四川省自贡市2024学年新高考选考适应性考试数学试题
2024年普通高等学校招生全国统一考试适应性测试数学试题(新高考一卷)(A4)

姓名座位号(在此卷上答题无效)2024年普通高等学校招生全国统一考试适应性测试数学注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1已知集合A ={x |-5<x 3<5},B ={-3,-1,0,2,3},则A ∩B =A.{-1,0}B.{2,3}C.{-3,-1,0}D.{-1,0,2}2若2z -1=1+i ,则z =A.-1-iB.-1+iC.1-iD.1+i 3已知向量a =0,1 ,b =2,x ,b ⊥b -4a ,则x =A.-2B.-1C.1D.24已知4cos a +β =m ,tan a tan β=2,则cos a -β =A.-3mB.-m3 C.m3 D.3m5已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23πB.33πC.63π,D.93π6已知函数为f x =-x 2-2ax -a ,x <0e x +x +1 ln ,x ≥0 在R 上单调递增,则a 的取值范围是A.-∞,0 B.-1,0 C.-1,1D.0,+∞ 7当x ∈0,2π 时,曲线y =x sin 与y =23x -π6sin 的交点个数为A.3 B.4C.6D.88已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100B.f 20 >1000C.f 10 <1000D.f 20 <10000二、选择题:本题共3小题,每小题6分,共18分。
四川省自贡市(新版)2024高考数学人教版摸底(自测卷)完整试卷

四川省自贡市(新版)2024高考数学人教版摸底(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知点O是内一点,满足,,则实数m为()A.2B.-2C.4D.-4第(2)题已知集合,,则()A.B.C.D.第(3)题已知,是平行四边形的两个内角,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(4)题已知函数,则()A.2B.1C.-1D.-2第(5)题如图所示的一系列正方形图案称为“谢尔宾斯基地毯”,在4个大正方形中,着色的小正方形的个数依次构成一个数列的前4项. 记,则下列结论正确的为()A.B.C.D.与的大小关系不能确定第(6)题蒙特卡洛方法是第二次世界大战时期兴起和发展起来的,它的代表人物是冯·诺依曼,这种方法在物理、化学.生物,社会学等领域中都得到了广泛的应用.在概率统计中我们称利用随机模拟解决问题的方法为蒙特卡洛方法.甲、乙两名选手进行比赛,采用三局两胜制决出胜负.若每局比赛甲获胜的的概率为0.6,乙获胜的概率为0.4,利用随机模拟的方法估计甲最终赢得比赛的概率,由计算机随机产生之间的随机数,约定出现随机数0、1或2时表示一局比赛甲获胜,现产生了20组随机数如下:312 012 311 233 003 342 414 221 041 231 423 332 401 430 014 321 223 040 203 243,则依此可估计甲选手最终赢得比赛的概率为()A.0.6B.0.65C.0.7D.0.648第(7)题若复数在复平面内对应的点位于第四象限,则实数的取值范围是().A.B.C.D.第(8)题某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10℃的月份有5个D.从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题二进制是计算中广泛采用的一种数制,由18世纪德国数理哲学家莱布尼兹发现,二进制数据是用0和1两个数码来表示的数.现采用类似于二进制数的方法构造数列:正整数,其中(),记.如,,则下列结论正确的有()A.B.C.D.第(2)题某公司通过统计分析发现,工人工作效率与工作年限(),劳累程度(),劳动动机()相关,并建立了数学模型.已知甲、乙为该公司的员工,则下列说法正确的有()A.甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强B.甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短,则甲比乙劳累程度弱C.甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高D.甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高第(3)题对于函数,下列结论中正确的是()A.任取,都有B.,其中;C.对一切恒成立;D.函数有个零点;三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若数列从第二项起,每一项与前一项的差构成等差数列,则称数列为二阶等差数列.某数学小组在数学探究课上,用剪刀沿直线剪一圆形纸片,将剪刀最多可以将圆形纸片分成的块数记为,经实际操作可得,,,,…,根据这一规律,得到二阶等差数列,则________;若将圆形纸片最多分成1276块,则_________.第(2)题体积为的球面上有三点,,,两点的球面距离为,则球心到平面的距离为_______________.第(3)题i 为虚数单位,复数,复数z的共轭复数为,则的虚部为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆,分别是椭圆的左、右焦点,是椭圆上的动点,直线交椭圆于另一点,直线交椭圆于另一点.(1)求面积的最大值;(2)求与面积之比的最大值.第(2)题某展览会有四个展馆,分别位于矩形ABCD的四个顶点A、B、C、D处,现要修建如图中实线所示的步道(宽度忽略不计,长度可变)把这四个展馆连在一起,其中百米,百米,且.(1)试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量x,并求出步道的总长y(单位:百米)关于x的函数关系式;(2)求步道的最短总长度(精确到0.01百米).第(3)题如图,在三棱柱中,底面为等腰直角三角形,侧面底面为中点,.(1)求证:;(2)再从条件①、条件②这两个条件中选择一个作为已知,求二面角的余弦值.条件①:;条件②:.第(4)题如图,已知斜三棱柱的侧面是菱形,,.(1)求证:;(2)求平面与平面夹角的余弦值.第(5)题记为数列的前项和.已知.(1)证明:是等比数列;(2)记,求前项和的最小值.。
四川省自贡市2024年数学(高考)统编版摸底(巩固卷)模拟试卷

四川省自贡市2024年数学(高考)统编版摸底(巩固卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题若函数恒有,且在上单调递减,则的值为()A.B.C.D.或第(2)题已知,,满足,且,,则的值为()A.-2B.C.D.2第(3)题在斜中,若,则()A.1B.C.D.2第(4)题已知函数在和上均为增函数,且,则的最小值是()A.2B.1C.D.第(5)题已知,函数在上恰有3个极大值点,则的取值范围为()A.B.C.D.第(6)题如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为()A.B.C.D.第(7)题设分别是函数的导数,且满足,.若中,是钝角,则A.B.C.D.第(8)题若函数,点是曲线上任意一点,则点到直线的距离的最小值为()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题如图,正六棱柱的各棱长均为1,下列选项正确的有()A.过A,,三点的平面截该六棱柱的截面面积为B.过A,,三点的平面将该六棱柱分割成体积相等的两部分C.以A为球心,1为半径的球面与该六棱柱的各面的交线总长为D.以A为球心,2为半径的球面与该六棱柱的各面的交线总长为第(2)题中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关为了建立茶水温度随时间变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据,,,,绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度随时间的变化情况,函数模型一:;函数模型二:,下列说法正确的是()A.变量与具有负的相关关系B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C.若选择函数模型二,利用最小二乘法求得到的图象一定经过点D.当时,通过函数模型二计算得,用温度计测得实际茶水温度为65.2,则残差为0.1第(3)题已知直线与曲线相交于不同两点,,曲线在点M处的切线与在点N处的切线相交于点,则()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。
四川省自贡市(新版)2024高考数学人教版考试(预测卷)完整试卷

四川省自贡市(新版)2024高考数学人教版考试(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若集合,则()A.或B.或C.或D.或第(2)题圆:与直线:的位置关系为()A.相切B.相交C.相离D.无法确定第(3)题设函数的定义域为,满足,且当时,.若对任意,都有成立,则的取值范围是()A.B.C.D.第(4)题已知F为抛物线C:的焦点,O为坐标原点,过点F且斜率为1的直线l交抛物线C于A、B两点,则直线OA、OB的斜率之和为()A.-2B.-2P C.-4D.-4P第(5)题点P是棱长为3的正四面体ABCD的面ABC内一动点,,设异面直线DP与BC所成的角为,则的最小值为()A.B.C.D.第(6)题设全集,集合,,则=()A.B.C.D.第(7)题()A.B.C.D.第(8)题已知函数满足对任意的都有f(x+2)=f(x),且当时.,函数,若关于的方程在恰有5个互异的实数解,则实数的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题函数的部分图象如图所示,则下列结论正确的是()A.的最小正周期为B .是图象的一个对称中心C.在区间上单调递减D.把图象上所有点向右平移个单位长度后得到函数的图象第(2)题已知事件A ,B满足,,则( )A .若,则B .若A 与B互斥,则C .若A 与B相互独立,则D .若,则A 与B 相互独立第(3)题已知正方体的棱长为分别是棱的中点,是棱上的动点(包括端点),则下列说法正确的是( )A.B .正方体的外接球的球心可能在平面内C .若直线上有且只有一点使得,则D .当时,为线段上的动点(包括端点),则的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若变量满足,则目标函数的取值范围是______.第(2)题数列满足,若该数列中有且仅有三项满足,则实数的取值范围是_________.第(3)题为了落实“回天计划”,政府准备在回龙观、天通苑地区各建一所体育文化公园.针对公园中的体育设施需求,某社区采用分层抽样的方法对于21岁至65岁的居民进行了调查.已知该社区21岁至35岁的居民有840人,36岁至50岁的居民有700人,51岁至65岁的居民有560人.若从36岁至50岁的居民中随机抽取了100人,则这次抽样调查抽取的总人数是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在△ABC 中,D 是边BC 上的点,,,AD 平分∠BAC ,△ABD 的面积是△ACD 的面积的两倍.(1)求△ACD 的面积;(2)求△ABC 的边BC 上的中线AE 的长.第(2)题为了解某一地区电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量y (单位:万台)关于x (年份)的线性回归方程为,且销量y 的方差为,年份x 的方差为.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的相关性强弱;(2)该机构还调查了该地区100位购车车主性别与购车种类情况,得到的数据如下表:购买非电动汽车购买电动汽车总计男性302050女性153550总计4555100能否有99.5%的把握认为购买电动汽车与性别有关?附:(i)线性回归方程:,其中,;(ii)相关系数:,相关系数时相关性较强,时相关性一般,时相关性较弱.(iii)0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.828,其中.第(3)题随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.第(4)题设数列的前项和为,且.(1)求数列的通项公式;(2)若,数列的前项和为恒成立,求实数的最小值.第(5)题某款自营生活平台以及提供配送服务的生活类软件主要提供的产品有水产海鲜,水果,蔬菜,食品,日常用品等.某机构为调查顾客对该软件的使用情况,在某地区随机访问了100人,访问结果如下表所示.使用人数未使用人数女性顾客4020男性顾客2020(1)从被访问的100人中随机抽取2名,求所抽取的都是女性顾客且使用该软件的概率;(2)用随机抽样的方法从该地区抽取10名市民,这10名市民中使用该软件的人数记为,问为何值时,的值最大?。
2024届高三新高考改革适应性练习(九省联考题型)数学卷及答案

2024年新高考改革适应性练习(九省联考题型)数学试题卷(名师教研团队命制2024.2.3)考试须知:1. 本卷共4页,四大题19小题,满分150分,答题时间120分钟;2. 答题时须在答题卡上填涂所选答案(选择题),或用黑色字迹的签字笔规范书写答案与步骤(非选择题),答在本试题卷上或草稿纸上的答案均属无效;3. 考试结束时,考生须一并上交本试题卷,答题卡与草稿纸.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 共同富裕是消除两极分化和贫穷基础上的普遍富裕.下列关于个人收入的统计量中,最能体现共同富裕要求的是A.平均数小、方差大B.平均数小、方差小C.平均数大、方差大D.平均数大、方差小2. 已知复数zz满足|zz|=1 且zz̅=i·zz,则zz可被表示为A.cosππ4+i sin34ππB.cos34ππ+i sinππ4C.cos34ππ+i sin34ππD.cosππ4+i sinππ43. 1949年10月1日,开国大典结束后,新成立的中央人民政府在北京饭店举行了有600余位宾客参加的新中国第一次国庆招待会,史称“开国第一宴”.该宴的主要菜品有:鲍鱼浓汁四宝、东坡肉方、蟹粉狮子头、鸡汁煮干丝、清炒翡翠虾仁和全家福.若这六道菜要求依次而上,其中“东坡肉方”和“鸡汁煮干丝”不能接连相邻上菜,则不同的上菜顺序种数为A.240 B.480 C.384 D.14404. 抛物线yy2=4xx的焦点为FF,已知抛物线上的三个点AA,BB,CC满足FFAA�����⃗+ FFBB�����⃗+ FFCC�����⃗=0 ,则�FFAA�����⃗�+�FFBB�����⃗�+�FFCC�����⃗�=A.4 B.5 C.6 D.75. 遗忘曲线(又称作“艾宾浩斯记忆曲线”)由德国心理学家艾·宾浩斯(H. Ebbinghaus)研究发现,描述了人类大脑对新事物遗忘的规律.人体大脑对新事物遗忘的循序渐进的直观描述,人们可以从遗忘曲线中掌握遗忘规律并加以利用,从而提升自我记忆能力.该曲线对人类记忆认知研究产生了重大影响.陈同学利用信息技术拟合了“艾宾浩斯遗忘曲线”,得到记忆率yy与初次记忆经过的时间xx(小时)的大致关系:yy=1−0.6xx0.06若陈同学需要在明天15时考语文考试时拥有复习背诵记忆的50%,则他复习背诵时间需大约在A.14:30B.14:00 C.13:30 D.13:006. 已知数列{aa nn}满足aa nn+1=aa nn+aa nn+2(nn∈NN∗),aa1aa2=4 且aa1,aa2>0 ,则aa1+aa2+⋯+aa2024的最小值是A.4 B.3 C.2 D.17. 已知函数ff(xx)=xx4+4xx3+2(mm+2)xx2+mmxx图像上的一极大值点为(−2,0),则实数mm的取值范围为A.(−2,+∞)B.(−4,−2]C.(−∞,−2]D.(−∞,−2)8. 在正三棱锥PP−AABBCC中,侧棱PPAA与底面AABBCC所成的角为 60° ,且AABB=3 ,则三棱锥PP−AABBCC外接球的表面积为A.8ππB.12ππC.16ππD.18ππ二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.)9. 已知aa=sin(sin2024°),bb=sin(cos2024°) ,cc=cos(sin2024°),dd=cos(cos2024°),则A.aa<cc B.bb<dd C.bb<aa D.dd<cc10. 已知长轴长、短轴长和焦距分别为 2aa、2bb和 2cc的椭圆ΩΩ,点AA是椭圆ΩΩ与其长轴的一个交点,点BB是椭圆ΩΩ与其短轴的一个交点,点FF1和FF2为其焦点,AABB⊥BBFF1.点PP在椭圆ΩΩ上,若PPFF1⊥PPFF2,则A.aa,bb,cc成等差数列B.aa,bb,cc成等比数列C.椭圆ΩΩ的离心率ee=√5+1D.△AABBFF1的面积不小于△PPFF1FF2的面积11. 积性函数ff(xx)指对于所有互质的整数aa和bb有ff(aabb)=ff(aa)ff(bb)的数论函数.则以下数论函数是积性函数的有A.高斯函数[nn]表示不大于实数nn的最大整数B.最大公约数函数 gcd(nn,kk)表示正整数nn与kk的最大公约数(kk是常数)C.幂次函数VV mm(nn)表示正整数nn质因数分解后含mm的幂次数(mm是常数)D.欧拉函数φφ(nn)表示小于正整数nn的正整数中满足与nn互质的数的数目三、填空题(本题共3小题,每小题5分,共15分.)12. 已知函数ff(xx)=(xx2−aaxx+aa)ln(xx+1) ,aa∈RR的图像经过四个象限,则实数aa的取值范围是______________.13. 已知等差数列{aa nn}和等比数列{bb nn}满足aa1+aa2=bb1+bb2=30 ,aa3+aa4=bb3+bb4=10 ,则数列{aa nn bb nn}在nn=______________时取到最小值.14. 抛物线有一条重要性质:从焦点出发的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.过抛物线CC:xx2=4yy上的点PP(不为原点)作CC的切线ll,过坐标原点OO作OOOO⊥ll,垂足为OO,直线PPFF(FF为抛物线的焦点)与直线OOOO交于点TT,点AA(2,0),则|TTAA|的取值范围是______________.四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)第一象限的点AA在抛物线ΓΓ1:yy2=2xx上,过点AA作AABB⊥yy轴于点BB,点PP为AABB中点.(1)求PP的运动轨迹为曲线2的方程;(2)记ΓΓ1,ΓΓ2的焦点分别为FF1,FF2,则四边形AAPPFF1FF2的面积是否有最值?16.(15分)如图,已知四棱锥PP−AABBCCAA的底面AABBCCAA是矩形且棱PPAA垂直于其底面.OO为棱PPAA上一点,PPAA= AABB.(1)若OO为PPAA中点,证明:PPBB⊥平面AACCOO;(2)若AAOO为△AAAAPP的高,AAAA=√2AAPP,求二面角PP−AACC−OO的正弦值.17.(15分)从集合{xx∈NN∗|1≤xx≤9}中随机抽取若干个数(大于等于一个).(1)求这些数排序后能成等比数列的概率;(2)求这些数排序后能成等差数列的概率.18.(17分)已知函数ff(xx)=aaxx−(xx+2)ln(xx+1).(1)若ff(xx)的零点也是其的极值点,求aa;(2)若ff(xx)的图像经过四个象限,求aa的取值范围.19.(17分)对于非空集合GG,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”(GG,×),简记为GG×.而判断GG×是否为一个群,需验证以下三点:1.(封闭性)对于规定的“×”运算,对任意aa,bb∈GG,都须满足aa×bb∈GG;2.(结合律)对于规定的“×”运算,对任意aa,bb,cc∈GG,都须满足aa×(bb×cc)=(aa×bb)×cc;3.(恒等元)存在ee∈GG,使得对任意aa∈GG,ee×aa=aa;4.(逆的存在性)对任意aa∈GG,都存在bb∈GG,使得aa×bb=bb×aa=ee.记群GG×所含的元素个数为nn,则群GG×也称作“nn阶群”.若群GG×的“×”运算满足交换律,即对任意aa,bb∈GG,aa×bb=bb×aa,我们称GG×为一个阿贝尔群(或交换群).(1)证明:所有实数在普通加法运算下构成群RR+;(2)记CC为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得CC在该运算下构成一个群CC×,并说明理由;(3)所有阶数小于等于四的群GG×是否都是阿贝尔群?请说明理由.2024年新高考改革适应性练习(九省联考题型)数学参考答案一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 答案 D C B C A A D C二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.)题号91011答案ABD BD ABD三、填空题(本题共3小题,每小题5分,共15分.)题号121314答案�−12,0�5或6�√5−1,√5+1�四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)(1)设AA(xx0,yy0),则有yy02=2xx0,则BB(0,yy0),因为PP是AABB的中点,所以PP�xx02,yy0�,则yy02=2xx0=4�xx02�,即yy PP2=4xx PP,故点PP在抛物线ΓΓ1:yy2=4xx(yy>0)的上运动.(4分)(2)因为AAPP与FF1FF2平行,所以四边形AAPPFF1FF2是梯形,其上底为AAPP=12xx AA=12xx0,下底为FF1FF2=pp12−pp22=2−1=1 ,高为yy AA=yy0,所以其面积SS=yy02�12xx0+1�,又yy02=2xx0,所以SS=yy02�yy024+1�=18yy03+yy02(yy0>0)(8分)令ff(yy0)=18yy03+yy02(yy0>0),则ff′(yy0)=38yy02+12>0 ,所以ff(yy0)即SS关于yy0单调递增,(10分)又当yy0→0 时,SS→0 ;yy0→+∞时,SS→+∞,所以SS在yy0∈(0,+∞)上没有最值.(13分)16.(15分)(1)如答图,取PPAA中点FF,连接EEFF,BBFF,因为FF,EE分别为PPAA,PPPP的中点,所以EEFF//AAPP,EEFF=12AAPP.因为AAPP//BBBB,AAPP=2BBBB,所以FFEE//BBBB,EEFF=BBBB,所以四边形EEFFBBBB为平行四边形,BBFF//BBEE,因为BBFF⊂平面PPAABB,BBEE⊄平面PPAABB,所以BBEE//平面PPAABB.(6分)(2)过点BB作BBBB⊥AABB于点BB,连接FFBB.因为BBFF//BBEE,所以直线BBEE与平面PPAABB所成角和直线BBFF与平面PPAABB所成角相等,因为PPAA⊥平面AABBBBPP,BBBB⊂平面AABBBBPP,所以BBBB⊥PPAA,因为PPAA∩AABB=AA,PPAA ,AABB⊂平面PPAABB,所以BBBB⊥平面PPAABB,所以∠BBFFBB为直线BBFF与平面PPAABB所成角,(11分)BBFF=√22+12=√5 ,AABB=√22+12=√5 ,BBBB=1×2√5=2√55,所以sin∠BBFFBB=BBBB BBFF=2√55√5=25故直线BBEE与平面PPAABB所成角的正弦值为25.(15分)17.(15分)(1)若5、7在所抽取的数里,由于其是质数,且无法找到其他被其整除的数,故5、7不能被抽取到.①若抽取的数有1,(I)若抽取三个数,设其他两个数为aa,bb(aa<bb),则aa2=bb,符合条件的(aa,bb)只能为(2,4)和(3,9)两组,此时所抽取的数为(1,2,4)和(1,3,9),共两组;(II)若所抽取的数的个数大于3,记此等比数列的公比为qq,则qq≥2 .若qq=2 ,则所抽取的数为(1,2,4,8);若qq≥3 ,则该等比数列的最大一项大于等于 33=27 ,明显不符合题意,故该情况仅有(1,2,4,8)1组符合条件.②若抽取的数无1,则抽取的数应在{2,3,4,6,8,9}中.该等比数列公比qq≥2 ,因此若最小的一项为3,则最大一项≥3×22=12 ,矛盾,所以最小的一项应为2.易知符合条件的仅有(2,4,8)1组.综合上述情况,仅有(1,2,4),(1,3,9),(1,2,4,8),(2,4,8)共4组符合条件.(4分)而抽取的所有结果共有 29−1=511 种,故概率PP=4511.(6分)(2)①当抽取的数有3项时,(I)若该等差数列的公差dd=1 ,则有(1,2,3),(2,3,4),…,(7,8,9)共7组符合条件.(II)若该等差数列的公差dd=2 ,则有(1,3,5),(2,4,6),…,(5,7,9)共5组符合条件.(III)若该等差数列的公差dd=3 ,则有(1,4,7),(2,5,8),(3,6,9)共3组符合条件.(IV)若该等差数列的公差dd=4 ,则仅有(1,5,9)1组符合条件.(V)若该等差数列的公差dd≥5 ,则没有满足条件的选取组合.故此情况共有 7+5+3+1=16 组符合条件.(8分)②当抽取的数有4项时,(I)若该等差数列的公差dd=1 ,则有(1,2,3,4),(2,3,4,5),…,(6,7,8,9)共6组符合条件.(II)若该等差数列的公差dd=2 ,则有(1,3,5,7),(2,4,6,8),(3,5,7,9)共3组符合条件.(III)若该等差数列的公差dd≥3 ,则没有满足条件的选取组合.故此情况共有 6+3=9 组符合条件.(10分)③当抽取的数有5项时,(I)若该等差数列的公差dd=1 ,则有(1,2,3,4,5),(2,3,4,5,6),…,(5,6,7,8,9)共5组符合条件.(II)若该等差数列的公差dd=2 ,则仅有(1,3,5,7,9)1组符合条件.(III)若该等差数列的公差dd≥3 ,则没有满足条件的选取组合.故此情况共有 5+1=6 组符合条件.(12分)以此类推,当抽取6、7、8、9项时,都当且仅当公差为1时有符合条件的选取组合,分别有4、3、2、1组,综上所述,满足条件的选取组合共有 16+9+6+4+3+2+1=41 组,(14分)由(1),抽取的所有结果共有 29−1=511 种,故概率PP2=41511.(15分)18.(17分)(1)ff(xx)=aaxx−(xx+2)ln(xx+1),xx∈(−1,+∞),(2分)观察得ff(0)=0 ,即xx=0 为其零点,(4分)ff′(xx)=aa−1−1xx+1−ln(xx+1)所以ff′(0)=aa−2=0 ,即aa=2 .故aa的值为2.(6分)(2)由(1)得yy=ff(xx)必经过原点,若需使yy=ff(xx)经过四个象限,则ff(xx)需在区间(−1,0)和(0,+∞)上均至少存在一个零点,令 ff (xx )=aaxx −(xx +2)ln (xx +1)=0 ⟹aa =(xx+2)ln (xx+1)xx (xx ≠0) 在 (−1,0) 和 (0,+∞) 上均有根. 设函数 gg (xx )=(xx +2)ln (xx +1)xx,gg ′(xx )=xx 2+2xx −2(xx +1)ln (xx +1)(xx +1)xx 2 , 令 ℎ(xx )=xx 2+2xx −2(xx +1)ln (xx +1) ,ℎ′(xx )=2[xx −ln (xx +1)] , 令 φφ(xx )=xx −ln (xx +1) ,φφ′(xx )=xx xx+1 ,当 xx ∈(−1,0) 时,φφ′(xx )<0 ,φφ(xx ) 单调递减;当 xx ∈(0,+∞) 时,φφ′(xx )>0 ,φφ(xx ) 单调递增.所以 xx =0 是 φφ(xx ) 的极小值点,φφ(xx )min =φφ(0)=0 . 所以 φφ(xx )≥0 恒成立,即 ℎ′(xx )≥0 ,故 ℎ(xx ) 单调递增.又 ℎ(0)=0 ,所以当 xx ∈(−1,0)时,ℎ(xx )<ℎ′(0)=0 ,即 gg ′(xx )<0 ,所以 gg (xx ) 单调递减;当 xx ∈(0,+∞)时,ℎ(xx )>ℎ′(0)=0 ,即 gg ′(xx )>0 ,所以 gg (xx ) 单调递增.又当 xx →0 时,gg (xx )→2 ,所以要使得 gg (xx )=aa 在 (−1,0) 和 (0,+∞) 上均有根,aa 需满足 aa ∈(2,+∞) . 综上所述,若 ff (xx ) 的图像经过四个象限,则 aa ∈(2,+∞) . (17分) (方法不唯一,若考生从极值点等其他角度入手,依据实际情况酌情赋分)19.(17分)(1)我们需证 RR 在普通加法下可构成一个群,由题意,需从以下四个方面进行验证:①封闭性:对 aa ,bb ∈RR ,则 aa +bb ∈RR ,封闭性成立.(1分) ②结合律:对 aa ,bb ,cc ∈RR ,aa +(bb +cc )=(aa +bb )+cc ,结合律成立. (2分)③恒等元:取 ee =0∈RR ,则对任意 aa ∈RR ,0+aa =aa .符合恒等元要求.(3分) ④逆:对任意 aa ∈RR ,bb =−aa ∈RR ,且 aa +bb =aa +(−aa )=0=ee ,满足逆的存在性.(4分)综上所述,所有实数在普通加法运算下可构成群 RR + . (2)首先提出,BB 的“×”运算可以是复数的乘法:zz 1zz 2 (∀zz 1,zz 2∈BB ) ,理由如下.(6分)即证明 SS 在普通乘法下可构成一个群,同(1),需从四方面进行验证:①封闭性:设 zz 1=aa +bb i ,zz 2=cc +dd i ,其中 zz 1,zz 2∈BB ,即 aa 2+bb 2=cc 2+dd 2=1 .则 zz 1zz 2=(aa +bb i )(cc +dd i )=(aacc −bbdd )+(aadd +bbcc )i , 所以 |zz 1zz 2|=�(aacc −bbdd )2+(aadd +bbcc )2=√aa 2cc 2+bb 2dd 2+aa 2dd 2+bb 2cc 2 =�cc 2(aa 2+bb 2)+dd 2(aa 2+bb 2)=√cc 2+dd 2=1 ,即 zz 1zz 2∈BB ,封闭性成立. (7分) ②结合律:设 zz 1=aa +bb i ,zz 2=cc +dd i ,zz 3=ee +ff i ,其中 zz 1,zz 2,zz 3∈BB ,zz1(zz2zz3)=(aa+bb i)[(ccee−ddff)+(ccff+ddee)i]=[aa(ccee−ddff)−bb(ccff+ddee)]+[aa(ccff+ddee)+bb(ccee−ddff)]i(zz1zz2)zz3=[(aacc−bbdd)+(aadd+bbcc)i](ee+ff i)=[ee(aacc−bbdd)−ff(aadd+bbcc)]+[ff(aacc−bbdd)+ee(aadd+bbcc)]对比后容易发现,zz1(zz2zz3)和(zz1zz2)zz3实部和虚部分别对应相等,即zz1(zz2zz3)=(zz1zz2)zz3,结合律成立.(8分)③恒等元:取ee=1∈BB,则对任意zz∈BB,1·zz=zz,符合恒等元要求.(9分)④逆的存在性:对任意zz=aa+bb i∈BB,取其共轭zz̅=aa−bb i ,则zz·zz̅=aa2+bb2=1=ee,满足逆的存在性.(10分)综上所述,BB在复数的乘法运算下构成一个群BB×.(构造不唯一,证明方法也不唯一,本题较为开放,不同的方法应据实际情况酌情赋分)(3)所有阶数小于等于四的群GG×都是阿贝尔群,理由如下.(11分)若群GG×的阶数为0,则GG为空集,与定义矛盾.所以GG×的阶数为1,2,3,4.下逐一证明.①若群GG×的阶数为1,则其唯一的元素为其恒等元,明显符合交换律,故此时GG×是阿贝尔群.(12分)②若群GG×的阶数为2,设其元素为ee,aa,其中ee是恒等元,则ee×aa=aa×ee=aa,符合交换律,故此时GG×是阿贝尔群.(13分)③若群GG×的阶数为3,设其元素为ee,aa,bb,其中ee是恒等元,由群的封闭性,aa×bb∈GG×.若aa×bb=aa,又aa×ee=aa,推出bb=ee,则集合GG有两个相同的元素,不满足集合的唯一性,矛盾.所以aa×bb=ee.现要验证交换律,即aa×bb=bb×aa=ee.事实上,若bb×aa≠ee,有前知,bb×aa≠aa且bb×aa≠bb,所以bb×aa∉GG×,与群的封闭性矛盾.所以aa×bb=bb×aa,交换律成立,故此时GG×是阿贝尔群.(15分)④若群GG×的阶数为4,设其元素为ee,aa,bb,cc,其中ee是恒等元,由群的封闭性,aa×bb∈GG×.由③的分析可知,bb×aa≠aa且bb×aa≠bb,所以aa×bb=ee或aa×bb=cc.若aa×bb=ee.由群中逆的存在性,群GG×中存在一个元素rr使得rrcc=ee,很明显rr≠ee,所以rr=aa或rr=bb.假设rr=aa,即aa×cc=ee,又aa×bb=ee,推出bb=cc则集合GG有两个相同的元素,不满足集合的唯一性,矛盾.故只能aa×bb=cc.先证交换律对aa,bb成立,即aa×bb=bb×aa.事实上,若bb×aa≠aa×bb=cc,则由aa×bb∈GG×,aa×bb只能等于ee.又cc×ee=cc≠ee,cc×bb≠aa×bb=ee(cc和aa同理),不满足群中逆的存在性,矛盾.所以aa×bb=bb×aa=cc.交换律对aa,bb成立.接下来只需证交换律对aa,cc和bb,cc也成立.事实上,由aa和bb的对称性,只需证aa,cc即可.由群中逆的存在性,存在qq∈{aa,bb}使得qq×cc=ee.(I)若qq=aa,则只需证cc×aa=aa×cc=ee.事实上,若cc×aa≠aa×cc=ee,由群的封闭性,cc×aa∈GG×,所以cc×aa只能等于bb,又由前有aa×bb=cc,得cc×aa=aa×bb×aa=bb,即aa×aa=1 ,但aa是任取的,该结论具有局限性,不对一般的aa成立,故矛盾.即cc×aa=aa×cc,此时交换律对aa,cc成立.(II)若qq=bb.群中逆的存在性,存在pp∈{bb,cc}使得pp×aa=ee,又aa×bb=cc≠ee,所以pp只能等于cc,即aa×cc=ee,即证cc×aa=aa×cc=ee,接下来的证法同(I),反证法推出矛盾即可.即此时交换律对aa,cc成立.故群GG×的阶数为4时,交换律成立,故此时GG×是阿贝尔群.(17分)综上所述,所有阶数小于等于四的群GG×都是阿贝尔群.。
四川省自贡市2024年数学(高考)统编版摸底(强化卷)模拟试卷

四川省自贡市2024年数学(高考)统编版摸底(强化卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题在等比数列中,,且,则的前10项和为()A.322B.336C.341D.366第(2)题下列函数为偶函数的是A.B.C.D.第(3)题已知正实数a,b满足,则的最小值为()A.B.3C.D.第(4)题已知全集,集合,,则()A.B.C.D.第(5)题奔驰汽车是德国的汽车品牌,奔驰汽车车标的平面图如图(1),图(2)是工业设计中按比例放缩的奔驰汽车车标的图纸.若向图(1)内随机投入一点,则此点取自图中黑色部分的概率约为()A.0.108B.0.237C.0.251D.0.526第(6)题已知数列为等比数列,是函数的极值点,设等差数列的前项和为,若,则()A.或B.C.D.2第(7)题有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有A.1344种B.1248种C.1056种D.960种第(8)题已知点F为双曲线(,)的左焦点,过原点O的直线与双曲线交于A、B两点(点B在双曲线左支上),连接BF并延长交双曲线于点C,且,AF⊥BC,则该双曲线的离心率为( )A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,则下列说法正确的是()A.的最小值是B.若,则在上单调递减C.若在上恰有3个零点,则的取值范围为D.函数的值域为第(2)题已知,(且),则()A.当时,函数的最小值为2B.当时,的图象与的图象相切C.若,则方程恰有两个不同的实数根D.若方程恰有三个不同的实数根,则的取值范围是第(3)题已知复数,其中为虚数单位,若满足,则下列说法中正确的是()A.的最大值为B.的最大值为C.存在两个,使得成立D .存在两个,使得成立三、填空(本题包含3个小题,每小题5分,共15分。
2024年新高考改革适应性练习(3)(九省联考题型)数学卷及答案

2024年新高考改革适应性练习(3)(九省联考题型)数学试题卷(2024.2.6)考生须知1. 本卷共4页,四大题19小题,满分150分,答题时间120分钟;2. 答题时须在答题卡上填涂所选答案(选择题),或用黑色字迹的签字笔规范书写答案与步骤(非选择题),答在本试题卷上或草稿纸上的答案均属无效;3. 考试结束时,考生须一并上交本试题卷,答题卡与草稿纸.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设样本空间ΩΩ={1,2,…,6}包含等可能的样本点,且AA={1,2,3,4},BB={3,4,5,6},则PP(AABB)= A.13B.14C.15D.162. 若复数zz满足zz2是纯虚数,则|zz−2|的最小值是A.1 B.√2C.2 D.2√23. 算术基本定理告诉我们,任何一个大于1的自然数NN,如果NN不为质数,那么NN可以唯一分解成有限个素因数的乘积的形式.如,60可被分解为 22×31×51,45可被分解为 32×51.任何整除NN的正整数dd都叫作NN的正因数.如,20的正因数有1,2,4,5,10,20.则4200的正因数个数是A.4 B.7 C.42 D.484. 已知点(aa,bb)在直线 2xx+yy−1=0 第一象限的图像上,则1aa+1bb的最小值是A.3+2√2B.2+2√2C.1+2√2D.2√25. 已知函数ff(xx)=sin xx,gg(xx)=cos xx,则ff�gg(xx)�和gg�ff(xx)�都单调递增的一个区间是A.�2ππ5,4ππ5�B.�4ππ5,6ππ5�C.�6ππ5,8ππ5�D.�8ππ5,2ππ�6. 已知直线ll过点(2,1),且与两坐标轴围成的三角形的面积是6,则满足条件的直线ll共有A.1条B.2条C.3条D.4条7. 我们记ff(nn)(xx)为函数ff(xx)的nn次迭代,即ff(1)(xx)=ff(xx),ff(2)(xx)=ff�ff(xx)�,…,ff(nn)= ff�ff(nn−1)(xx)�.已知函数gg(xx)=xx|xx|,则gg(2024)(xx)=A.xx3|xx|2021B.xx4|xx|2020C.xx2|xx|2022D.xx20248. 若一四面体恰有一条长度大于1的棱,则这个四面体体积的最大值是A.√33B.12C.13D.√22二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.)9. 已知函数ff(xx)=xx3−2xx,下列说法正确的是A.函数gg(xx)=ff(xx)+ff′(xx)无零点B.直线 2xx+yy=0 与yy=ff(xx)相切C.存在无数个aa>0 ,ff(xx)在区间(−aa,aa)上不单调D.存在mm>0 ,使得对于任意nn,ff(nn)≤ff(nn+mm)10. 若一个人一次仅能爬1级或2级台阶,记aa nn为爬nn级台阶时不同的爬法数(nn∈NN∗).关于数列{aa nn},下列说法正确的是A.函数ff(nn)=aa nn单调递增B.aa1+aa3+aa5的值为12C.aa1+aa2+⋯+aa10=232D.2aa12+aa22+⋯+aa102=89×14411. 如右图,已知抛物线CC的焦点为FF,准线方程为ll:xx=−1 ,点PP是CC上的一动点.过点PP作ll的垂线,垂足为QQ.过点PP作CC的切线,该切线与xx,yy轴分别交于AA,BB两个不同的点.下列说法正确的是A.抛物线CC的标准方程为yy2=2xxB.QQ,BB,FF三点共线当且仅当|PPFF|=4C.当|PPFF|≠1 时,都有PPAA⊥QQFFD.当|PPFF|≠1 时,△PPAAFF恒为等腰三角形三、填空题(本题共3小题,每小题5分,共15分.)12. 在棱长为1的正方体AABBCCAA−AA1BB1CC1AA1中,三棱锥CC−AABB1AA1的体积是_________.13. 从集合{xx|−4≤xx≤2024}中任选2个不同的非零整数作为二次函数ff(xx)=aaxx2+bbxx的系数,则所有满足ff(xx)的顶点在第一象限或第三象限的有序数对(aa,bb)共有_________组.14. 已知向量aa,bb,cc满足aa+bb+cc=00,(aa−bb)⊥(aa−cc),|bb−cc|=3 ,则|aa|+|bb|+|cc|的最大值是_________.四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)已知正方体AABBCCAA−AA1BB1CC1AA1.(1)证明:AAAA1⊥AA1CC;(2)求二面角BB−AA1CC−AA.16.(15分)已知定义在RR上的函数ff(xx)=aaxx4+bbxx3+ccxx2+ddxx(aa≠0).(1)若原点是ff(xx)的一个极值点,证明:ff(xx)的所有零点也是其所有极值点;(2)若ff(xx)的4个零点成公差为2的等差数列,求ff′(xx)的最大零点与最小零点之差.17.(15分)设点SS(1,1)在椭圆CC:xx2aa2+yy2bb2=1(aa>bb>0)内,直线ll:bb2xx2+aa2yy2−aa2bb2=0 .(1)求ll与CC的交点个数;(2)设PP为ll PPSS与CC相交于MM,NN两点.给出下列命题:①存在点PP,使得1|PPPP|,1|PPPP|,1|PPPP|成等差数列;②存在点PP,使得|PPMM|,|PPSS|,|PPNN|成等差数列;③存在点PP,使得|PPMM|,|PPSS|,|PPNN|成等比数列;请从以上三个命题中选择一个,证明该命题为假命题.(若选择多个命题分别作答,则按所做的第一个计分.)18.(17分)2024部分省市的高考数学推行8道单选,3道多选的新题型政策.单选题每题5分,选错不得分,多选题每题完全选对6分,部分选对部分分(此处直接视作3分),不选得0分.现有小李和小周参与一场新高考数学题,小李的试卷正常,而小周的试卷选择题是被打乱的,所以他11题均认为是单选题来做.假设两人选对一个单选题的概率都是14,且已知这四个多选题都只有两个正确答案.(1)记小周选择题最终得分为XX,求EE(XX).(2)假设小李遇到三个多选题时,每个题他只能判断有一个选项是正确的,且小李也只会再选1个选项,假设他选对剩下1个选项的概率是 pp 0�pp 0≥13� ,请你帮小李制定回答4个多选题的策略,使得分最高.19.(17分)信息论之父香农(Shannon )在1948年发表的论文“通信的数学理论”中指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关.香农借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式.设随机变量 XX 所有取值为 1,2,…,nn ,且 PP (xx =ii )=PP ii >0(ii =1,2,…,nn ),PP 1+PP 2+⋯+PP nn =1 ,定义 XX 的信息熵HH (XX )=−�PP ii log 2PP ii nn ii=1(1)当 nn =1 时,求 HH (XX ) 的值;(2)当 nn =2 时,若 PP 1∈�0,12� ,探究 HH (XX ) 与 PP 1 的关系,并说明理由; (3)若 PP 1=PP 2=12nn−1 ,PP kk+1=2PP kk (kk =2,3,⋯,nn ) ,求此时的信息熵 HH (XX ) .2024年新高考改革适应性练习(3)(九省联考题型)数学参考答案一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 答案 A B D A D D B C二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.具体得分如【附】评分表.)题号91011答案BC ABD BCD【附】评分表三、填空题(本题共3小题,每小题5分,共15分.)题号121314答案132023×2024+4×2024(或 2027×2024)3+3√10四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)以点AA1为坐标原点,AA1BB1���������⃗为xx轴正方向,AA1DD1����������⃗为yy轴正方向,AA1AA�������⃗为zz轴正方向,建立空间直角坐标系OOxxyyzz,并令正方体AABBAADD−AA1BB1AA1DD1的棱长为1.(1)则AA1(0,0,0),AA(1,−1,1),AA1AA�������⃗=(1,−1,1);AA(0,0,1),DD1(0,−1,0),AADD1�������⃗=(0,−1,−1).所以AADD1�������⃗·AA1AA�������⃗=0+1+(−1)=0 ,即AADD1�������⃗⊥AA1AA�������⃗.故AADD1⊥AA1AA得证.(2)BB(1,0,1),AA1BB�������⃗=(1,0,1),由(1)得AA1AA�������⃗=(1,−1,1),设平面AA1BBAA的一个法向量nn11=(xx1,yy1,zz1),则nn11·AA1BB�������⃗=nn11·AA1AA�������⃗=0 ,即�xx1+zz1=0xx1−yy1+zz1=0令xx1=1 ,则�yy1=0zz1=−1,所以nn11=(1,0,−1)是平面AA1BBAA的一个法向量.同理可求得平面AA1AADD的一个法向量nn22=(0,1,1),cos<nn11,nn22>=nn11·nn22|nn11|·|nn22|=−12又 <nn11,nn22>∈(0,ππ),所以 <nn11,nn22>=2ππ3,即平面AA1BBAA与平面AA1AADD的所成角为2ππ3.故二面角BB−AA1AA−DD的大小为2ππ3.16.(15分)(1)ff(xx)=aaxx4+bbxx3+ccxx2+ddxx,ff′(xx)=aaxx3+bbxx2+ccxx+dd,由题意,原点是ff(xx)的一个极值点,即ff′(0)=0 ,代入得dd=0 ,所以ff(xx)=aaxx4+bbxx3+ccxx2=xx2(aaxx2+bbxx+cc),ff′(xx)=aaxx3+bbxx2+ccxx=xx(aaxx2+bbxx+cc),所以ff(xx)和ff′(xx)的零点(0除外)都是方程aaxx2+bbxx+cc=0 的根,即ff(xx)和ff′(xx)有共同零点,故ff(xx)的所有零点也是其所有极值点.(2)设ff(xx)的四个零点分别为mm−3 ,mm−1 ,mm+1 ,mm+3 ,则可以设ff(xx)=kk(xx−mm+3)(xx−mm+1)(xx−mm−1)(xx−mm−3)其中kk≠0 ,令tt=xx−mm,则ff(xx)=kk(tt+3)(tt+1)(tt−1)(tt−3)=kk(tt4−10tt+9)=gg(tt)gg′(tt)=kk(4tt3−20tt)=4kk(tt3−5tt)令gg′(tt)=0 得tt1=−√5 ,tt=0 ,tt=√5 ,所以 ff ′(xx )=0 的所有根为 xx 1=mm −√5 ,xx 2=mm ,xx 3=mm +√5 ,所以 ff ′(xx ) 的最大零点与最小零点之差为 |xx 3−xx 1|=2√5 .17.(15分)(1)因为点 SS (1,1) 在 AA 内,所以 1aa 2+1bb 2<1 ,即 aa 2+bb 2−aa 2bb 2<0 . 联立 ll 与 AA 的方程,得 bb 2(aa 2+bb 2)xx 2−2aa 2bb 4xx +aa 4bb 2(bb 2−1)=0 . 判别式 Δ=4aa 4bb 8−4aa 4bb 4(aa 2+bb 2)(bb 2−1)=4aa 4bb 4(aa 2+bb 2−aa 2bb 2)<0 ,故该二次方程无解,即 ll 与 AA 交点个数为0.(2)可选择命题②或命题③(命题①无法证伪),证明其为假命题. 记点 PP ,MM ,NN 的横坐标分别为 xx PP ,xx MM ,xx NN ,不妨设 PP ,MM ,SS ,NN 顺次排列.选择命题②的证明:当直线 MMNN 的斜率不存在时,MMNN :xx =1 ,分别与 ll ,AA 的方程联立可得 PP �1,bb 2−bb 2aa 2� ,MM �1,bb�1−1aa 2�,NN �1,−bb�1−1aa 2� . 若 |PPMM |,|PPSS |,|PPNN | 依次成等差数列,则 bb�1−1aa 2+�−bb�1−1aa 2�=2 ,显然矛盾,不满足题意.当直线 MMNN 的斜率存在时,设其斜率为 kk ,则 MMNN :yy =kk (xx −1)+1 ,与 ll 的方程联立可得 xx PP =aa 2�bb 2+kk−1�aa 2kk+bb 2;与 AA 的方程联立,得 (aa 2kk 2+bb 2)xx 2−2aa 2kk (kk −1)xx +aa 2[(kk −1)2−bb 2]=0 ,由韦达定理⎩⎨⎧xx MM +xx NN =2aa 2kk (kk −1)aa 2kk 2+bb 2xx MM xx NN =aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2则 2|PPSS |−(|PPMM |+|PPNN |)=√1+kk 2(2|xx PP −1|−|xx MM −xx PP |−|xx NN −xx PP |) . 不妨设 xx PP >1 ,则 xx PP >xx MM >1>xx NN , 所以原式=�1+kk 2[2(xx PP −1)−(xx PP −xx MM )−(xx PP −xx NN )]=�1+kk 2(xx MM +xx NN −2)=�1+kk 2⋅−2aa 2kk −2bb 2aa 2kk 2+bb 2<0因此 |PPMM |,|PPSS |,|PPNN | 不能成等差数列,从而②是假命题.选择命题③的证明:当直线 MMNN 的斜率不存在时,MMNN :xx =1 ,分别与 ll ,AA 的方程联立可得 PP �1,bb 2−bb 2aa 2� ,MM �1,bb�1−1aa 2�,NN �1,−bb�1−1aa 2�. 若|PPMM |,|PPSS |,|PPNN |成等比数列,则��bb 2−bb 2aa 2�−bb �1−1aa 2�×��bb 2−bb 2aa 2�+bb �1−1aa 2�=��bb 2−bb 2aa2�−1�2即 aa 2+aa 2bb 2−bb 2=0 ,但 aa 2bb 2>aa 2+bb 2 ,因此 aa 2+aa 2bb 2−bb 2>2aa 2>0 ,矛盾,不满足题意.当直线 MMNN 的斜率存在时,设其斜率为 kk ,则 MMNN :yy =kk (xx −1)+1 ,与 ll 的方程联立可得 xx PP =aa 2�bb 2+kk−1�aa 2kk+bb 2;与 AA 的方程联立,得 (aa 2kk 2+bb 2)xx 2−2aa 2kk (kk −1)xx +aa 2[(kk −1)2−bb 2]=0 ,由韦达定理,⎩⎨⎧xx MM +xx NN =2aa 2kk (kk −1)aa 2kk 2+bb 2xx MM xx NN =aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2则|PPSS |2−|PPMM |⋅|PPNN |=�1+kk 2[(xx PP −1)2−(xx PP −xx MM )(xx PP −xx NN )] =�1+kk 2[(xx MM +xx NN −2)xx PP +1−xx MM xx NN ]=�1+kk 2��2aa 2kk (kk −1)aa 2kk 2+bb 2−1�⋅aa 2(bb 2+kk −1)aa 2kk +bb 2+1−aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2�=√1+kk 2aa 2kk 2+bb 2(aa 2+bb 2−aa 2bb 2)<0 因此 |PPMM |,|PPSS |,|PPNN | 不能成等比数列,故③是假命题.18.(17分)(1)由题意,对于单选题,小周每个单选题做对的概率为 14 , 对于多选题,小周每个多选题做对的概率为 12,设小周做对单选题的个数为 XX 1 ,做对多选题的个数为 XX 2 , 则XX 1∼BB �8,1�,XX 2∼BB �3,1� ,所以EE(XX1)=8×14=2 ,EE(XX1)=3×12=32,而小周选择题最终得分为XX=5XX1+3XX2,所以EE(XX)=5EE(XX1)+3EE(XX2)=5×2+3×32=292.(2)由题意他能判断一个选项正确,先把这个正确选项选上,如果他不继续选其他选项肯定能得三分,如果他继续选其它选项的话,设此时他的最终得分为XX3,则XX3的所有可能取值为0,6,则XX3的分布列为:XX30 6PP(XX3)1−pp0pp0那么这个题的得分期望是EE(XX3)=0×(1−pp0)+6pp0=6pp0,�pp0≥13�所以我们只需要比较3和 6pp0的大小关系即可,令 6pp0≥3,解得12≤pp0<1 ,此时四个多选题全部选两个选项得分要高,反之,若13≤pp0<12,此时四个多选只选他确定的那个选项得分最高.19.(17分)(1)若nn=1 ,则ii=1 ,PP1=1 ,因此HH(xx)=−(1×log21)=0 .(2)HH(XX)与PP1正相关,理由如下:当nn=2 时,PP1∈�0,12�,HH(xx)=−PP1log2PP1−(1−PP1)log2(1−PP1)令ff(tt)=−tt log2tt−(1−tt)log2(1−tt),其中tt∈�0,12�,则ff′(tt)=−log2tt+log2(1−tt)=log2�1tt−1�>0所以函数ff(tt)在�0,12�上单调递增,所以HH(xx)与PP1正相关.(3)因为PP1=PP2=12nn−1,PP kk+1=2PP kk(kk=2,3,⋯,nn),所以PP kk =PP 2⋅2kk−2=2kk−22nn−1=12nn−kk+1 (kk =2,3,⋯,nn ) 故PP kk log 2PP kk =12nn−kk+1log 212nn−kk+1=−nn −kk +12nn−kk+1而PP 1log 2PP 1=12nn−1log 212nn−1=−nn −12nn−1于是HH (XX )=nn −12nn−1+�PP kk log 2PP kk nnkk=2=nn −12nn−1+nn −12nn−1+nn −22nn−2+⋯+222+12整理得HH (XX )=nn −12nn−1−nn 2nn +nn 2nn +nn −12nn−1+nn −22nn−2+⋯+222+12 令SS nn =12+222+323+⋯+nn −12nn−1+nn2nn 则12SS nn =122+223+324+⋯+nn −12nn +nn 2nn+1 两式相减得12SS nn =12+122+123+⋯+12nn −nn 2nn+1=1−nn +22nn+1 因此 SS nn =2−nn+22nn, 所以 HH (XX )=nn−12nn−1−nn 2nn+SS nn =nn−12nn−1−nn 2nn+2−nn+22nn=2−12nn−2.。
2024届高三新高考改革数学适应性练习(九省联考题型)数学卷及答案

2024届高三新高考改革数学适应性练习(九省联考题型)数学试题卷注意事项:1.本卷共4页,四大题19小题,满分150分,答题时间120分钟;2.答题时须在答题卡上填涂所选答案(选择题),或用黑色字迹的签字笔规范书写答案与步骤(非选择题),答在本试题卷上或草稿纸上的答案均属无效;3.考试结束时,考生须一并上交本试题卷,答题卡与草稿纸。
一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校高三年级一名学生一学年以来七次月考物理成绩(满分100分)依次为84,78,82,84,86,89,96,则这名学生七次月考物理成绩的第70百分位数为( ) A .86 B .84 C .96 D .895.在数列{}n a 中,已知132n n n a a ++=⋅,则{}n a 的前10项的和为( ) A .1023 B .1024 C .2046 D .20476.瑞士数学家欧拉在《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,这7.已知函数()e ln x f x x x x a =−−−,若()f x 在(0,e)存在零点,则实数a 值可以是( )腰三角形.将长方体1111ABCD A B C D −的上底面1111D C B A 绕着其中心旋转45°得到如图2所示的十面体ABCD EFGH −.已二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.) 9.已知函数()22sin cos 2sin f x x x x =−,给出下列四个选项,正确的有( ).10.已知圆22:16O x y +=,点(,)P a b 在圆O 外,以线段OP 为直径作圆M ,与圆O 相交于,A B 两点,则 ( ) A .直线,PA PB 均与圆O 相切B .若5,4a b ==−,则直线AB 的方程为54160x y −−=C .当4PA PB ==时,点M 在圆228x y +=上运动D .当3PA PB ==时,点P 在圆225x y +=上运动11.e 是自然对数的底数,m ∈R ,0n >,已知e ln ln m m n n n m +>+,则下列结论一定正确的是( ) A .若0m >,则0m n −> B .若0m >,1n >,则e 0m n −> C .若0m <,则ln 0m n +< D .若0m <,则e 2m n +> 三、填空题(本题共3小题,每小题5分,共15分.)12.已知集合{}{}1,0,1,0,1,2A B =−=,则A B ∪= .13.如图所示,在等腰直角三角形ABC 中,∠C 为直角,BC =2,EF ∥BC ,沿EF 把面AEF 折起,使面AEF ⊥面EFBC ,当四棱锥A -CBFE 的体积最大时,EF 的长为 .四、解答题(本题共小题,共分.解答应写出文字说明,证明过程或演算步骤.)参考答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省自贡市2024学年新高考选考适应性考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,P 是上底面1111D C B A 上的动点.给出以下四个结论中,正确的个数是( )①与点D 距离为3的点P 形成一条曲线,则该曲线的长度是2π; ②若//DP 面1ACB ,则DP 与面11ACC A 所成角的正切值取值范围是6,23⎡⎤⎢⎥⎣⎦; ③若3DP =,则DP 在该四棱柱六个面上的正投影长度之和的最大值为62.A .0B .1C .2D .32.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=3.如图,ABC 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥B ADC '-,分别记B A ',B D '与平面ADC 所成角为α,β,则α,β的大小关系是( )A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β>4.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S5.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线C 的一条渐近线的倾斜角为3π,且点F 到该渐近线的距离为3,则双曲线C 的实轴的长为 A .1 B .2 C .4D .8556.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .147.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( ) A .4B .6C .8D .108.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是( )A .从2000年至2016年,该地区环境基础设施投资额逐年增加;B .2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C .2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D .为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>10.若复数z 满足1z =,则z i -(其中i 为虚数单位)的最大值为( ) A .1B .2C .3D .411.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为254,则AF BF =( ) A .2或12B .3或13C .4或14D .5或1512.若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20B .15C .10D .25二、填空题:本题共4小题,每小题5分,共20分。
13.函数ln 1()x f x x-=的极大值为______. 14.已知二项式的展开式中的常数项为,则__________.15.某学习小组有4名男生和3名女生.若从中随机选出2名同学代表该小组参加知识竞赛,则选出的2名同学中恰好1名男生1名女生的概率为___________.16.已知圆22 : 4O x y +=,直线l 与圆O 交于P Q ,两点,()2,2A ,若2240AP AQ +=,则弦PQ 的长度的最大值为___________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列{}n a 的前n 项和为n S ,且点(),n n S ()*n N ∈在函数122x y +=-的图像上;(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:10b =,1n n n b b a ++=,求{}n b 的通项公式;(3)在第(2)问的条件下,若对于任意的*n N ∈,不等式1n n b b λ+<恒成立,求实数λ的取值范围;18.(12分)已知椭圆:E 22221x y a b +=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.19.(12分)已知函数()()2xf x x e ax =-+.(Ⅰ)已知2x =是()f x 的一个极值点,求曲线()f x 在()()0,0f 处的切线方程 (Ⅱ)讨论关于x 的方程()()ln f x a x a R =∈根的个数.20.(12分)在Rt ABC ∆中,90ABC ∠=,1tan 2ACB ∠=.已知E F ,分别是BC AC ,的中点.将CEF ∆沿EF 折起,使C 到C '的位置且二面角C EF B '--的大小是60°,连接C B C A '',,如图:(1)证明:平面AFC '⊥平面ABC '(2)求平面AFC '与平面BEC '所成二面角的大小.21.(12分)若养殖场每个月生猪的死亡率不超过1%,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示: 月份1月 2月 3月 4月 5月 6月 7月 8月 月养殖量/千只3 3 4 5 6 7 9 10 12 月利润/十万元 3.6 4.1 4.4 5.2 6.2 7.5 7.9 9.1 生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率; (2)根据1月到8月的数据,求出月利润y (十万元)关于月养殖量x (千只)的线性回归方程(精确到0.001). (3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程ˆˆˆya bx =+中斜率和截距用最小二乘法估计计算公式如下:1221ˆni ii nii x ynx yb xnx ==-=-∑∑,ˆˆay bx =-参考数据:88211460,379.5ii i i i xx y ====∑∑.22.(10分)已知命题p :x R ∀∈,20x x m -+>;命题q :函数()ln 2mf x x x =-无零点. (1)若q ⌝为假,求实数m 的取值范围;(2)若p q ∧为假,p q ∨为真,求实数m 的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C 【解题分析】①与点D 的点P 形成以1D 为圆心,的14圆弧MN ,利用弧长公式,可得结论;②当P 在1A (或1)C 时,DP 与面11ACC A 所成角1DA O ∠(或1)DC O ∠最小,当P 在1O 时,DP 与面11ACC A 所成角1DO O ∠最大,可得正切值取值范围是;③设(P x ,y ,1),则2213x y ++=,即222x y +=,可得DP 在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【题目详解】 如图:①错误, 因为1D P ===,与点D P 形成以1D 为圆心,的14圆弧MN ,长度为1242⋅=π; ②正确,因为面11//A DC 面1ACB ,所以点P 必须在面对角线11A C 上运动,当P 在1A (或1C )时,DP 与面11ACC A所成角1DA O ∠(或1DC O ∠)的正切值为3最小(O 为下底面面对角线的交点),当P 在1O 时,DP 与面11ACC A所成角1DO O ∠最大,所以正切值取值范围是3⎣;③正确,设(),,1P x y ,则2213x y ++=,即222x y +=,DP 在前后、左右、上下面上的正投影长分别为21y +,21x +,22x y +,所以六个面上的正投影长度之()2222112112222622y x y x ⎛⎫+++++++≤+= ⎪ ⎪⎝⎭,当且仅当P 在1O 时取等号. 故选:C .【题目点拨】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题. 2.C 【解题分析】判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项. 【题目详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为33y x =±或3y x =.A 选项渐近线为33y x =±,B 选项渐近线为3y x =,C 选项渐近线为12y x =±,D 选项渐近线为3y x =.所以双曲线C 的方程不可能为221312y x -=.故选:C 【题目点拨】本小题主要考查双曲线的渐近线方程,属于基础题. 3.A 【解题分析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【题目详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'. 设1CD =,则有2BD AD ==,1DE =,3BE =,∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''=='', sin 3sin βαα∴=>,βα∴>; 3]OB '∈,∴1sin [0,]2α∈;2sin 22sin cos 2sin 1sin αααα==-, 221[3,2]sin α-,∴sin 23sin sin ααβ=,2αβ∴.综上可得,2αβα<. 故选:A . 【题目点拨】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 4.C 【解题分析】设公差为d ,则由题意可得()()113479a d a d +=+,解得1451a d =-,可得1(554)51n n a a -=.令 554051n-<,可得 当14n ≥时,0n a >,当13n ≤时,0n a <,由此可得数列{}n a 前n 项和()*n S n N ∈中最小的.【题目详解】解:等差数列{}n a 中,已知51037a a =,且10a <,设公差为d , 则()()113479a d a d +=+,解得 1451a d =-, 11(554)(1)51n n a a a n d -∴=+-=.令554051n -<,可得545n >,故当14n ≥时,0n a >,当13n ≤时,0n a <, 故数列{}n a 前n 项和()*n S n N ∈中最小的是13S.故选:C. 【题目点拨】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题. 5.B 【解题分析】双曲线C 的渐近线方程为by x a =±,由题可知tan 3b a π==设点(c,0)F ,则点F 到直线y ==,解得2c =,所以222222344c a b a a a =+=+==,解得1a =,所以双曲线C 的实轴的长为22a =,故选B . 6.A 【解题分析】基本事件总数4520n =⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率. 【题目详解】解:从四个阴数和五个阳数中分别随机选取1个数, 基本事件总数4520n =⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p ==. 故选:A . 【题目点拨】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.7.C 【解题分析】画出函数sin y x =π和12(1)y x =--的图像,sin y x =π和12(1)y x =--均关于点()1,0中心对称,计算得到答案.【题目详解】2(1)sin 10x x π-+=,验证知1x =不成立,故1sin 2(1)x x π=--,画出函数sin y x =π和12(1)y x =--的图像,易知:sin y x =π和12(1)y x =--均关于点()1,0中心对称,图像共有8个交点,故所有解之和等于428⨯=. 故选:C .【题目点拨】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点()1,0中心对称是解题的关键. 8.D 【解题分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项. 【题目详解】对于A 选项,由图像可知,投资额逐年增加是正确的.对于B 选项,20002004-投资总额为1119253537127++++=亿元,小于2012年的148亿元,故描述正确.2004年的投资额为37亿,翻两翻得到374148⨯=,故描述正确.对于D 选项,令10t =代入回归直线方程得9917.510274+⨯=亿元,故D 选项描述不正确.所以本题选D.【题目点拨】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题. 9.A 【解题分析】根据偶函数的性质和单调性即可判断. 【题目详解】解:对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-()f x 在(),0x ∈-∞上递增因为定义在R 上的偶函数()f x 所以()f x 在()0,x ∈+∞上递减 又因为221log log 626=>,1ln 2π<<,1201e -<< 所以b a c >> 故选:A 【题目点拨】考查偶函数的性质以及单调性的应用,基础题. 10.B 【解题分析】根据复数的几何意义可知复数z 对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定z i -,即可得z i -的最大值. 【题目详解】由1z =知,复数z 对应的点在以原点为圆心,1为半径的圆上,z i -表示复数z 对应的点与点()0,1间的距离,又复数z 对应的点所在圆的圆心到()0,1的距离为1, 所以max 112z i -=+=. 故选:B 【题目点拨】本题考查了复数模的定义及其几何意义应用,属于基础题. 11.C 【解题分析】先根据弦长求出直线的斜率,再利用抛物线定义可求出,AF BF . 【题目详解】设直线的倾斜角为θ,则222425cos cos 4p AB θθ===, 所以216cos 25θ=,2219tan 1cos 16θθ=-=,即3tan 4θ=±, 所以直线l 的方程为314y x =±+.当直线l 的方程为314y x =+,联立24314x yy x ⎧=⎪⎨=+⎪⎩,解得11x =-和24x =,所以()40401AF BF -==--; 同理,当直线l 的方程为314y x =-+.14AF BF =,综上,4AF BF =或14.选C. 【题目点拨】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义. 12.C 【解题分析】通过二项式展开式的通项分析得到22666150C a x x =,即得解.【题目详解】 由已知得()62123166()rrrr r rr a T C x C a x x --+⎛⎫== ⎪⎝⎭, 故当2r时,1236r -=,于是有226663150T C a x x ==,则210a =. 故选:C 【题目点拨】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。