须用蓝、黑钢笔或签字笔答题,其它均无效。

﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡一 判断题(每小题2分,共24分,对的用“√”表示,错的用“╳”表示) 1.卡氏第二定理既可以求绝对位移,也可以求相对位移。

2.金属材料拉伸时都有弹性、屈服、强化、局部变形四个阶段。

3.拉伸杆件斜截面上正应力和切应力都存在。

4.从材料力学的设计角度来看,安全系数必须大于1,且越大越好。

5.实心圆轴抗扭截面系数的单位为长度的四次方。

6.梁上有集中力作用的位置,剪力图有突变。

7.梁的中性轴都位于截面高度的二分之一位置。

8.构件上的某一点,若任何方向都无应变,则该点无位移。

9. 弹性固体的应变能是可逆的,当外力解除时,可以在恢复变形中,释放全部应变能而做功。

超过弹性范围,则应变能不能全部转变为功。

10. 两端固定细长压杆的约束系数都是0.5。

11. 围绕一点取得的单元体可以不是正六面体。

12. 铸铁水管冬天结冰时会因冰膨胀而涨裂,而管内的冰不破碎,这是因为冰处于三向近似等压应力状态。

二 填空题(每空2分,共26分)1. 是指构件在外力作用下抵抗破坏的能力。

2. 图示在拉力F 作用下的六角螺栓,其材料的剪切许用应力是拉伸许用应力[]的一半,则螺栓直径d 和螺栓头高度h 的合理比值为__________。

3. 用卡氏定理求结构某处的位移时,该处需要有与所求位移对应的载荷,如求挠度,需要有 ,如求转角,则要求有 。

如若没有,则可采取附加力法。

4. 圆轴扭转变形前原为平面的横截面,变形后仍为平面,形状和大小均不变,半径保持为直线;相邻两截面间距离不变。

2005年考研数学二试题及答案

2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

2005年考研数学二试题及答案

2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

2005年山东科技大学444法学综合(含法理和民法)考研真题【圣才出品】


2005 年山东科技大学 444 法学综合(含法理和民法)考研真题
科目代码:444
请在答题纸(本)上做题,在此试卷及草稿纸上做题 无效!
山东科技大学 2005 年招收硕士位研究生入学考试 法学综合(含法理和民法)试卷 (共 2 页)
一、名词解释(每题 4 分,共 16 分): 1.法律渊源 2.法律体系 3.法律关系 4.校正正义
二、简答题(第 1 题、第 2 题各 10 分,第 3 题、第 4 题各 11 分,共 42 分): 1.简述法律规则与法律原则的区别。 2.什么是法的效力? 3.人权的保障方式有哪些? 4.简述与道德的关系。
1/4
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、论述题(17 分): 运用相关的法学理论,试析最高人民法院进行司法解释这一法律现象。
第1页
2/4
圣才电子书 十万种考研考证电子书、题库视频学习平台

民法试题(75 分) 一、名词解释(每题 4 分,共 16 分) 1.法人机关 2.事实行为 3.取得时效 4.反担保

第2页
4/4
二、简答题(共 43 分) 1.占有保护请求权(10 分) 2.合同法定解除的条件(11 分) 3.赠与人撤销赠与的事由(10 分) 4.不当得利返还请求权的标的范围(12 分)
三、论述题(16 分) 雇员从事雇佣活动遭受人身损害或致人损害时,赔偿义务主体的确定。
3/4
圣才电子书 十万种考研考证电子书、题库视频学习平台
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档