八(上)数学第1章《全等三角形》复习教案(含答案)

合集下载

八年级数学上册《全等三角形的判定SAS》教案、教学设计

八年级数学上册《全等三角形的判定SAS》教案、教学设计
3.教师对学生的讨论进行点评,强调关键点,并解答学生的疑问。
(四)课堂练习
1.教师出示几道具有代表性的习题,要求学生独立完成。
a.判断以下两个三角形是否全等,并说明理由。
b.运用SAS判定方法,证明以下两个三角形全等。
c.运用全等三角形的性质和判定方法解决实际问题。
2.教师对学生的解答进行点评,针对错误进行讲解,帮助学生掌握正确的方法。
3.采用小组合作、讨论交流等形式,培养学生合作解决问题的能力,提高学生的数学表达和逻辑推理能力。
4.通过解决实际问题,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
(三)情感态度与价值观
在本章节的学习中,学生将形成以下情感态度与价值观:
1.培养学生对数学学科的兴趣,激发学生主动探索、积极思考的学习热情。
因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行分层教学,注重培养学生的几何直观和逻辑思维能力,提高学生对全等三角形判定方法的掌握和应用。
三、教学重难点和教学设想
(一)教学重点
1.全等三角形的定义及判定方法SAS的理解与应用。
2.对应边和对应角的识别,以及如何运用SAS判定等三角形。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结全等三角形的判定方法SAS及其应用。
2.学生分享自己在学习本节课过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的总结,进行补充和强调,确保学生对本节课的知识点有全面、深入的理解。
4.教师布置课后作业,要求学生完成相关的练习题,巩固所学知识。
八年级数学上册《全等三角形的判定SAS》教案、教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法SAS(边角边)。

初中数学八年级上册第一章《 全等三角形》复习课 教案

初中数学八年级上册第一章《 全等三角形》复习课 教案

数学八年级上册《全等三角形》复习课教案
本课时学习目标1、掌握三角形全等的“角边角”“边角边”条件.能运用全等三角形的条件,解决推理证明问题
2.积极讨论,体验探索成功的快乐。


本课时重难点及学习建议重点:灵活运用三角形全等条件证明.难点:灵活运用三角形全等条件证明.
本课时教学
资源使用
多媒体
学习过程学习要求或学法指导一、复习巩固
判别三角形全等的条件
二、巩固练习:
例题1、 AC=BD,∠1=∠2,
求证:△ABC≌△BAD
例题2 AB=AD,B,D 分别是AC,AE的中点,求证:△A DC≌△ABE 例题3. C是 AE 的中点,AB//CD 且 BC//DE ,求证:AB=CD
例题4 AB=AC,BE 、CD是中线,
求证: BE=CD
理解记忆
已经学过的两个判定方

学生讲解
如何证明
找两个学生讲解
一定要会
培养学生语言表达能力
让学生养成一种定势告诉这个条件立刻想到
什么
回顾中线的定义
例题5 AB//CD,AE=FD,BE//CF,求证:BE=CF
例题5已知:△AED≌△BEC
求证:△AEC≌△BED 告诉平行,想到角相等
告诉两个三角形全等能得到很多东西
看你具体需要什么条件
课后反思与经验总结板书设计。

八年级数学上册 12 全等三角形复习教案 (新版)新人教版

八年级数学上册 12 全等三角形复习教案 (新版)新人教版
根据“AAS”需要添加条件.
2、如图,AC=AD,在图中标记出△ABC与△ABD中对应相等的元素,思考:
△ABC与△ABD全等吗?这个问题说明了什么?
3如图,若BC=CE,∠A=∠D,则△ABC≌。
4.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,假如AB=6cm,BD=5cm,AD=4cm,那么BC的长是( )
1的两个三角形叫做全等三角形。
全等三角形的性质是:
2一般三角形全等的判别方法:.直角三角形全等的判别方法:.
3、证明两个三角形全等的基本思路:
(1)已知两边
(2)已知一边一角
(3)已知两角
二、合作探究
1、如图,已知AD平分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
A.带①去B.带②去C.带③去D.①②③都带去
三课堂练习
1、如图,点A、F、C、D在同一直线上,
点B和点E分别在直线AD的两侧,且AB=DE,
∠A=∠D,AF=DC.
求证:BC∥EF.
2、如图,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上.求证:BE=AD
四、中考真题体验:
1(安徽芜湖)如图,已知 中, , 是高 和
全等三角形课题全等 Nhomakorabea角形复习
共1课时
第1课时
课型
复习
教学目标
1知识目标:了解全等形及全等三角形的概念,理解全等三角形的性质.掌握全等三角形的判定,灵活运用全等三角形的判定定理和性质定理,证明简单的全等三角形问题。
2过程与方法:通过复习全等三角形的性质和判定,培养学生综合应用能力,培养学生的作图及识图能力。
的交点, ,则线段 的长度为().

八年级数学上学期期中复习《全等三角形》课案(教师用) 新人教版【精品教案】

八年级数学上学期期中复习《全等三角形》课案(教师用) 新人教版【精品教案】

课案(教师用)全等三角形(复习课)【理论支持】九年义务教育阶段的数学课程应该突出体现基础性、普及性、和发展性,使数学教育面向全体学生。

《数学新课程标准》中指出:对学生数学学习的评价,既要关注学生的在学习过程中的变化和发展,也要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。

《三角形全等复习课内容》选用义务教育课程标准实验教科书《数学》八年级上册第十一章的内容,三角形全等是初中数学中重要的学习内容之一。

本套教材把三角形全等看作是几何证明的重要基础,同时三角形全等的概念,三角形全等的判别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。

本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

针对教材内容和初二学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。

然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学重难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

课时安排一课时【教学设计】课前延伸1、______________三角形是全等三角形,________________是对应角,____________是对应边,________________是对应顶点。

新人教版八年级全等三角形教案

新人教版八年级全等三角形教案

11.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。

能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形思考:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用 表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如上图,13。

1-1DEF ABC ∆≅∆,对应边有什么关系?对应角呢? 全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。

思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角D AD BD(2)将ABC ∆沿直线BC 平移,得到DEF∆,说出你得到的结论,说明理由?B E(3)如图,,A C DA B E ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。

B C小结:通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.作业:P4—1,2,311.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.AB D让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.ADB C五、巩固练习教科书第8页的练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第15页习题11.2中的第1、2题.2.选做题:教科书第16页第9题.A B C D E11.2 三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动)一、 创设情境,引入课题多媒体出示探究3:已知任意△ABC ,画△A'B'C',使A'B'=AB ,A'C'=AC ,∠A'=∠A .教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、 应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证AB =DE ,只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题: 1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE求证: △ABD ≌△ACE证明:∵∠BAC=∠DAE (已知)∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAEA BC D E F M在△ABD 与△ACEAB=AC (已知)∠BAD= ∠CAE (已证)AD=AE (已知)∴△ABD ≌△ACE (SAS)思考:求证:1.BD=CE2. ∠B= ∠C3. ∠ADB= ∠AEC 变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证: ⑴ △DAC ≌△EAB1. BE=DC2. ∠B= ∠ C3. ∠ D= ∠ E4. BE ⊥CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书98页图13.2-7.方法(二)通过画图,让学生更直观地获得结论.五、巩固练习教科书第99页,练习(1)(2).六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.七、布置作业1.必做题:教科书第15页,习题11.2第3、4题.2.选做题:教科书第16页第10题.3.备选题:(1)小明做了一个如图所示的风筝,测得DE =DF ,EH =FH ,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB =AD ,AE =AC ,求证BC =DE .11.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。

苏科版八年级数学上册第1章《全等三角形》复习教案

苏科版八年级数学上册第1章《全等三角形》复习教案

苏科版八年级数学上册第1章《全等三角形》复习教案知识梳理:1.全等三角形的由来:全等三角形是从__________分离出来的一个常用模型,从________到全等三角形是一种从_________到___________的关系,这是我们在数学学习当中常用的一种思维方法。

2.全等三角形的定义定义:_____________的两个三角形叫做全等三角形。

1.全等三角形中,对应边_______,对应角______;对应边上的________;3.全等三角形的性质2.全等三角形的对应线段对应边上的________;对应___的______________;3.全等三角形的周长,面积。

4.全等三角形的判定(4+1)1._________相等的两个三角形全等,简称“_______”(_S_):2._____和___________对应相等的两个三角形全等,简称“______”(_A_):斜三角形3._____和___________对应相等的两个三角形全等,简称“_______”(A__);4._____和___________对应相等的两个三角形全等,简称“_______”(__S);直角三角形:____________________的两个直角三角形全等,简称“________”(___):5.全等三角形的证明思路:(1)已知两边:①找夹角→ ②找直角→ ③找第三边→ ___(2)已知一边一角:①边角相对→找另外任一角→ ___②边角相邻→⎪⎩⎪⎨⎧→→→AAS ASASAS 找边的对角找边的另一邻角找角的另一邻边6.全等三角形的简单应用利用全等三角形可以测出不能(或不易)直接测量长度的线段长,例如,河宽,或利用全等测量小口瓶的内径等。

同步题型复习(一)全等的定义和性质例1.已知如图(1),≌,其中的对应边:____与____,____与____,____与____,ABC ∆DCB ∆对应角:______与_______,______与_______,______与_______。

浙教版数学八年级上册1.4《全等三角形》教案

浙教版数学八年级上册1.4《全等三角形》教案一. 教材分析《全等三角形》是浙教版数学八年级上册1.4节的内容,本节主要让学生了解全等三角形的概念,性质和判定方法,以及全等三角形在几何中的应用。

通过本节的学习,学生能理解全等三角形的本质,提高解决几何问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了三角形的性质,角的度量,边的计算等基础知识,具备一定的几何思维能力。

但全等三角形的概念和性质较为抽象,对于部分学生来说,理解和应用可能会存在一定的困难。

三. 教学目标1.了解全等三角形的概念,性质和判定方法。

2.能运用全等三角形的性质解决简单几何问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.全等三角形的概念和性质。

2.全等三角形的判定方法。

3.全等三角形在几何中的应用。

五. 教学方法采用问题驱动法,引导学生通过观察,思考,交流,总结全等三角形的性质和判定方法。

利用几何画板,动态展示全等三角形的变换过程,帮助学生直观理解全等三角形的概念。

六. 教学准备1.教学课件。

2.几何画板。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习三角形的基本性质,引导学生思考:如果两个三角形的三边分别相等,这两个三角形是否全等?从而引出全等三角形的概念。

2.呈现(10分钟)利用几何画板,动态展示两个三角形的全等变换过程,让学生直观感受全等三角形的性质。

同时,给出全等三角形的定义:如果两个三角形的对应边和对应角分别相等,那么这两个三角形全等。

3.操练(10分钟)让学生通过观察,判断几组三角形是否全等。

教师引导学生注意观察三角形的边和角,总结全等三角形的判定方法。

4.巩固(10分钟)让学生运用全等三角形的性质解决一些简单几何问题,如:已知两个三角形全等,求第三个角的度数。

5.拓展(10分钟)引导学生思考:全等三角形在几何中的应用。

让学生举例说明全等三角形在实际问题中的应用,如:在三角形剖分,三角形拼接等问题中,如何运用全等三角形的性质。

《全等三角形的判定复习》教学设计

《三角形全等的判定习题课》教学设计通辽市科左后旗甘旗卡第三初级中学林丽哲一、关于教学内容和要求的思考本节的主要内容是:通过判定三角形全等的三种题型复习全等三角形的判定方法,利用题中的已知条件、挖掘“隐含条件”、转化“间接条件”、合理添加“辅助线”来判定三角形全等,充分掌握分析问题的方法,使所学的知识能灵活应用到解题当中。

要求逐步培养学生观察、比较、分析、综合、抽象和概括的能力,提高学生的空间想象能力和思维能力,这是《数学课程标准》中对中学数学的要求。

本节的课题是《三角形全等的判定习题课》是八年级数学的重点内容之一,在生活中有广泛的应用,同时三种题型中的条件的挖掘、转化与利用也是九年级的重点内容,在八年级学习中适当的安排相应的内容,对于九年级的学习起着渗透的积极作用,学会运用条件的直接与间接的使用、转化解决问题策略的思想方法,发展学生的创新意识,增强图形变换的兴趣,也巩固了全等的知识。

二、学生情况的分析1、学生已有的知识基础:本节课是在学生已经学习完了全等三角形的判定方法,的基础上进一步来研究的。

2、八年级学生心理生理特点:中学生心理学研究指出:初中阶段是智力发展的关键时期,学生逻辑思维从经验型逐步向理论型发展,观察能力记忆力和想象能力也随着迅速发展。

从学生年龄特点来看,初中生好动、好奇、好表现,抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛积极参与的教学形式,定能激发学生兴趣,有效培养学生能力,促进学生个性发展。

生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬。

所以在教学中抓住学生的特点,一方面要运用直观形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、学习目标的确定1、熟练掌握全等三角形的判定方法。

2、能准确、灵活的运用三角形全等的判定方法解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

小班专题八年级上册数学全等三角形全章复习与巩固知识讲解基础培优教案学案含答案

全等三角形全章复习与巩固(培优)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式; 3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明. 【知识网络】【要点梳理】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质 1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法:可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、巧引辅助线构造全等三角形(1).倍长中线法1、已知,如图,△ABC中,D是BC中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【思路点拨】因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC≌△GDB,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.【答案与解析】BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连接BG 、EG∵D 是BC 中点 ∴BD=CD 又∵DE⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS ) ∴EG=EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21 ∴△FDC≌△GDB(SAS) ∴CF=BG ∵BG+BE >EG ∴BE+CF >EF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段). 举一反三:【变式】已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC.求证:CD =2CE .【答案】证明: 延长CE 至F 使EF =CE ,连接BF. ∵ EC 为中线,∴ AE =BE .在△AEC 与△BEF 中,,,,AE BE AEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩∴ △AEC ≌△BEF (SAS ). ∴ AC =BF ,∠A =∠FBE .(全等三角形对应边、角相等)又∵ ∠ACB =∠ABC ,∠DBC =∠ACB +∠A ,∠FBC =∠ABC +∠A . ∴ AC =AB ,∠DBC =∠FBC . ∴ AB =BF .又∵ BC 为△ADC 的中线, ∴ AB =BD .即BF =BD .在△FCB 与△DCB 中,,,,BF BD FBC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩∴ △FCB ≌△DCB (SAS ). ∴ CF =CD .即CD =2CE .(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .【答案与解析】证明:在AB 上截取AE =AC .在△AED 与△ACD 中,()12()()AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴ △AED ≌△ACD (SAS ). ∴ ED =CD .∴ ∠AED =∠C(全等三角形对应边、角相等). 又∵ ∠C =2∠B ∴∠AED =2∠B . 由图可知:∠AED =∠B +∠EDB , ∴ 2∠B =∠B +∠EDB . ∴ ∠B =∠EDB .∴ BE =ED .即BE =CD .∴ AB =AE +BE =AC +CD(等量代换).【总结升华】本题图形简单,结论复杂,看似无从下手,结合图形发现AB >AC .故用截长补短法.在AB 上截取AE =AC .这样AB 就变成了AE +BE ,而AE =AC .只需证BE =CD 即可.从而把AB =AC +CD 转化为证两线段相等的问题. 举一反三:【变式】如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.【答案】 证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD=∠BAD, AD=AD, ∴ △AHD≌△AMD. ∴ HD=MD, ∠AHD=∠AMD. ∵ HD=DB,∴ DB= MD. ∴ ∠DMB=∠B.∵ ∠AMD+∠DMB =180︒, ∴ ∠AHD+∠B=180︒. 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180︒.∵ ∠B+2∠DGA =180︒, ∴ ∠AHD=2∠DGA. ∴ ∠AMD=2∠DGM.∵ ∠A MD =∠DGM+∠GDM. ∴ 2∠DGM=∠DGM+∠GDM. ∴ ∠DGM=∠GDM. ∴ MD=MG. ∴ HD= MG.∵ AG= AM +MG,∴ AG= AH +HD.(3).利用截长(或补短)法作构造全等三角形3、如图所示,已知△ABC 中AB >AC ,AD 是∠BAC 的平分线,M 是AD 上任意一点, 求证:MB -MC <AB -AC .【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立. 【答案与解析】HDCA证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边). 在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等). 又∵ BE =AB -AE , ∴ BE =AB -AC , ∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键. 举一反三:【变式】如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC【答案】证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线, ∴∠BAD=∠CAD 在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE ∴△AED≌△ADC(SAS ) ∴DE=DC在△BED 中,BE >BD -DC 即AB -AE >BD -DC ∴AB-AC >BD -DC(4).在角的平分线上取一点向角的两边作垂线段4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE =∠FAE .求证:AF =AD +CF .E DBA【思路点拨】四边形ABCD 为正方形,则∠D =90°.而∠DAE =∠FAE 说明AE 为∠FAD 的平分线,按常规过角平分线上的点作出到角两边的距离,而E 到AD 的距离已有,只需作E 到AF 的距离EM 即可,由角平分线性质可知ME =DE .AE =AE .Rt △AME 与Rt △ADE 全等有AD =AM .而题中要证AF =AD +CF .根据图知AF =AM +MF .故只需证MF =FC 即可.从而把证AF =AD +CF 转化为证两条线段相等的问题. 【答案与解析】证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形, ∴ ∠C =∠D =∠EMA =90°. 又∵ ∠DAE =∠FAE , ∴ AE 为∠FAD 的平分线, ∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证,∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等). 又∵ E 为CD 中点,∴ DE =EC . ∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边),∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等). 由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).【总结升华】与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.5、如图所示,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E , 12AE BD =,求证:BD 是∠ABC 的平分线.【答案与解析】证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题【高清课堂:379111 直角三角形全等的判定,巩固练习5】6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,垂足分别为E,F.(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF.(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.【答案与解析】证明:(1)∵AE⊥l,BF⊥l,∴∠AEC=∠CFB=90°,∠1+∠2=90°∵∠ACB=90°,∴∠2+∠3=90°∴∠1=∠3。

人教版八年级上册数学全册教案

11.1全等三角形(1课时)教学目标通过实例表述全等图形的概念和特征,并能找出全等图形;能叙述全等三角形的定义及其相关概念,并能找出两个全等三角形的对应边和对应角;总结出全等三角形的性质,并能进行简单的推理和计算,解决一些实际问题。

教学重、难点重点:全等三角形的概念、性质。

难点:对应边和对应角的确定。

课时安排:1课时教学过程设计(一)生活导入我们身边经常看到“一模一样”的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。

(二)新课问题1:几何中,我们把上述所例举的“一模一样”的图形叫做“全等形”,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。

(2)大小相等的两个图形叫全等形。

(3)能够完全重合的两个图形叫全等形。

总结概念:能够完全重合的两个三角形叫做全等三角形。

做一做:请你用两张半透明的薄纸分别描出下中的两个三角形.然后把它们叠放在一起,观察这两个图形是否完全重合.(提高学生的动手能力和观察能力)思考:课本图11.1、11.2、11.3中,各图中的两个三角形全等吗?总结出结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

小组讨论,得出全等三角形有这样的性质:全等三角形的对应边相等;全等三角形的对应角相等。

(三)练习课本课后的练习1、2。

(五)小结引导学生总结出本节的主要知识点。

(六)布置作业:创新作业11.2 三角形全等的条件 (共4课时)教学目标能叙述三角形全等的条件,体会三角形的稳定性;能灵活地运用三角形全等的条件,进行有条理的思考和简单的推理,并能利用三角形的全等解决实际问题;提高动手能力。

教学重、难点重点:三角形全等的条件。

难点:利用三角形全等的条件解题。

课时安排:4课时教学过程设计第一课时(一)复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?(二)SSS定理的得出给出任意两个三角形,有些是全等的,有些不是全等的,我们知道如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C ′这六个条件,就能保证△ABC≌△A′B′C′。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八(上)数学第1章《全等三角形》复习教案(含答案)一.全等图形二.全等三角形的性质三.全等三角形的判定四.直角三角形全等的判定五.全等三角形的判定与性质六.全等三角形的应用一.全等图形(共5小题)(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.1.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.120°C.135°D.150°2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等3.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.4.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°5.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.二.全等三角形的性质(共8小题)(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.1.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3C.5 D.72.如图所示,点B、E、C、F在一条直线上,△ABC≌△DEF,则下列结论正确的是()A.AB∥DE,但AC不平行于DF B.BE=EC=CFC.AC∥DF,但AB不平行于DE D.AB∥DE,AC∥DF3.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.4.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°5.如图,△ABC≌△DEC,A和D,B和E是对应点,B、C、D在同一直线上,且CE=5,AC=7,则BD的长为()A.12B.7C.2D.146.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③7.如图,D在BC边上,△ABC≌△ADE,∠EAC=α°,则∠ADE的度数为.8.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点D B.点C C.点B D.点A三.全等三角形的判定(共13小题)(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.1.如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.2.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE,BF=CE,AB∥DE,求证:△ABC≌△DEF.3.如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA4.如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需要添加一个条件是()A.∠ABC=∠ACB B.∠DCB=∠D C.AC=BC D.AB=DC5.如图,已知∠DOB=∠COA,补充下列条件后仍不能判定△ABO≌△CDO的是()A.∠D=∠B,OB=OD B.∠C=∠A,OA=OCC.OA=OC,OB=OD D.AB=CD,OB=OD6.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().7.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC 和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.8.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.9.如图,在△ABC和△DEF中,点B、F、C、D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DF C.∠ACD=∠BFE D.BF=CD10.如图,在四边形ABCD中,AD∥BC,点M为对角线AC上一点,连接BM,若AC=BC,∠AMB=∠BCD,求证:△ADC≌△CMB.11.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.(1)如图1,求证:△ABE≌△CDF.(2)如图2,连接AD、BC、BF、DE,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除△ABE全等于△CDF外).12.如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.13.如图,△ABC和△DEF的顶点B,F,C,D在同一条直线上,BF=CD,边AC与EF相交于点G,CG=FG,∠A=∠E.求证:△ABC≌△EDF.四.直角三角形全等的判定(共5小题)1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.1.如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.2.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.3.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P运动到什么位置时,才能使△ABC与△APQ 全等?4.如图,BD,CE分别是△ABC的高,且BE=CD,求证:Rt△BEC≌Rt△CDB.5.如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.五.全等三角形的判定与性质(共9小题)(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.1.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.2.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC,连接BD,若AC=8cm,则AD+DE 等于()A.6cm B.7cm C.8cm D.9cm3.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.44.如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.5.已知如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.6.如图,点A,F,D,C在同一直线上,BC,EF交于点M,∠B=∠E=90°,AF=CD,AB=DE.求证:(1)Rt△ABC≌Rt△DEF;(2)MF=MC.7.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°8.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.39.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.六.全等三角形的应用(共15小题)(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.1.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS2.公路上,A,B两站相距25千米,C、D为两所学校,DA⊥AB于点A,CB⊥AB于点B,如图,已知DA=15千米,现在要在公路AB上建一报亭H,使得C、D两所学校到H的距离相等,且∠DHC=90°,问:H应建在距离A站多远处?学校C到公路的距离是多少千米?3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=cm.5.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.6.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段的长度就是A、B两点间的距离(2)请说明(1)成立的理由.7.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”8.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.9.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去10.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'11.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS12.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.13.如图,点B、F、C、E在一条直线上(点F,C之间不能直接测量),点A,D在BE的异侧,如果测得AB=DE,AB∥DE,AC∥DF.若BE=14m,BF=5m,则FC的长度为m.14.如图,仪器ABCD可以用来平分一个角,AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB与AD,使它们落在角的两边上,沿画一条射线AE,AE就是∠PRQ的平分线,你能说明其中的道理吗?15.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A:②沿河岸直走20m有一树C.继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.(1)河的宽度是米.(2)请你说明他们做法的正确性.《全等三角形》教案参考答案一.全等图形(共5小题)1.C;2.B;3.95°;4.D;5.315°;二.全等三角形的性质(共8小题)1.B;2.D;3.100°;4.B;5.A;6.B;7.90°﹣;8.A;三.全等三角形的判定(共13小题)1.;2.;3.A;4.D;5.D;6.BE;等式的性质;BC;EF;ASA;7.;8.(10﹣2t);9.D;10.;11.;12.;13.;四.直角三角形全等的判定(共5小题)1.;2.;3.;4.;5.;五.全等三角形的判定与性质(共9小题)1.;2.C;3.D;4.;5.;6.;7.C;8.A;9.30;100;六.全等三角形的应用(共15小题)1.D;2.;3.D;4.4;5.;6.DE;7.B;8.;9.C;10.D;11.D;12.4;13.4;14.;15.5;。

相关文档
最新文档