初中数学人教八年级上册(2023年更新)第十三章 轴对称1 课题学习 最短路径问题 导学案
八年级数学上册第13章轴对称134课题学习最短路径问题教案新版新人教版.docx

13.4课题学习最短路径问题课标要求掌握基本事实:两点Z间,线段最短。
理解线段垂直平分线的概念,探索并证明线段垂直平分线性质定理:线段垂直平分线上的点到线段两端距离相等;反Z,到线段两端距离相等的点在线段的垂直平分线上。
教材分析本节课是在已经学习了轴对称图形性质的基础上进一步学习“经过直线上一点,在直线同侧两点之1'可路径最短问题”的解决方案。
为后续平面几何线段之和最短一类问题奠基。
学情分析1.学生己经学习了已经掌握轴对称的性质以及“两点之间,线段最短”、三角形三边不等公理,这为学习最短路径问题做好了知识和能力上的准备。
2.学生已经具备了一定的学习能力及作图能力,所以本节课屮,主要采用学生自主学习、合作探究的方式,教师引导让每位学生都参与探究。
课时目标1.能利用轴对称解决简单的最短路径问题;2•体会图形的变化在解决最值问题中的作用;3.能通过逻辑推理证明所求距离最短,感悟转化思想;4.体验数学活动中的探索与创新、感受数学的严谨性.教学重卢直线线上一点,到同侧两点距离之和最短问题利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题.教学难点利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题. 提炼的课题利用作轴对称将直线线上一点,到同侧两点距离之和最短问题转化为“两点之间,线段最短”问题.教学过程教学环节教学内容及师生活动设计意图媒体选择分析1 •情境引入引入新课PPT1-4:通过创设情景,•引导学生思考,激发学生学习兴趣。
1出示问题:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边1饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?2、倾听学生对上面问题的回答,揭示课题3、引入新课。
从小故事出发,引发学生思考问题的兴趣;激励自主学习探索直线线上一点,到同侧两点距离之和最短问题.类型:t+w作用:b使用:3、b时间:3回顾“两点之间,线段最短”,思考故事中存在的数学问题。
八年级数学上册第十三章轴对称13.4课题学习最短路径问题教案新版新人教版

13.4课题学习最短路径问题◇教学目标◇【知识与技能】能利用轴对称解决简单的最短路径问题.【过程与方法】体会图形的变换在解决最值问题中的作用.【情感、态度与价值观】通过解决问题感悟转化思想,进一步获得数学活动的经验,增强数学的应用意识.◇教学重难点◇【教学重点】如何利用轴对称将最短路径问题转化为线段和最小问题.【教学难点】利用图形变换进行线段的转移.◇教学过程◇一、情境导入如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.二、合作探究探究点1三角形周长最短的问题典例1如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.第 1 页共 3 页[解析]如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA 于点P1,交OB于点P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+P1P2+P2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.探究点2坐标系中的将军饮马问题典例2如图,A,B两个村庄的坐标分别为(2,2),(7,4),一辆汽车从原点O出发在x 轴上行驶.(1)汽车行驶到什么位置时离A村最近?写出这点的坐标.(2)汽车行驶到什么位置时离B村最近?写出这点的坐标.(3)汽车行驶到什么位置时,到两村距离和最短?请在图中画出这个位置.[解析](1)由垂线段最短可知当汽车位于点(2,0)处时,汽车距离A点最近.(2)由垂线段最短可知当汽车位于点(7,0)处时,汽车距离B点最近.第 2 页共 3 页(3)如图所示,过点A作关于x轴的对称点A',连接A'B,A'B与x轴的交点即为所求.三、板书设计最短路径问题最短路径问题◇教学反思◇本节的内容是最短路径问题,知识点应安排逐步的生成过程,环环相扣,一步步上,要将问题分解,化大为小,化难为易,降低难度.要认真分析预备知识,把新知识放在旧知识的基础上,通过复习慢慢引出新的内容,这样学生更容易掌握,更容易接受,不会产生畏难情绪,反而觉得轻松自如.第 3 页共 3 页。
八年级数学上册 第十三章 轴对称 13.4 课题学习 最短路径问题导学案(新版)新人教版-(新版)新

课题学习最短路径问题——轴对称在解决“最短路径问题”的应用一、新课导入1.导入课题:屏幕展示教材第85页问题1的文字和图标.2.学习目标:(1)能利用轴对称变换解决实际问题.(2)能利用作图解决生活中的轴对称问题.(作图建模)3.学习重、难点:重点:路径极值问题的转换方法.难点:路径极值问题的说理证明.二、分层学习1.自学指导:(1)自学内容:教材第85页的问题1.(2)自学时间:8分钟.(3)自学方法:经历“作图——探究——归纳——总结”过程,体验用轴对称的性质解决生活中的求最短距离问题的实质.(4)自学参考提纲:①轴对称具有什么性质?如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.②思考:问题1中的情境问题可以转化怎样的几何问题?试作出几何图形来表示.③马从A到河边再到B的路径是一个折线,求折线的最小值,可联想到两点之间的距离,所以可将三个点转化到同一直线上.④如图,AC如何转化使A、C、B在同一直线上呢?作B点关于l的对称点B′,连接AB′,交l于点C,则A、C、B′在同一直线上.⑤按“两点之间线段最短”,A通过怎样的变换确定的C点保证变换后的A′C=AC,且A′、C、B在同一直线上呢?作A点关于l的对称点A′,则A′C=AC,且A′、C、B在同一直线上.2.自学:认真阅读教材第85页内容,参照自学参考提纲试着找出解决问题的办法.3.助学:(1)师助生:①明了学情:最短路径问题是轴对称知识在生活中的运用,寻找解题思路是个难点.②差异指导:先引导学生回忆“两点之间,线段最短”的结论,完成②,然后在②的基础上寻找解决③的办法及依据.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生明白此类题的作图方法.(2)练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹).解:如图:P点即为该点.1.自学指导:(1)自学内容:教材第86页的问题2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,边看文字,对照图形,边体会教材上作图的方法和依据.(4)自学参考提纲:①回忆问题1是用什么办法解决最短路线问题的?作对称点.②问题2中点A、点B在河的两侧,而河岸存在两条直线,这个问题怎么解决?通过图形变化,转化为求一条直线两侧的点的最短距离.③由于河宽一定,要求AM+MN+NB最小,实际上就是要求AM+NB最小?④如何在直线b上确定一点N,使A′N=AM?将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则A′N=AM.2.自学:学生结合自学参考提纲研学课文内容.3.助学:(1)师助生:①明了学情:问题2较问题1更复杂,本质上是一回事,注意了解学生的思维障碍.②差异指导:a.先引导学生回忆“两点之间,线段最短”的结论,然后引导学生思考如何将AM、NB转化到同一直线上.(2)生助生:学生之间相互交流帮助.4.强化:(1)指名学生说明这样作图的依据,重点让学生说明作图的思路、依据及方法.(2)完成教材第93页15题.解:过A作关于MN的对称点A′,过B作关于l的对称点B′,连接A′B′交MN于P,交l于Q点,连接AP、BQ.则A→P→Q→B就是所示的最短路径.(3)教材第87页“归纳”.三、评价1.学生的自我评价(围绕三维目标):学生相互交谈自己的学习收获有哪些?困惑在哪里?2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(每题20分,共60分)1.作图在直线l上找一点C,使AC+BC最小.解:2.要在燃气管道l上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?试作图确定泵站并加以说明.解:如图,P处即为泵站的位置.3.如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.解:如图AP+AB即为最短的放牧路线.二、综合应用(20分)4.如图,M、N分别是△ABC的边AB、AC上的点,在边BC上求作一点P,使△PMN的周长最小.解:如图:作点M关于BC的对称点M′,连接M′N,交BC于点P,则△PMN的周长最小.三、拓展延伸(20分)5.如图,已知直线MN与MN异侧两点A、B,在MN上求作一点P,使PA-PB最大,请说明理由.解:如图,作B点关于MN的对称点B′,连接AB′并延长,交MN于点P,点P即为所求.理由:点A,B′,P在同一条直线上时,PA-PB′最大,即PA-PB最大.。
人教版初中数学课标版八年级上册第十三章134课题学习 最短路径问题教学设计

(1)目标:能利用直线位于两点之间结合轴对称地知识,转移到两点位于直线同侧的最短路径问题,体会图形的变化在解决最值问题中的作用;
(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
师:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.在这个问题中我们依据的是“两点的所有连线中,线段最短”。
3、教学重、难点
教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题
教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题
突破难点的方法:质疑和解决是不是所有的两点位于直线同侧的问题都可以用轴对称来解决
二、教学ห้องสมุดไป่ตู้备:多媒体课件、导学案
三、教学过程
教学内容与教师活动学生活动设计意图一、创设情景 引入课题
么位置时,AC与CB 的和最小(如图)
强调:将最短路径问题抽象为“线段和最小问题”
探究问题
是不是所有的两点位于直线同侧的问题都可以用对称来解决,得到最短路径呢?
如图,你能猜想在图中的直线L上有几个点距离A,B两点的距离之和是最短的?
最后得到我们选取的最短路径与C的取值有关,不一定我们由轴对称得到的路径就是最短的,在这里就可以培养学生勇于质疑和敢于探索取得真理的学习品质。
并把它抽象为数学问题吗?
初中数学人教八年级上册第十三章轴对称人教版八年级上册-课题学习-最短路径PPT

·
处,满足直线l 上的任意一点
l
C,都保持CB 与CB′的长度
相等?
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
的和最小?
追问2 你能利用轴对称的
A
·
有关知识,找到上问中符合条
件的点B′吗?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
(二)变式训练:如图,小河边有两个村庄A,B, 要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方?
(三)综合训练:茅坪民族中学八(2)班举行文艺晚 会,桌子摆成如图a所示两直排(图中的AO,BO), AO桌面上摆满了橘子,OB桌面上摆满了糖果,站 在C处的学生小明先拿橘子再拿糖果,然后到D处座
探索新知
利用轴对称的知识回答了这个问题.这个问题后来被称 为“牧童饮马问题”.
你能将这个问题抽象为数学问题吗?
B A
l
探索新知
追问1 这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线 .
·B A·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
短的直线l上的点.设C 为直线上的一个动点,上
面的问题就转化为:当点C 在l 的什么位置时,
AC 与CB 的和最小(如图).
B
A
C
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
八年级数学上册 第十三章 轴对称 13.4 课题学习 最短路径问题教学课件

新课讲解( jiǎngjiě)
练一练 两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫(kūnchóng)沿着A至 B的路径在地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后, 再飞到大树的树顶C处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程
最短,在图中画出该点的位置.
解:如图,作点C关于AB的对称点C′,连接DC′交 AB于点E,则点E即为所求. 也可作点D关于AB的对称点D′,连接CD′同样 (tóngyàng)交AB于点E的位置,则点E即为所求.
新课讲解( jiǎngjiě)
知识点 两点一线(yīxiàn)型问 如图,在直线题l1和直线l2上分别找到点M,N,使得△PMN的周长最小.
作法:过点P分别(fēnbié)作关于直线l1,l2的对 称点P1,P2,连接P1P2分别交直线l1,l2于 点M,N,则点M,N即为所求.
12/13/2021
新课讲解( jiǎngjiě)
证明:在直线(zhíxiàn)b上另外任意取一点N′,过点N′作
N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B.
∵在△A′N′B中,A′B<A′N′+BN′, ∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′.
A∙
M
A′
∴AM+NB+MN<AM′+BN′+M′N′.
学习(xuéxí)目标
1.利用轴对称、平移等变化解决简单的最短路径问题.(重点) 2.体会图形的变化在解决最值问题中的作用,感受由实际问题转化为 数学问题的思想.(难点)
12/13/2021
八年级数学上册第十三章轴对称13.4课题学习最短路径问题教案人教版.doc
第十三章轴对称13.4课题学习最短路径问题【知识与技能】通过对最短路径问题的探索,进一步理解和掌握“两点之间,线段最短”和“垂线段最短”的性质.【过程与方法】经历实践活动的过程,得出最短路径问题的解决方法,找到关于线的对称点实行“折”转“直”,再利用“两点之间,线段最短”这一性质来解决一些简单的实际问题.【情感态度与价值观】通过观察、归纳、推理得出数学猜想,让学生体验充满探索性和创造性的数学.运用所学知识解决最短路径问题.选择合理的方法解决问题.多媒体课件.教师让学生思考:(1)两点的所有连线中,最短.(2)连接直线外一点与已知直线上各点的所有线段中,最短.学生口答.教师引入:我们研究过以上这两个问题,我们称它们为最短路径问题.同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径.(板书课题).探究1:河边饮马问题教师引入:首先我们来研究河边饮马问题.并出示问题1:如图13-4-1,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?教师提出问题:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?学生举手回答.教师归纳结果:连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.接着,教师让学生思考:如果点A,B分别是直线l同侧的两个点,又应该如何解决?学生讨论、交流.教师追问:(1)牧马人到笔直的河边饮马,河边可以近似地看成一条直线,假设到点C 饮马,要保证所走的路径最短和哪些线段有关?(2)要利用我们学过的哪些知识?线段AC和BC经过怎样的图形变换可以转移到一条线段上?学生分组交流,在小组内达成共识的基础上,推选代表进行板演.教师幻灯片演示画法,指导学生证明AB′=AC+BC.(B,B′两点关于直线l对称)如果在直线上另外任取一点C′,连接AC′,BC′,B′C′.怎样证明AC+CB<AC′+C′B?学生讨论、交流完成.教师反馈学生完成的情况,集体讲评.探究2:造桥选址问题教师引入:接着,我们探究造桥选址问题.并出示问题2:如图13-4-2(1),A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)教师提示:我们可以把河的两岸看成两条平行线a和b〔如图13-4-2(2)〕,N为直线b 上一个动点,MN垂直于直线b,交直线a于点M.让学生思考:(1)要保证路径最短就是要使哪些线段的和最小?(2)无论点M,N在什么位置,MN的长度是否发生变化?为什么?学生讨论、交流.教师结合学生讨论的结果,强调MN的长为定值,解决问题的关键就是要保证AM+NB的和最小.接着,教师让学生阅读教材P87,交流思路.学生小组汇报,教师点评,展示教材图13.4-9的证明过程.求证:AM+MN+NB<AM′+M′N′+N′B.证明:∵A′B<A′N′+N′B,∴A′N+NB<AM′+N′B.又∵AM=A′N,∴AM+NB<AM′+N′B.又∵MN=M′N′,∴AM+MN+NB<AM′+M′N′+N′B.教师出示例题:例1如图13-4-3,在旷野上,一个人骑着马从A到B,半路上他必须先到河岸l的点P 让马饮水,再到河岸m的点Q让马再次饮水,最后到达点B.他应该如何选择饮马地点P,Q,才能使所走路程AP+PQ+QB最短(假设河岸l,m为直线)?教师让学生讨论,师生共同解答(教师板书作图):解:如图13-4-4,作点A关于直线l的对称点A′,点B关于直线m的对称点B′,连接A′B′,交直线l于点P,交直线m于点Q,连接AP,PQ,QB,所以路程AP+PQ+BQ最短.最后教师总结:解决最短路径问题时,我们通常利用轴对称、平移等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择.解决最短路径问题,常用的方法是借助轴对称的知识转化,利用“两点之间,线段最短”来求线段和的最小值.。
新人教版八年级数学上【教案】课题学习 最短路径问题
新人教版八年级数学上【教案】课题学习最短路径问题课题学习最短路径问题【教学目标】教学知识点能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.能力训练要求在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称将最短路径问题转化为线段和最小问题.突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.【教学过程】一、创设情景引入课题师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.(板书)课题学生思考教师展示问题,并观察图片,获得感性认识.二、自主探究合作交流建构新知追问1:观察思考,抽象为数学问题这是一个实际问题,你打算首先做什么?活动1:思考画图、得出数学问题将A,B 两地抽象为两个点,将河l 抽象为一条直线.追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).强调:将最短路径问题抽象为“线段和最小问题”活动2:尝试解决数学问题问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗?点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的问题2 如图,什么位置时,AC 与CB的和最小?师生活动:学生独立思考,画图分析,并尝试回答,互相补充教师可作如下提示如果学生有困难,作法:(1)作点B 关于直线l 的对称点B';(2)连接AB',与直线l 相交于点C,则点C 即为所求.如图所示:问题3 你能用所学的知识证明AC +BC最短吗?教师展示:证明:如图,在直线l 上任取一点C'(与点C 不重合),连接AC',BC',B'C'.由轴对称的性质知,BC =B'C,BC'=B'C'.AC +BC= AC +B'C = AB',AC'+BC'= AC'+B'C'.在?AC'B'中,AC'+B'C'>AB',当只有在C点位置时,AC+BC最短.方法提炼:将最短路径问题抽象为“线段和最小问题”.问题4练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.问题5 造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)思维分析:1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?2.利用线段公理解决问题:我们遇到了什么障碍呢?思维点拨:在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?(估计有以下方法)1.把A平移到岸边.2.把B平移到岸边.3.把桥平移到和A相连.4.把桥平移到和B相连.教师:上述方法都能做到使AM+MN+BN不变呢?请检验.1、2两种方法改变了.怎样调整呢?把A或B分别向下或上平移一个桥长,那么怎样确定桥的位置呢?问题解决:如图,平移A到A,使AA等于河宽,连接AB交河岸于N.作桥MN,此时111路径AM+MN+BN最短. 理由:另任作桥MN,连接AM,BN,AN. 由平移性质可111111 知,AM=AN,AA=MN=MN,AM=AN. AM+MN+BN转化为AA+AB,而111111111AM+MN+BN 转化为AA+AN+BN. 在?ANB中,由线段公理知AN+BN>AB.11111111111111因此AM+MN+BN> AM+MN+BN,如图所示: 1111三、巩固训练)基础训练 (一1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B',则点C是直线l与AB'的交点.2.如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)如图,问题中所走总路径是AM+MN+NP+PQ+QB.桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧.平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处.)变式训练 (二如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?(三)综合训练茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b四、反思小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?你还有哪些收获?五、作业布置课本93页第15题.。
八年级数学上册 第十三章《轴对称》课题学习 最短路径问题学案(新版)新人教版
第 1 页 共 1 页 八年级数学上册 第十三章《轴对称》课题学习 最短路径问题学案(新版)新人教版
13、4 课题学习:最短路径问题课 题 13、4 课题学习:最短路径问题课 型综合课课 时 14、根据你发现的规律,在图(2)中完成本题。探究 (二)问题为什么在P点的位置修建泵站,就能使所用的输气管线最短呢? 四、达标测评 1、如图(3),在铁路的同侧有两个工厂 A、B,要在路边建一个货场C,使 A、B两厂到货场C的距离的和最小、问点C的位置如何选择? 2、如图(4),如果我们把台球桌做成等边三角形的形状,那么从AC的中点D处发出的球,能否依次经BC,AB两边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球的运动路线。ADBC图(4)图(3)((99AB 3、如图(5),A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。图(5) 第 1 页 共 1 页
五、总结反思课堂记录或学法指导学 习目 标能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想、学 习重 点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题、 学 习难 点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题、学习过程: 一、自主学习预习课本P85— 87、 二、问题探究 1、把下列图形补成关于对称的图形。 2、仔细观察第三个图形,你能尽可能多的从图中找出一些线段之间的关系吗? 三、自主探究 合作展示探究 (一)图(2)BA 1、如图(1)、要在燃气管道上修建一个泵站,分别向 A、B两镇供气、•泵站修在管道的什么地方,可使所用的输气管线最短?图(1) 2、请同学们任意取点探究,并完成下列表格。=1=2=3=4… 3、通过以上探究,你发现什么规律吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题学习最短路径问题导学案
【学习目标】能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
【学习重点】利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
【学习难点】如何利用轴对称将最短路径问题转化为线段和最小问题。
【课前准备】三角板、直尺、圆规、铅笔、橡皮擦等
【学习过程】
一、自主学习
1、如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?
2、三角形的三边关系:三角形的两边之和________第三边;两边之差________第三边。
3、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离。
4、如图,点A、B关于直线l对称,则PA=_______
二、合作探究
问题1 如图,点A、B分别在直线l 的两侧,如何在直线l上找到一个点,使得这个点到点A、点B的距离之和最小?
.A
l
.B
问题2将军饮马
有一个将军,凯旋归来。
他的马非常任性,非要从图中的A 地出发,到一条笔直的河边l 饮水,然后到军营B 地.将军到河边什么地方饮马可使他所走的路线最短?
小组成员讨论完成以下问题:
(1)这是一个实际问题,你能将它抽象为数学问题吗?
答:将A、B两地抽象为两个_____,将河l抽象为一条______,题目要求在直线l上找到一个点C,使线段_____和线段_____的和最小。
(2)问题2和问题1有什么异同?
答:相同点:都是要在一条直线上找______点,使它到已知两点的距离之和最________。
不同点:问题1的两点在直线的______侧;
问题2的两点在直线的______侧。
(3)你能利用轴对称的知识将问题2转化为问题1吗?试一试,怎么做?
(4)你能用所学的知识证明AC +BC最短吗?
三、例题精讲
例1、如图:在正方形ABCD中,点M是AB的中点,在AC上找一点N,使 MN+NB最小。
例2、如图:点A是∠MON内任意一点,在∠MON的两边OM、ON上各取一点B、C,组成三角形,使△ABC周长最小.
四、学以致用
1、如图,直线l为一条水渠,水渠两侧有两个鱼塘A、B,若想挖水渠引水到两个鱼塘,下列哪种作图方式才能使挖的水渠长度最短?()
A、①
B、②
2、如图,直线l为一条水渠,水渠同侧有两个鱼塘A、B,若想挖水渠引水到两个鱼塘,下列哪种作图方式才能使挖的水渠长度最短?()
A、①
B、②
3、如图,在l上求作一点M,使得AM+BM最小.
4、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。