与二次函数有关的含有绝对值不等式的证明问题
二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。
二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。
一、适时用分类,讨论破定势分类讨论是中学数学中的重要思想。
它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。
例1 已知f(x)=x 2+bx+c (b,c ∈R),(1)当b<-2时,求证:f(x)在(-1,1)单调递减。
(2)当b<-2时,求证:在(-1,1)至少存在一个x0,使得|f(x0)|≥21. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)单调递减。
(2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。
当x=0时,|f(0)|=|c|,|c|与21的大小关系如何呢?对|c|进行讨论: (i )若|c|≥21,即|f(0)|≥21,命题成立。
(ii )若|c|<21,取x 0=-21,则21432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .故不论|c|≥21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥21成立。
本题除了取x=-21外,x 还可取那些值呢?留给读者思考。
二、合理用公式,灵活换视角公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。
例2 已知f(x)=x 2+ax+b 的图象与x 轴两交点的横坐标为x 1,x 2若|a|+|b|<1,求证:|x 1|<1且|x 2|<1.解 由韦达定理,得⎩⎨⎧=-=+b x x a x x 2121 ⎩⎨⎧==+∴.|||||,|||2121b x x a x x 代入|a|+|b|<1,得|x 1+x 2|+|x 1x 2|<1,又|x 1|-|x 2|≤|x 1+x 2|.1||||||||||21212121<++≤+-∴x x x x x x x x即|x 1|(1+|x 2|)<1+|x 2|。
常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。
最新高中数学不等式证明的常用方法经典例题优秀名师资料

关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因 2 不等式证明还有一些常用的方法换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n 2131211<++++ (n ∈N *) 知识依托本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x+≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证(a +a 1)(b +b 1)≥425 证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法) 巩固练习 1 已知x 、y 是正变数,a 、b 是正常数,且y b x a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________ 3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________ 4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31 (2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y2+z 2=21,证明x ,y ,z ∈[0,32] 6 证明下列不等式 (1)若x ,y ,z∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(z y x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A im <m i A in (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明|c |≤1;(2)证明当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f(a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =?,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论;(3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤lg 513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立?f(x)min ≥M ;f(x)≤M 恒成立?f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,an+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【点评】一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】(08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】(08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S5≤15,则a 4的最大值为______.【例6】等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】(08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --??=++≥ ???; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞)C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项na ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n}满足b 1=1,b n +1=b n+2a n ,求证:b n·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n+2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n = ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.利用导数处理与不等式有关的问题一、利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式。
基本不等式公式四个推导过程

基本不等式公式四个推导过程一、线性不等式的推导过程:1.首先,假设有两个实数a和b,且a≠b。
2.通过观察可以发现,当a>b时,a-b>0;当a<b时,a-b<0。
3.将这两种情况总结为一个公式:当a≠b时,a-b与a和b的大小关系一致,即(a-b>0)当且仅当(a>b)成立。
4.根据上述推导得到的公式,可以类似地推导出其他线性不等式的基本公式,如a+b>c+d时,a-c>b-d成立,等等。
二、二次不等式的推导过程:1. 首先,考虑一个二次函数y=ax^2+bx+c,其中a>0,即二次函数的开口朝上。
2. 对于二次函数y=ax^2+bx+c中的两个实数x1和x2,且x1≠x2,可以根据二次函数开口朝上的特点,得出y(x1)>y(x2)成立。
3. 将上述结论推广为二次函数y=ax^2+bx+c的基本不等式公式:当a>0时,x1≠x2,有y(x1)>y(x2);当a<0时,x1≠x2,有y(x1)<y(x2)。
4. 根据上述推导得到的公式,可以类似地推导出其他二次不等式的基本公式,如对于二次函数y=ax^2+bx+c和实数k,若a>0,且y(x1)>k,那么有y(x)>k成立,等等。
三、分式不等式的推导过程:1.首先,假设有两个实数a和b,且a≠b。
2.将a和b视为两个数的比例,即a/b,根据比例的性质可以得出以下结论:若a/b>1,则a>b;若a/b<1,则a<b。
3.将上述结论推广为分式不等式的基本公式:对于有理数a、b,且b≠0,如果a/b>1,则a>b;如果a/b<1,则a<b。
4.根据上述推导得到的公式,可以类似地推导出其他分式不等式的基本公式,如对任意有理数a、b、c,且b≠0,c≠0,若a/b>c,则a>c*b成立,等等。
四、绝对值不等式的推导过程:1.首先,考虑一个实数x,x的绝对值记为,x。
例谈含绝对值的二次函数相关题型再探讨

例谈含绝对值的二次函数相关题型再探讨作者:岳建卿来源:《福建中学数学》2018年第02期由于二次函数同其他知识结合的试题具有命题立意新、综合性强、解题方法灵活等特点,在历年的高考、平时模拟考试中,越来越受到命题老师的青睐,诸如,不等式、直线、曲线同二次函数相结合的试题,存在性、对称性与二次函数相结合的试题,含参数、绝对值与二次函数相结合的试题等,尤其含参数、绝对值与二次函数相结合的试题,让很多学生感觉无从下手。
在平时模拟考试与高考中,关于含绝对值的二次函数相关试题具有新颖性、灵活性、综合性强的特点。
为此,教师需要对高三复习相关经典例题有效地对其进行归类,总结解题方法并归类数学思想,助其走出審题、思考的困境,以开拓其数学思维能力,让学生在今后考试中灵活地找出对应试题的解题思想及其解题方法,本文选取部分含绝对值的二次函数相关试题,对这些二次函数试题的图象和性质问题进行科学梳理,对这类试题常用思想方法进行有效地指导,从而有效提升应对这些试题解题的复习效率。
1以数形结合为思想方法的题型二次函数是一种代数与几何交叉的数学知识内容,从初中开始学习二次函数起,数形结合思想伴随二次函数左右。
在二次函数中关于根的情况、讨论函数的值域(最值)、变量的取值范围等,尤其在选择、填空题,数形结合思想非常有效,在很多二次函数相关试题中,有些用数形结合的思想能让题目迎刃而解。
另外,教师需要指导学生如何准确作出图形并对k值进行临界点讨论,即在解题步骤中如何做到有效地进行分类讨论,而关于分类讨论的数学思想在下文会再介绍。
2以函数的奇偶性为性质的题型3以分类讨论为思想方法的题型当数学学习中遇到一些含有参数时,需要对参数进行合理讨论,分类讨论是数学学习中重要的数学思想方法,本着“不重复,不遗漏”的原则进行合理的分类,另外,分类讨论还需要如何抓住分类的临界点,才是解决分类的关键所在。
这里对参数a进行合理的分类讨论,因为分类讨论才能知道绝对值符号中代数式的值的正负情况,分类讨论是高中数学学习中一个重要的数学思想方法,相当一部分学生对分类讨论问题中的分类标准感到棘手,分类的要求为分类变量的交集为空集,并集为全集,上文例2、例3解题中也离不开有效地分类讨论,且看下面试题:综上所述,含有绝对值二次函数的综合问题解决起来确实比较困难,让学生重视绝对值的类型及其转化方法是解题的关键,掌握二次函数的图象和性质,并充分重视数形结合思想是突破难点的重要手段,为此,在平时教学中,教师要有意识地培养学生反思意识、归纳方法、吸收先进的解题思想习惯,从而提升高中数学学习效率。
高考数学一轮经典例题绝对值不等式

智才艺州攀枝花市创界学校典型例题一例1解不等式2321-->+x x分析:解含有绝对值的不等式,通常是利用绝对值概念⎩⎨⎧<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式〔组〕,再去求解.去绝对值符号的关键是找零点〔使绝对值等于零的那个数所对应的点〕,将数轴分成假设干段,然后从左向右逐段讨论. 解:令01=+x ,∴1-=x ,令032=-x ,∴23=x ,如下列图. 〔1〕当1-≤x时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解.〔2〕当231≤<-x 时,原不等式化为2)32(1--->+x x . ∴0>x ,故230≤<x . 〔3〕当23>x 时,原不等式化为 2321-->+x x .∴6<x ,故623<<x . 综上,原不等式的解为{}60<<x x .说明:要注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理清楚、不重不漏.典型例题二例2求使不等式a x x <-+-34有解的a 的取值范围.分析:此题假设用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解非常简便. 解法一:将数轴分为(]),4(],4,3[,3,+∞∞-三个区间当3<x 时,原不等式变为27,)3()4(a x a x x -><-+-有解的条件为327<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ; 当4>x 时,得a x x <-+-)3()4(,即27+<a x ,有解的条件为427>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a. 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的间隔之和小于a . 因为1=AB ,故数轴上任一点到A 、B 间隔之和大于〔等于1〕,即134≥-+-x x ,故当1>a 时,a x x <-+-34有解.典型例题三 例3),0(,20,2M y ab y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b ya x --,. 证明:ab ya ya xy ab xy -+-=-ε=ε⋅+ε⋅<-⋅+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法.典型例题四例4求证b a a b a -≥-22分析:使用分析法 证明∵0>a ,∴只需证明b a a b a -≥-222,两边同除2b,即只需证明 b a b a bb a -≥-22222,即 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1<ba 时,0<-b a ,原不等式显然成立.∴原不等式成立.说明:在绝对值不等式的证明,常用分析法.本例也可以一开场就用定理:〔1〕假设1≥ba ,那么0≤-b a ,原不等式显然成立. 〔2〕假设1<a b ,那么b a b ->-,利用不等式的传递性知a b a -,b a b ->,∴原不等式也成立.典型例题五例5求证b ba ab a b a +++≤+++111.分析:此题的证法很多,下面给出一种证法:比较要证明的不等式左右两边的形式完全一样,使我们联想利用构造函数的方法,再用单调性去证明.证明:设xx x x x x f +-=+-+=+=1111111)(. 定义域为{R x x∈,且1-≠x },)(x f 分别在区间)1,(--∞,区间),1(∞+-上是增函数. 又b a b a +≤+≤0, ∴)()(b a f b a f +≤+ 即b a ba b a ba +++≤+++11b ba ab a bb a a+++≤+++++=1111 ∴原不等式成立.说明:在利用放缩法时常常会产生如下错误: ∵b a b a +≤+,01>++b a , ∴b a b b a a b a b a b a b a +++++=+++≤+++1111bb a a +++≤11. 错误在不能保证a b a +≥++11,b b a +≥++11.绝对值不等式b a b a +≤±在运用放缩法证明不等式时有非常重要的作用,其形式转化比较灵敏.放缩要适度,要根据题目的要求,及时调整放缩的形式构造.典型例题六例6关于实数x 的不等式2)1(2)1(22-≤+-a a x 与0)13(2)1(32≤+++-a x a x )(R a ∈的解集依次为A 与B ,求使B A ⊆的a 的取值范围.分析:分别求出集合A 、B ,然后再分类讨论.解:解不等式2)1(2)1(22-≤+-a a x ,2)1(2)1(2)1(222-≤+-≤--a a x a , ∴{}R a a x a x A ∈+≤≤=,122.解不等式0)13(2)1(32≤+++-a x a x ,0)2)](13([≤-+-x a x . 当31>a 时〔即213>+a 时〕,得⎭⎬⎫⎩⎨⎧>+≤≤=31,132a a x x B . 当31≤a 时〔即213≤+a 时〕,得⎭⎬⎫⎩⎨⎧≤≤≤+=31,213a x a x B . 当31>a 时,要满足B A ⊆,必须⎩⎨⎧+≤+≥,131,222a a a 故31≤≤a ; 当31≤a 时,要满足B A ⊆,必须⎩⎨⎧+≥+≥;12,1322a a a ⎩⎨⎧≤≤--≤,11,1a a ∴1-=a .所以a 的取值范围是{}311≤≤-=∈a a R a 或. 说明:在求满足条件B A ⊆的a 时,要注意关于a 的不等式组中有没有等号,否那么会导致误解.典型例题七例6数列通项公式n n na a a a a 2sin 23sin 22sin 2sin 32++++= 对于正整数m 、n ,当n m >时,求证:n n m a a 21<-. 分析:数列的通项公式是数列的前n 项和,它的任意两项差还是某个数列的和,再利用不等式n n a a a a a a +++≤+++ 2121,问题便可解决.证明:∵n m > ∴m n n n m ma a n a n a a 2sin 2)2sin(2)1sin(21+++++=-++ )12110(21)211(21<-<<-=--nm n n m n . 说明:m n n 21212121+++++ 是以121+n 为首项,以21为公比,一共有n m -项的等比数列的和,误认为一共有1--n m 项是常见错误. 正余弦函数的值域,即1sin ≤α,1cos ≤α,是解此题的关键.此题把不等式、三角函数、数列、n 个变量的绝对值不等式问题连在一起,是一个较为典型的综合题目.假设将此题中的正弦改为余弦,不等式同样成立.典型例题八例813)(2+-=x x x f ,1<-a x ,求证:)1(2)()(+<-a a f x f分析:此题中给定函数)(x f 和条件1<-a x ,注意到要证的式子右边不含x ,因此对条件1<-a x 的使用可有几种选择:(1)直接用;(2)翻开绝对值用11+<<-a x a ,替出x ;(3)用绝对值的性质11+<⇒<-≤-a x a x a x 进展交换.证明:∵13)(2+-=x x x f ,∴13)(2+-=a a a f , ∵1<-a x ,∴1<-≤-a x a x . ∴1+<a x , ∴x a a x a f x f -+-=-22)()()1(21111+=+++<++<-+<a a a a x a x , 即)1(2)()(+<-a a f x f .说明:这是绝对值和函数的综合题,这类题通常要涉及绝对值及绝对值不等式的性质等综合知识的运用.分析中对条件1<-a x 使用时出现的三种可能是经常碰到的,要结合求证,灵敏选用.典型例题九例9不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是〔〕. A .{}20<<x x B .{}5.20<<x x C .{}60<<x x D .{}30<<x x分析:此题是考察含有绝对值不等式的解法,由x x x x +->+-2233,知033>+-x x ,∴33<<-x ,又0>x ,∴30<<x ,解原不等式组实为解不等式xx x x +->+-2233〔30<<x 〕. 解法一:不等式两边平方得:2222)2()3()2()3(x x x x -+>+-. ∴2222)6()6(-+>--x x x x ,即0)66)(66(2222>+-----++--x x x x x x x x ,∴0)6(2>-x x ,又30<<x .∴⎩⎨⎧<<<-30062x x ∴60<<x .选C . 解法二:∵0>x ,∴可分成两种情况讨论:(1)当20≤<x 时,不等式组化为x x x x +->+-2233〔20≤<x 〕. 解得20≤<x .(2)当2>x 时,不等式组可化为x x x x +->+-2233〔2>x 〕, 解得62≤<x .综合(1)、(2)得,原不等式组的解为60<<x ,选C . 说明:此题是在0>x 的条件下,解一个含绝对值的分式不等式,如何去绝对值是此题的关键所在,必须注意,只有在保证两边均为非负数时,才能将不等式两边同时平方.另一种方法那么是分区间讨论,从而去掉绝对值符号.当然此题还可用特殊值排除法求解.典型例题十例10设二次函数c bx ax x f ++=2)((0>a ,且0≠b ),a b ≤,1)0(≤f ,1)1(≤-f ,1)1(≤f ,当1≤x 时,证明45)(≤x f . 分析:从0>a 知,二次函数的图像是开口向上的抛物线;从1≤x 且1)1(≤-f ,1)1(≤f 知,要求证的是45)(≤x f ,所以抛物线的顶点一定在x 轴下方,取绝对值后,图像翻到x 轴上方.因此抛物线的顶点的取值非常重要,也是解这道题的关键所在.证明:∵)()(2c b a c b a b +--++=2=, ∴1≤b . 又∵a b ≤,∴1≤a b . ∴1212<≤-a b . 又1)0(≤=f c ,ab c a b ac a b f 444)2(22-=-=-, ∴ab c a b c a b f 44)2(22+≤-=- 451141141=⋅⋅+≤⋅⋅+=b a b c . 而)(x f 的图像为开口向上的抛物线,且1≤x ,11≤≤-x ,∴)(x f 的最大值应在1=x ,1-=x 或者a b x 2-=处获得. ∵1)1(≤f ,1)1(≤-f ,45)2(≤-a b f , ∴45)(≤x f . 说明:此题考察了绝对值不等式的性质、二次函数的最值及分类讨论的思想和逻辑思维的才能,关键是通过对参数a ,b ,c 的分析,确定抛物线顶点的取值范围,然后通过比较求出函数在1 x 范围内的最大值.。
二次函数与含有绝对值练习
ab ab , m(a,b)
2
ab ab .
2
A.M (a, b) m(a,b) a b B.m(| a b |,| a b |) | a | |b |;
C.M (| a b |,| a b |) | a | |b | D.m( M (a,b), m(a, b)) m(a,b)
8、已知 f (x) 4 x 3x 2
求 a的取值范围
12、若函数 f ( x) | asin x b cosx 1| | b sin x a cosx |的最大值为 11, 求a2 b2
2
13、已知函数 f (x) | x 1 ax b |,当x x
求 M (a, b)的最小值
1 ,2 时,设 f ( x)的最大值为 M (a, b), 2
14、已知函数 f ( x) 2x2 bx c的定义域是 0,4 , 记 |f(x) |的最大值为 M ,则 M 的最小值是() A. 2 B. 4 C. 6 D. 8
15、已知函数 f (x) | log 2(ax) | 在x
则 M ( a)的最小值是( )
3
1
A. 2 B.
C. 1 D.
2
2
1 ,2
| x 2017 | | x 2018 |
4、已知 f ( x).g( x)都是偶函数,且在 0, 上单调递增, 设函数 F ( x) f ( x) g(1 x) | f ( x) g (1 x) |,若a 0,则() A.F( - a) F (a)且F (1 a) F (1 a) B.F( - a) F (a)且F (1 a) F (1 a) C.F(- a) F (a)且F (1 a) F (1 a) D.F( - a) F ( a)且F (1 a) F (1 a)
苏教版必修一2.2二次函数的图象及性质(学案含答案)
2.2二次函数的图象及性质一、考点突破1. 求二次函数的解析式;2. 求二次函数的值域或最值及一元二次方程、一元二次不等式的综合应用;二、重难点提示1. 理解二次函数三种解析式的特征及应用;2. 分析二次函数要抓住几个关键环节:开口方向、对称轴、顶点,函数的定义域;3. 充分应用数形结合思想把握二次函数的性质。
1. 二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c(a≠0)的函数叫做二次函数。
(2)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0);③零点式:f(x)=a(x-x1)(x-x2)(a≠0);3. 与二次函数有关的不等式恒成立问题①ax2+bx+c>0,a≠0恒成立的充要条件是2>-<0,40a b ac②ax 2+bx +c <0,a ≠0恒成立的充要条件是20,40a b ac <-<例题1 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]。
(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间。
思路分析:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用。
答案:解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35;(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4;(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎪⎩⎪⎨⎧-∈+-∈++]0,6[32]6,0(3222x x x x x x ,, ∴f (|x |)的单调递增区间是(0,6]。
高考数学理一轮复习 65含绝对值的不等式 课件
[规律总结] 证明含有绝对值的不等式,其思路主要有 两种:一是恰当地运用|a|-|b|≤|a±b|≤|a|+|b|进行放缩,并注 意不等号的传递性及等号成立的条件;二是把含有绝对值的 不等式等价转化为不含有绝对值的不等式,再利用比较法、 综合法及分析法等进行证明,其中去掉绝对值符号的常用方 法是平方法.
思维提示
①不等式的基本性质; ②绝对值不等式的性质.
例 2 (1)若 x<5,n∈N*,则下列不等式: ①|xlgn+n 1|<5|lgn+n 1|;②|x|lgn+n 1<5lgn+n 1; ③xlgn+n 1<5|lgn+n 1|;④|x|lgn+n 1<5|lgn+n 1|. 能够成立的有________个. (2)不等式|a|a|+ -b|b||≥1 成立的充要条件是________.
备选例题 3 已知f(x)=x2-x+c定义在区间[0,1]上,x1, x2∈[0,1],且x1≠x2,证明:
(1)f(0)=f(1);(2)|f(x2)-f(x1)|<|x1-x2|. 证明:(1)f(0)=c,f(1)=c,故f(0)=f(1).
(2)|f(x2)-f(x1)|=|x-x2+c-x+x1-c| =|x2-x1||x2+x1-1|, ∵0≤x1≤1,0≤x2≤1,0<x1+x2<2(x1≠x2), ∴-1<x1+x2-1<1,∴|x2+x1-1|<1, ∴|f(x2)-f(x1)|<|x1-x2|.
[证明] 证法一:∵当|x|≤1 时,|f(x)|≤1, ∴|f(0)|≤1,即|c|≤1. 又|f(1)|≤1,|f(-1)|≤1, ∴|a+b+c|≤1,|a-b+c|≤1. 又∵|a+b+c|+|a-b+c|+2|c|≥|a+b+c+a-b+c- 2c|=|2a|, 且|a+b+c|+|a-b+c|+2|c|≤4, ∴|a|≤2.
人教版高中数学必修第二册含绝对值的不等式1
含绝对值的不等式一、复习目标:1.理解含绝对值的不等式的性质,及其中等号成立的条件,能运用性质论证一些问题;2.会解一些简单的含绝对值的不等式.二、知识要点:1.含绝对值的不等式的性质:①||||||||||a b a b a b -≤+≤+,当 0|||| ab a b ≤≥且时,左边等号成立;当 0 ab ≥时,右边等号成立.②||||||||||a b a b a b -≤-≤+,当 0|||| ab a b ≥≥且时,左边等号成立;当 0 ab ≤时,右边等号成立.③||||||||||a b a b a b -≤±≤+.2.绝对值不等式的解法:①0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<;②去绝对值符号是解绝对值不等式的常用方法; ③根据绝对值的几何意义,通过数形结合解绝对值不等式.三、课前预习:1.不等式|lg ||||lg |x x x x -<+的解集为( C 2.不等式1|21|2x ≤-<的解集为 (C )3.()f x 为R 上的增函数,()y f x =的图象过点(0,1)A -和下面哪一点时,能确定不等式|(1)|1f x -<的解集为{|14}x x <<( A )4.已知集合{||1|}A x x a =-≤,{||3|4}B x x =->,且A B φ=,则a 的取值范围是(,2]-∞.5.设有两个命题:①不等式|||1|x x m +->的解集是R ;②函数()(73)x f x m =--是减函数,如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是[1,2).四、例题分析:例1.已知01x <<,01a <<,试比较|log (1)|a x -和|log (1)|a x +的大小.解:(法一)∵01x <<,∴011x <-<,112x <+<, ∴log (1)0a x ->,log (1)0a x +<,∵|log (1)|a x --|log (1)|a x +2log (1)log (1)log (1)a a a x x x =-++=-, ∵2011x <-<,且01a <<,∴2log (1)0a x ->, ∴|log (1)|a x ->|log (1)|a x +.(法二)提要:2221|log (1)||log (1)|log (1)log 01a a a a x x x x x---+=->+. (法三)提要:11|log (1)||log (1)|log (1)|log (1)|a x x a x x x x ++-=-=--+2111211log log 1log (1)111x x x x x x x++++===-->--. 例2.求证:||||||1||1||1||a b a b a b a b +≤+++++. 证明:(法一)当||0a b +=时,不等式显然成立,当||0a b +≠时,由110||||||||||||a b a b a b a b <+≤+⇒≥++, ∴||11||||||||111||1||||1||1||11||||||a b a b a b a b a b a b a b a b ++=≤=≤+++++++++++.(法二)要证原不等式成立,只要证||(1||)(1||)||(1||)||(1||)(1||)a b a b a a b b a b a +++≤++++++,整理得22||||2||||||a b a ab a b ab b +≤++++,∵||||||a b a b +≤+,∴22||||2||||||a b a ab a b ab b +≤++++成立,所以,原不等式成立. 例3.已知()f x =,当a b ≠时,求证:|()()|||f a f b a b -<-. 证明:(法一)22|()()|||f a f b -== (||||)||||||||a b a b a b a b +-≤=-+,∴得证.(法二)要证||a b <-,只要证22||a b =<-,即证1<,只须证||a b +∵||a >,||b >,∴||||||a b a b >+≥+(法三:构造法)如图,()OA f a == ()OB f b ==||||A B a b -=-,由三角形两边之差小于第三边得:|()()|||f a f b a b -<-.例4.设m 等于||a 、||b 和1中最大的一个,当||x m >时,求证:2||2a bx x +<.分析:本题的关键是对题设条件的理解和运用,||a 、||b 和1中哪个最大,如果两两比较大小,将十分复杂.证明:∵||||x m a >≥,||||x m b >≥,||1x m >≥, ∴22||||x b >,∴222||||||||||112||||a ba b a b x x x x x x +≤+=+<+=.小结:将题设中的条件“m 等于||a 、||b 和1中最大的一个”转化为符号语言“||||x m a >≥,||||x m b >≥,||1x m >≥”是解题的关键.五、课后作业:1.若,a b R ∈,且||||a c b -<,则( A )2.若0m >,则||x a m -<且||y a m -<是||2x y m -<的( A ()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 既不充分也不必要条件3.已知函数()f x 、()g x ,设不等式|()||()|f x g x a +<(0)a >的解集是M ,不等式|()()|f x g x a +<(0)a >的解集是N ,则集合M 、N 的关系是 ( C )4.不等式||22x xx x ≥++的解集是20x -<≤.5.不等式|4||3|x x a -+-<的解集不是空集,则a 的取值范围是(1,)+∞.6.若实数,a b 满足0ab >,则①||||a b a +>;②||||a b b +<;③||||a b a b +<-;④||||a b a b +>-.这四个式子中,正确的是 ①、④ .7.解关于x 的不等式2||x a a -<(a R ∈).8.解不等式:(1)2|1121|x x x -+>;(2)|3||21|12xx x +-->+. 9.设有关于x 的不等式lg(|3||7|)x x a ++->,(1)当1a =时,解这个不等式;(2)当a 为何值时,这个不等式的解集为R .10.设二次函数2()f x ax bx c =++对一切[1,1]x ∈-,都有|()|1f x ≤,证明:(1)||1a c +≤;(2)对一切[1,1]x ∈-,都有|2|4ax b +≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与二次函数有关的含有绝对值不等式的证明问题
二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明。
1.设()c bx ax x f ++=2,当1≤x 时,总有()1≤x f ,求证当2≤x 时,()7≤x f . 证明:由于()x f 是二次函数,()x f 在[]2,2-上最大值只能是()()2,2-f f ,或⎪⎭⎫ ⎝⎛-a b f 2,故只要证明()()72;72≤-≤f f ;当22≤-a b 时,有72≤⎪⎭
⎫ ⎝⎛-a b f ,由题意有()()()11,11,10≤≤-≤f f f .
由()()()⎪⎩
⎪⎨⎧+-=-++==c b a f c b a f c f 110 得()()()[]()()[]()
⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=01121021121f c f f b f f f a
()()()()()()()
0311303113242f f f f f f c b a f +-+≤--+=++=∴7313=++≤.
()()()()()()()
0313103131242f f f f f f c b a f +-+≤--+=+-=-7331=++≤.
()()()()()()1112
111211121=+≤-+≤--=f f f f b . ∴ 当22≤-a b 时,22444222b a b
c a b c a b ac a b f ⋅-=-=-=⎪⎭⎫ ⎝⎛-
7221
2122<=⨯+≤⋅+≤b
a b
c . 因此当2≤x 时,()7≤x f .
点评:从函数性质的角度分析,要证2≤x 时,()7≤x f ,只要证当2≤x 时,()
x f
的最大值M 满足7≤M . 而()x f 又是二次函数,不论a 、b 、c 怎么取值()x f 在[]2,2-上的最大值只能是()()2,2f f -,或⎪⎭
⎫ ⎝⎛-
a b f 2,因而只要证明()()72,72≤-≤f f ,72≤⎪⎭
⎫ ⎝⎛-a b f ,这里需要特别指出的是要将()()2,2-f f 与()()()1,1,0-f f f 建立联系,将二次函数中的系数b a ,c ,用()1f 、()1-f 、()0f 表示:
()()()
,20211f f f a --+=()()
()0,211f c f f b =--=,然后用含有绝对值不等式的
性质,进行适当放缩。
2.已知c b a ,,是实数,函数()()b ax x g c bx ax x f +=++=,2,当11≤≤-x 时,()1≤x f ,
(1)证明:1≤c ;
(2)证明:当11≤≤-x 时,()2≤x g ;
(3)设0>a ,当11≤≤-x 时,()x g 的最大值为2,求()x f . (1996年全国高考题) 证明:(1)依题设得()10≤f ,而()c f =0 所以1≤c .
(2)证法:当0>a 时,()b ax x g +=在[]1,1-上是增函数。
则[]1,1-∈x 时,有()()()11g x g g ≤≤-,又()1,1≤≤c x f ,
()()()2111≤+≤-=+=∴c f c f b a g ,
()()()()2111-≥+--≥+--=+-=-c f c f b a g ,因此得()()112≤≤-≤x x g . 当0<a 时,()b ax x g +=在[]1,1-上是减函数,则当[]1,1-∈x 时,()()()11g x g g ≥≥-. 又()1,1≤≤c x f ,
()()()2111≤+-≤+--=+-=-∴c f c f b a g ,
()()()()2111-≥+-≥-=+=c f c f b a g ,因此得()2≤x g .
当0=a 时,()()c bx x f b x g +==,,
()1,11≤≤c f
()()()211≤+≤-=∴c f c f x g
综上可知,当11≤≤-x 时,都有()2≤x g .
(3)依题意0>a ,故()b ax x g +=在[]1,1-上是增函数,又()x g 在[]1,1-上的最大值为2,故()21=g ;()()c f b a g -=+=11 ,()1,11≤≤c f .
()()121111-=-≤-=≤-∴g f c 1-=∴c 。
当11≤≤-x 时,()()01f c x f ==-≥,即函数()c bx ax x f ++=2在区间[]1,1-的内点0=x 上取得最小值为1-,所以,()x f 是二次函数且它的图像是对称轴a b x 2-
=是直线
0=x ,由此得02=-a b
,即0=b . ()21==+g b a 2=∴a ,故()122-=x x f .
点评:本题运用了赋值法,函数的单调性、二次函数的最小值,含有绝对值不等式的性质等,问题(1)的设置意在降低难度,容易上手,抓住这2分,问题(3)的意义是证明问题
(2)中的结论不能改进,从而是精确的,这样(2)、(3)合在一起构成问题的完整解答。
本题的设计背景是:对于二次函数()c bx ax x f ++=2和一次函数()b ax x h +≤2,给定条件“当11≤≤-x 时,()1≤x f ”,则有结论“当11≤≤-x 时,()4≤x h ”. 更一般地,对于多
项式函数()n n n n a x a x a x a x P ++++=--1110 和()()121101---++-+=n n n a x a n x na x Q ,给定件“当11≤≤-x 时,()1≤x P ”,则有结
论“当11≤≤-x 时,()2n x Q ≤”.。