工科数学分析(1)(Mathematical
大连理工大学《工科数学分析基础》第一章复习.docx

第一章复习X.1函数的极限及其连续性概念:省略 注意事项1. 无界变量与无穷大的区别:无穷大量一定是无界变量,但无界变量不一定是无穷大量,例如,y = f(x) = xsinx 是无界变量,但不是无穷大量。
因为取TT JTx = x lt = 2n7r + ^-时,/(兀)= 2/r +彳,当斤充分大时,/(£)可以大于一预2 2先给定的正数M ;取x = x n = 2/?TF 时,兀)=02. 记住常用的等价形式当X —> 0时,sinx 〜兀, arcsinx 〜匕 tanx 〜兀, arctan x 〜九1 ? 丄 1ln(l + x)〜兀, "一1 ~ x, 1 — cos x ~ — , (1 + x)n~1 — x2 n例1当XT0时,下列函数哪一个是其他三个的高阶无穷小(A) x 2o (2) 1 -cosxo (3) sinx- tanx (4) ln(l + x 2) o ()解:因为1—COSX 〜丄皿1 +兀2)〜兀2,所以选择CX 2Hr V e -COSX练习hrn -------------XT °lncosx3. 若函数的表达式中包含有a + 4b (或奶+丽),则在运算前通常要在分子分母乘以其共轨根式a-4b (或丽-丽),反之亦然,然后再做有关分析运算解lim e -cosxIn cosx " —1 + 1 —cosx=lim -------------------- go ln[l + (cosx-l)]lim ——— go ln[l +(cosx-l)] + limXT O1 - cos%ln[l + (cosx-l)]lim 9JTXT() COS X — 1 + lim 1-cosxXT° cos 无一 1例2 求lim sin( Jn匚Flzr)。
HT8.2 2 r sin - 因为limsin 土上= lim 「^ = l,所以原极限=—JVT8 X 2-V —>oo Z解 lim sin(7^2 + l^r) = lim sin[(V^2 +1 一 町兀 + n7r]=lim(-l)" sin(V^2+ 1”—»87t+1 +当 n t oo 时,sin-------- / c ----------- > 0,(料 Too) 又 |(_1)” =1,故limsinCVn^+l^^O” T8练习 求lim[Jl + 2 + ・・・ + 〃—Jl + 2 + ・・・ + (/? — l)]解原式=lim"T8n(n +1) n(n-l)""2 V ~2-r 1 2n V2 —■— • —「 --------- ------ 「 -——"T8 ^2 Jn(n + T) + J M (/?_1)24.大—>8该极限的特点:l (i )r 型未定式1(2)括号屮1后的变量(包括符号)与幕互为倒数解题方法(1) 若极限呈广型,但第二个特点不具备,则通常凑指数墓使(2)成立(2) 凡是广型未定式,其结果:底必定是幺,幕可这样确定: 设 limw (x ) = 0 , limv (x ) = oo ,则lim(l ± u(x))v(x)= lime v(x),n(,±w(x)) = e limv(x),n(1±M<x)) limv(^)(±w(x)J _ ±Iim V (X )H (X )e — c这是因为 ln(l ± u{xy)〜±%(x) o例3求lim XT8 1 . 1Ycos —+ sin —X X丿 解原式=lim X —>81 . 1}cos —+ sin —x x(2卡 =lim 1 + sin — XT8lim 夕=0XT一 8x.2单调有界原理单调有界数列必有极限此类问题的解题程序:(1)直接对通项进行分析或用数学归纳法验证数列{暫}单调有 界;(2)设{兀}的极限存在,记为\xmx n =l 代入给定的兀的表达式中,则该式变为/的代 数方程,解之即得该数列的极限。
工程数学实验

工程数学实验报告成绩:2015—2016—2学期学部:班级:姓名:学号:电话:Ⅰ展示图形之美篇要求:涉及到的文字用中文宋体五号字,Mathematica程序中的字体用Times New Roamn。
【数学实验一】题目:利用Mathematica制作如下图形(1),,其中k的取值为自己学号的后三位。
(2),其中k的取值为自己学号的后三位。
Mathematica程序:(1)ParametricPlot[{423Sin[t],423Sin[2t]},{t,0,2Pi}](2)x=Sin[u]Cos[423v]y=Sin[u]Cos[v]z=Cos[u]ParametricPlot3D[{Sin[u]Cos[423v],Sin[u]Cos[v],Cos[u]},{u,0,Pi},{v,0,2Pi}]运行结果:【数学实验二】题目:请用Mathematica制作五个形态各异三维立体图形,图形函数自选,也可以由几个函数构成更美观、更复杂的图形;并用简短的语言说明选择该图形的理由和意义.Mathematica程序:x[u_,v_]:=Sin[u]Cos[v];y[u_,v_]:=Sin[u]Sin[v];z[u_,v_]:=Cos[u];ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,—Pi/12,Pi/12Pi},{v,0,4Pi},Boxed—〉False,BoxRatios{1,1,1}]运行结果:图片像一个窝窝头,粮食是人类的生存之本Mathematica程序:ParametricPlot3D[{r,Exp[—r^2Cos[4r]^2]*Cos[t],Exp[—r^2Cos[4r]^2]Sin[t]},{r,-1.2,1.2},{t,0,2Pi}]运行结果:图片像一块奶糖Mathematica程序:ContourPlot3D[(2x^2+y^2+z^2-1)^3-(x^2z^3)/10—y^2*z^30,{x,—1。
工科数学分析期中考试试题及答案

第1页 (共5页)一、 填空题:填空题:1. 33()ln(1sin )arcsin ()f x x x =++在0x =处的导数(0)f ′= ;22.2. 2lim (100)x x x x →−∞++= ;50−3. 设(2)!!n n n a n n = ,则 1lim n n n a a +→∞= ;4e4. )1ln()(2x x f +=,已知000()()4lim 5h f x h f x h h →+−−=, =0x 5212±=5. 设2()sgn ,()1f x x g x x ==+,则[()]g f x = ,0lim [()]x g f x →= ;20[()]10x g f x x ≠⎧=⎨=⎩ 0lim [()]2x g f x →=6.若11()lim1x tt xx f x t −→−⎛⎞=⎜⎟−⎝⎠,则()f x 的连续区间为 .11()x f x e−= 连续区间为1x ≠二、 填空题:填空题:1.当0x →时,下列函数中,哪一个是其它三个的高阶无穷小( (C ) ) (A ) 1000x ; (B )1cos x − ; (C )4ln(1)x − (D )arctan x2.若曲线2y x ax b =++和321y xy =−+在点(1,1)−处相切,其中a ,b 是常数,则( (D ) )(A )0, 2a b ==−; (B )1, 3a b ==−; (C )3, 1a b =−=; (D )1, 1a b =−=−3. 设函数21sin ,0,()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,则正确的结果是( )(C) (A)f 在[0,1]上不一致连续;(B)f 在0x =处可导,处可导,0x =是'()f x 的连续点;(C)'()f x 在(,)−∞+∞上有界,0x =是'()f x 的第二类间断点;(D)因为0lim'()x f x →不存在,所以'(0)f 不存在4. 下列命题中正确的一个是(下列命题中正确的一个是( (D ) )(A )设s 是数集E 的上确界,则s 必是数集E 中最大的数;中最大的数;(B )若有界数列{}n a 中有一个子列收敛,则{}n a 必是收敛的数列;必是收敛的数列;(C )数列{}n a 有唯一的极限点,则{}n a 必是收敛的数列;必是收敛的数列;(D )设数列{}n a 单调递增,{}n b 单调递减,且n n a b ≤,n N +∈,则对,m n N +∀∈, n m a b ≤成立.三、 计算题三、 计算题1.()()23tan sin lim 1tan 111xx xx x →−+−+− .02tan sin lim 11tan 32x x x x x →−=⋅333001sin (1cos )26lim 6lim 3cos x x x x x x x x →→−===⋅2. 若2ln y x x =, 求()()n y x . 3()(2)22ln (2ln 1)2ln 3(1)(3)!(2ln 3)2n n n n y x x x x x y x n yx x −−−′=+=+′′=+−−=+=3.设 ()()()x f t y tf t f t =⎧⎨=−⎩,其中()f t ′′存在,且()f t ′不为零, 求22dxy d .(1)()()()dy t f t f t dx f t ′−+=′ 22(1)()()(1)()()()()d y d t f t f t d t f t f t dtdx dx f t dt f t dx′′−+−+==⋅′′ 232()()()()f t f t f t f t ′′′−=′4.求函数11()tan ()()xxe e xf x x e e +=−在区间[-π, π]内的间断点,并判断其类型.并判断其类型.间断点:0x =,1x =,2x π=±11110()tan ()tan (00)lim 1,(00)lim 1()()xxx x xxe e xe e xf f x e e x e e ++→→+++==−==−−−1111()tan lim ()lim ,()xx xxe e xf x x e e →→+==∞−1122()tan lim ()lim .()x x x x e e xf x x e e ππ→±→±+==∞−5.确定,a b 的值,使函数21cos ,0,0,0,()ln(),0ax x xx f x b x x x −⎧<⎪==⎨⎪+⎪>⎩在(,)−∞+∞内处处可导,并求它的导函数.并求它的导函数.因20ln()(00)lim (0)0x b x f f x +→++===,所以,20lim ln()0x b x +→+=,则1b = 22222sin 1cos ,0,()2ln(1)1,0ax ax ax x x f x x x x x x −+⎧<⎪⎪⎪′=⎨⎪−+⎪+>⎪⎩222200ln(1)1cos 1(0)lim 1(0)lim 2x x x ax f f a x x +−+−→→+−′′==== 由(0)(0)f f +−′′=,2a =± (0)1f ′=四、 证明题四、 证明题1.设可导函数()f x 对任意实数12,x x 恒有121221()()()x x f x x e f x e f x +=+,且(0)2f ′=,证明:()()2xf x f x e ′=+.00120(00)(0)(0)(0)0x x f e f e f f ==⇒+=+⇒= 12,x x x x ==∆⇒()()()()()[()(0)](1)()x x xx f x x f x e f x e f x f x e f x f e f x x x x∆∆+∆−∆+−∆−+−==∆∆∆ 00()()()()()()lim lim x x x x f x x f x e f x e f x f x f x x x∆∆→∆→+∆−∆+−′==∆∆ 0[()(0)](1)()lim (0)()x x x x e f x f e f x e f f x x∆∆→∆−+−′==+∆2.根据柯西收敛原理,叙述{}na 发散的充要条件,并应用它证明数列111123n a n ααα=++++ 当1α≤时发散. {}n a 发散000,,,n n p n N p N a a εε+++⇔∃>∀∈∃∈∂−>= 1111(1)()1n n p pa a n n p n n p n p αα+−=++≥++≥+++++∵011,,,22n n p n N p n aa ε++∴∃=∀∈∃=−>={}n a 发散000,,,n m n N m N a a εε++⇔∃>∀∈∃∈∂−>=3.设数列{}n x 满足条件10x >,121(2),(1,2,...)3n nn a x x n x +=+=,其中0a >为常数,证明lim n n x →+∞存在,并求出极限值.3121(2),(1,2,...){}3n n n n a x x a n x x +=+≥=∴∵有下界又 131(2)1,(1,2,...)3n n nx a n x x +=+≤=∵ 1,(1,2,...)n n x x n +∴≤=故lim n n x →+∞存在。
工科数学分析基础

6/27
微元的求法
记Q( x)为分布在区间[a, x] ( x ∈[a,b])的量Q,则
∫ Q( x) =
x
f (t)dt
( x ∈[a,b]),
a
dQ = f ( x)dx
ΔQ = dQ + o(dx)
求微元dQ, 就是寻求与 dx成线性关系的 Adx , 且使
ΔQ − Adx = o(dx).
2010-11-22
16/27
特别 , 当考虑连续曲线段 y = f ( x) (a ≤ x ≤ b)绕 x 轴
轴旋转一周围成 π[ f ( x)]2 dx a
当考虑连续曲线段
yy oo aa x bb xx
x = ϕ( y) (c ≤ y ≤ d )
5
x
dw = π ⋅ 32 ⋅ dx ⋅ 9.8 ⋅ x = 88.2π x ⋅ dx,
w
=
∫ 5 88.2π 0
⋅ x ⋅ dx
≈
3462
(千焦).
定积分的应用
2010-11-22
20/27
例 2 一个横放着的圆柱形水桶,桶内盛有半桶水,设桶的底
半径为 R,水的比重为γ ,计算桶的一端面上所受的压力.
3
定积分的应用
2010-11-22
8/27
实际问题中,如何求得非均匀连续分布量的微分?
(1)针对所给问题,分析非均匀产生的原因,它往往是 由于某一相关量 f 变动所引起的。
(2)确定如何将其局部量均匀化从而可以利用乘法得到 此局部量的线性形式的近似值.
通常是通过对 f 以不变代变来得到。
这样得到的近似值往往就是所需要的微分,而不必也 难以逐一加以验证.
《数学分析123》教学大纲

《数学分析1/2/3》教学大纲一、课程基本信息中文名称:数学分析1/2/3英文名称:Mathematical Analysis 1/2/3课程编码:06101/2/3B课程类别:学科基础课总学时:252(理论208,实践44)总学分:14适用专业:数学与应用数学专业先修课程:中学数学课程开课系部:应用数学系二、课程的性质与任务数学分析是数学与应用数学专业的一门重要的基础课。
它不仅是培养学生用数学的思想认识问题、分析并解决问题的重要入门课程,也是后继课程——微分方程、复变函数、微分几何、实变函数、泛函分析、概率论与数理统计等的基础。
本课程的基本内容有极限理论、一元微积分学、多元微积分学和级数理论,分三学期学习,总学时252学时,总学分14学分(第一学期12周,每周6学时,4学分,第二学期15周,每周6学时,5学分,第三学期15周,每周6学时,5学分)。
通过本课程的学习,学生能够正确理解数学分析的基本概念,掌握基本定理、基本原理、基本方法;正确理解实数理论、极限理论、一元函数微积分、无穷级数和多元微积分等方面的系统知识和基本原理以及它们之间的内在联系;深刻认识极限的思想和方法,弄清不变与变,有限与无限,特殊与一般,抽象与具体的内在关系;掌握数学分析中的论证方法和常用的分析技巧,具有运用数学分析的方法去观察问题、思考问题、分析问题和解决问题的能力,提高抽象思维和逻辑推理的专业素质;熟练掌握微积分学的基本运算方法和运算技巧,获得本课程所要求的分析、论证、计算等方面的能力;对中学数学中的有关内容有深刻的了解,以较高的观点分析和处理好这些内容;提高建立数学模型,并具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析和解决问题的能力,为进一步学习其它专业课程打下必要的基础,为创新能力的培养提供重要平台。
三、教学内容与教学要求第一部分函数、极限、连续这一部分的教学目标主要是 (1) 让学生系统掌握极限的基本思想和基本理论及计算技巧。
工科数学分析基础题集

工科数学分析题集一、选择题1. 下列关于函数极限的定义,正确的是()A. 对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 LB. 对于任意给定的正数ε,存在正数δ,当 |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 LC. 对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| ≤ε成立,则称函数 f(x) 在 x → x₀时的极限为 LD. 对于任意给定的正数ε,存在正数δ,当 |x - x₀| < δ时,|f(x) - L| ≤ε成立,则称函数 f(x) 在 x → x₀时的极限为 L 答案:A解析:函数极限的精确定义为:对于任意给定的正数ε,存在正数δ,当 0 < |x - x₀| < δ时,|f(x) - L| < ε成立,则称函数 f(x) 在 x → x₀时的极限为 L。
2. 关于无穷小量的描述,正确的是()A. 以零为极限的变量称为无穷小量B. 绝对值无限趋近于零的变量称为无穷小量C. 函数值无限趋近于零的变量称为无穷小量D. 当自变量趋于某个值时,函数值无限趋近于零的变量称为无穷小量答案:A解析:以零为极限的变量称为无穷小量。
3. 下列关于无穷大量的说法,错误的是()A. 绝对值无限增大的变量称为无穷大量B. 当自变量趋于某个值时,函数值的绝对值无限增大的变量称为无穷大量C. 无穷大量一定是无界变量D. 无界变量一定是无穷大量答案:D解析:无界变量不一定是无穷大量,但无穷大量一定是无界变量。
4. 对于函数极限的性质,下列说法不正确的是()A. 函数极限具有唯一性B. 函数极限具有局部有界性C. 函数极限具有局部保号性D. 函数极限具有可加性,即若 lim(x→x₀) f(x) 和 lim(x→x₀) g(x) 存在,则 lim(x→x₀) (f(x) + g(x)) = lim(x→x₀) f(x) + lim(x →x₀) g(x) 一定成立答案:D解析:函数极限具有唯一性、局部有界性、局部保号性。
工科数学分析习题

(B)若,则。由,故对,存在,当时有,即, 从而存在,当时有,即严格递减的, 故由可得,即
(C)若,令,利用(B)可证明。 (2)严格增,且,若,则 证明:(A)若,则, 令,即,故对,则存在使得当时 由得得(使用迭代)
即 两边除以,再同时减去得 故当时 又,则存在使得当时 对,取使得当时 故 (B)若,则。由,故对,存在,当时有,即 故严格增的,再由得,从而时,,从而由(A)得,故 (C)若,令,利用(B)可证明。 2设证明 (1) 证明 利用O.Stolz公式(2)只需令,,则 故。 或利用定义直接证明。 (2)利用O.Stolz公式可得,或均成立。但,不成立,例,故时 O.Stolz公式也不成立。 (3)见附录参考答案及提示。
16 设,且,则 证明:对,由知使得当时, 故对,取,当时,故 17.求极限 (1) (2) (3) (4)
习题1.1(B)
1 O.Stolz公式 (1)设,且严格减。若,则 证明:(A)若,对,则存在使得当时,即 从而当时 ······ 把上式不等式相加的 其对成立 又,故当时由得当时有 故对,取,当时有
,,欲使,只需,即。 故对,取当时有 故 (注意:若用夹逼法:) 2.证明:的充分必要条件是对,只有的有限多项不在 中。 证明:(必要性)若,则,, 时有,故至多有项在不在中。 (充分性)对,只有的有限多项不在中,不妨设不在 中项为,取(即取不在 中项脚标的最大者,故当时有,即。 4.证明若,则。反之不一定,举例说明。但若,则有
单调性:显然,设,则 求极限:设,由取极限得,解出
(3)见学习辅导“例25” (4), 解 有界性:
单调性:
,若,则,否则 求极限:设,由得,故。 15 试判断数列的敛散性: (1),其中; 解 欲使,只需
(非计算机类专业)计算机基础课程清单

(非计算机类专业)计算机基础课程清单
数学类课程名称
其它数学类课程
西南交通大学外国语学院大学英语限选课设置情况
思想政治理论课程中英文名称
一、马克思主义基本原理
课程英文名称:The Basic Principles of Marxism
课程计划学时:48学时
学分:3
二、毛泽东思想和中国特色社会主义理论体系概论
课程英文名称:Introduction to Mao Zedong Thought and Theories of Socialism with Chinese Characteristics 课程计划学时: 96
学分: 6
三、中国近现代史纲要
课程英文名称:Conspectus of Chinese Modern History
课程计划学时:32
学分:2
四、思想道德修养与法律基础
课程英文名称:Thought morals tutelage and legal foundation
课程计划学时:48
学分:3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工科数学分析(1)(Mathematical Analysis (1)for
Engineering)教学大纲
一.课程编号:040428
二.课程类型:必修课
课程学时:80学时/5学分
适用专业:强化班、本科各专业(不含信科专业,外语,法经等)
先修课程:初等数学
三.课程的性质与任务:
“工科数学分析”是高等教育教学计划中各类工科学生必修的一门重要的基础课。
“工科数学分析”通过系统地学习极限思想和方法,为学生学习后续课程和解决实际问题奠定坚实的数学基础;逐步培养学生抽象概括问题的能力、逻辑推理能力,创新思维能力、熟练的运算能力和自学能力,从而提高学生的数学素质,培养学生创造性地应用数学知识和技术来分析、解决实际问题的能力。
四.教学主要内容及学时分配
五.教学基本要求
(一)、映射、极限与连续
1.理解确界、映射、逆映射、复合映射等概念,掌握确界定理,了解实数理论。
2.理解函数、反函数、复合函数、初等函数等概念,了解函数的几种简单性质。
3.熟悉基本初等函数的性质及图形。
4.理解数列极限的定义,掌握收敛数列的性质、数列极限的运算法则和数列极限的存在准则,熟悉区间套定理和致密性定理。
5.理解函数极限的概念,掌握函数极限的性质,熟练掌握函数极限的四则运算法则。
6.理解函数极限存在准则,掌握两个重要极限,会利用其来求极限。
7.理解无穷小与无穷大的概念,掌握无穷小的性质、无穷小的比较,了解无穷小与无穷大的关系,掌握等价无穷小替换法。
8.理解函数连续的概念,掌握连续函数的性质、函数的间断点及其分类。
9.了解初等函数的连续性和闭区间上连续函数的性质。
(二)、一元函数微分学
1.理解导数和微分的概念,了解导数的几何意义,熟悉导数与连续的关系。
2.熟悉导数和微分的运算法则,掌握基本函数的导数和微分公式。
.
3.熟练掌握复合函数求导法则,掌握由隐函数和参数方程所确定的函数的
一、二阶导数的求法。
4.理解罗尔定理、拉格朗日定理、柯西定理和泰勒定理,熟练掌握利用罗必塔法则求函数极限的方法,熟悉函数的Taylor公式。
5.理解函数的极值概念,掌握利用函数导数判断函数的单调性和求函数极值的方法,会求函数的最值问题。
6.理解凸函数的概念及性质定理,熟悉函数图形凹凸性的判别方法。
(三)、一元函数的积分学
1.理解定积分和不定积分的概念与性质,熟悉不定积分的基本公式,掌握积分上限函数的导数,熟悉牛顿-莱布尼兹公式。
2.掌握不定积分和定积分的换元法、分部积分法,会求简单的有理函数的积分。
3.掌握定积分的微元法,并利用其计算一些几何量和物理量(如面积、特殊立体体积、曲线弧长、变力做功、水压力和引力等). 。
4.理解反常积分的概念,掌握无穷区间上积分与无界函数积分的审敛准则。
5.理解一阶微分方程的基本概念,掌握一阶变量分离方程、齐次方程、线性方程的通解的求法,熟悉可降阶的高阶微分方程的求法,掌握建立实际问题的微分方程数学模型的方法。
六.课程内容的重点和深广度要求
1、集合与实数完备性理论
2、极限概念与性质
3、连续与间断的概念
4、闭区间上连续函数的性质
5、导数的概念与性质
6、求导运算法则与方法
7、微分概念及应用
8、微分中值定理及应用
9、罗必达法则及应用
10、泰列公式及应用
11、函数性态的研究
12、定积分的概念及存在性
13、定积分的基本性质
14、微积分基本定理与公式
15、不定积分
16、积分运算方法
17、积分的应用(微元法)
18、简单微分方程及应用(数学建模问题)
七.对学生课外作业的要求
要求完成教材各章中的基本习题。
八.本课程与后续课程的关系
本课程有利于学生进行抽象思维、逻辑推理及问题求解及所有工科后继专业课程的学习,也有利于课程设计和毕业设计等实践环节的学习。
九.对学生能力培养的要求
掌握工科数学分析基础的基本理论,培养数学抽象思维、逻辑推理和问题求解的能力。
十.教材及主要参考书
[1] 王绵森,马知恩. 工科数学分析基础,高等教育出版社,1998。
[2] 复旦大学数学系. 数学分析. 高等教育出版社,1983;
[3] 刘玉链,傅沛仁.数学分析讲义. 高等教育出版社,1992.
[4] 郑维行等.实变函数与泛函分析概要(第一、二册.第二版).高等教育出版社,1992.
[5] 符丽珍,刘克轩等.高等数学典型题分析解集, 西北工业大学出版社,2000.
十一.教学方法和教学媒体的使用
使用电子教案演示和黑板书写相结合,提高讲课效率和讲课效果。
十二.学习方法与建议
本课程需要认真做好课前预习和课后复习,学好教材中的基本理论,理解典型例题的解决方法,特别是对解题思路的分析,逐步提高独立分析问题和解决问题的能力。