稠油热采技术讲解
分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种通过注入热能来降低稠油粘度和提高流动性的一种先进技术。
稠油是指黏度较高的原油,由于其粘度大,黏度构成了地面运输和注水开采的阻碍,从而限制了稠油的开采和利用。
而热力开采稠油技术能够通过向井底注入热能来降低稠油的粘度,提高其流动性,从而实现稠油的高效开采。
本文将分析热力开采稠油技术的原理、优势和应用,以期全面了解热力开采稠油技术的重要性和价值。
一、热力开采稠油技术的原理热力开采稠油技术的原理主要是通过向稠油层注入高温热能,使稠油层温度升高,从而降低稠油的粘度,提高其流动性,便于开采。
具体来说,热力开采稠油技术主要包括蒸汽吞吐法、电加热法和火热联合法等多种技术手段。
蒸汽吞吐法是指通过向稠油层注入高温高压蒸汽,使稠油层温度升高从而降低粘度,然后再通过压力差将稠油挤出地层。
电加热法是通过在井下采油管内布置电热线圈并通电,使稠油层温度升高从而改善稠油的流动性。
火热联合法则是将火热和蒸汽混合注入稠油层,通过燃烧产生的高温高压气体和蒸汽一起作用,提高地层温度从而改善稠油的流动性。
热力开采稠油技术相较于传统的采油技术具有许多优势。
热力开采稠油技术能够降低稠油的粘度,提高其流动性,从而大大提高了稠油的采收率。
热力开采稠油技术能够减轻井底压力,提高稠油开采的效率。
热力开采稠油技术能够降低能耗,减少环境污染,使稠油开采更加环保。
热力开采稠油技术还能够提高采油速度,加快稠油资源的开采和利用。
热力开采稠油技术在油田开采中具有广泛的应用前景。
在国内外许多重要的稠油资源地区,热力开采稠油技术已经成为一种成熟、稳定的采油技术。
加拿大的阿尔伯塔地区、委内瑞拉的奥里诺科油田等地区,都是热力开采稠油技术的典型应用区域。
热力开采稠油技术还在国内的塔里木盆地、大庆油田等地区得到了广泛应用,有望成为国内外稠油资源开发的主要技术手段。
稠油热采开发技术(ppt)

稠油资源分布
稠油资源主要分布在北美 的加拿大、中国、委内瑞 拉、俄罗斯等地。
稠油资源储量
全球稠油资源储量巨大, 但分布不均,主要集中在 加拿大的阿尔伯塔省和中 国的克拉玛依油田。
热采开发技术的定义与特点
热采开发技术定义
热采开发技术是一种利用热能将 稠油资源转化为可流动状态,然 后进行开采的技术。
热采开发技术特点
率的稠油开采方法。
原理
火烧油层法通过向油层注入空气 或氧气,并点燃油层中的轻质组 分,使燃烧反应持续进行。燃烧 过程中产生的高温高压气体推动
原油流向生产井。
适用范围
火烧油层法适用于粘度高、油层 厚度大、渗透率较高的稠油油藏。 该方法可以提高采收率,但开采 过程中需要严格控制火势和燃烧
条件。
热水驱法
投资回报低
由于技术难度和开采效率问题,稠油热采项目的 投资回报率较低。
市场风险
受国际油价波动的影响,稠油热采项目的经济效 益面临较大的市场风险。
环境挑战
排放控制
稠油热采过程中会产生大量的废气和废水,需要严格的排放控制 措施。
生态保护
稠油热采活动可能对周边生态环境造成一定的影响,需要采取生态 保护措施。
案例二:某油田的蒸汽驱项目
蒸汽驱是一种更为先进的稠油热 采技术,通过向油藏注入高温蒸 汽,将稠油驱赶到生产井,进一
步提高采收率。
某油田的蒸汽驱项目实施过程中, 通过优化注汽参数、改善井网布 置等方式,提高了蒸汽驱的开发
效果和经济性。
该项目的成功实施表明,蒸汽驱 技术适用于大规模稠油油藏的开 发,为类似油田的开发提供了有
其降粘并提高流动性。
采收和运输
通过采油树和采油管线将稠油 采出地面,并进行必要的处理
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种通过加热稠油使其降低黏度,以方便开采的方法。
稠油热采
工艺技术主要包括蒸汽吞吐、电加热、电阻加热、焦耳加热、微生物采油等。
本文将对稠
油热采工艺技术的应用及效果进行分析。
蒸汽吞吐工艺是稠油热采中使用最广泛的一种工艺。
蒸汽吞吐工艺通过注入高温高压
蒸汽到井筒中,使稠油受热而降低黏度,从而使其能够被抽采。
蒸汽吞吐工艺具有成本低、采油效果好的特点,适用于具有一定温度的稠油油层。
经过实践证明,蒸汽吞吐工艺可以
使稠油的采收率提高20%以上。
电加热工艺是一种通过电流加热稠油的方法。
在电加热工艺中,通过在地下注入电极
并通电,产生高温从而加热稠油。
电加热工艺适用于具有低温稠油油层,其优点是可以局
部加热,提高采收率。
电加热工艺的成本较高,需要大量的电力供应,因此在实际应用中
受到一定的限制。
微生物采油是一种通过微生物的作用来改变稠油性质以方便开采的方法。
微生物采油
工艺主要通过注入特定的微生物群体,改变原油中的组分和性质,从而降低黏度,提高可
采性。
微生物采油工艺具有环境友好、低成本的特点,但目前仍处于实验室研究阶段。
稠油热采工艺技术应用广泛且效果显著,可以提高稠油开采的可行性和效率。
不同的
工艺技术适用于不同类型的油层,因此在实际应用中需要根据具体情况选择最合适的工艺
技术。
未来,随着技术的不断发展,稠油热采工艺技术将会进一步完善,为稠油资源的开
采提供更多的选择和可能。
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采工艺技术是针对原油中高粘度、高密度以及高黏度等特性而发展出来的油田开采技术,在石油工业中具有广泛的应用。
本文将对稠油热采工艺技术的应用及其效果进行详细分析。
1.热采工艺热采工艺是稠油热采工艺技术的核心部分。
该技术利用地下蒸汽及热水将胶体状高粘度油膜分解成较小的油滴,从而减少流体阻力,降低运输能耗,提高油田开采效率。
常见的热采工艺有蒸汽吞吐采油法、电加热采油法、火烧油田法等。
2.注水采油工艺注水采油工艺是一种稀释油藏厚度、降低油藏渗透性、改善地下油井环境、提高压力的方法。
该工艺通过将固体或液体注入油藏来形成压力,从而推动稠油进入井底,降低粘度,提高产油率。
3.化学反应采油工艺化学反应采油工艺是利用化学物质促进原油分解、破乳和降粘度等过程来提高油田开采效率的一种工艺。
常见的化学反应采油工艺有聚合物水驱和碱驱。
稀油热采工艺技术还包括一些其它采油工艺,例如浸泡采油、气体驱动采油、压裂热采采油法等。
1.提高产油率从产油效果来看,稠油热采工艺技术在能够迅速提高油井产出能力方面表现突出。
在配合注水、GH等辅助措施下,其产油率可以提高2倍以上。
2.节省能源常规开采方式往往存在能源浪费的问题,而稠油热采工艺技术则可以有效利用地下能源,如地下蒸汽、热水等,达到节约能源的目的。
3.降低生产成本稠油热采工艺技术可以大大降低生产成本,促进稠油地区制造业的发展。
相对于传统采油方式,它减少了人力、物力、财力等方面的开支。
4.提高油矿总体盈利能力稠油热采工艺技术的有效应用可以提高油矿的总体盈利能力。
此外,在开发石油资源的同时,也可以促进当地经济的发展。
综上所述,稠油热采技术是目前石油工业中一种重要的开采方式。
其应用能够有效提高产油率、节省能源、降低生产成本,提高油矿总体盈利能力。
分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用一、热力开采稠油技术的原理和特点热力开采稠油技术是通过注入热能到稠油沉积层,降低油粘度,提高原油流动性,从而实现对稠油资源的有效开采。
常见的热力开采技术包括燃烧法、蒸汽吞吐法、电热法等。
1. 燃烧法燃烧法是通过在地下将天然气或其他燃料燃烧,产生高温高压的燃烧气体,使稠油沉积层受热而降低粘度,从而提高原油采收率。
这种方法需要考虑燃烧带、温度分布等因素,采取合理的燃烧控制措施,以避免地下岩石破裂和环境污染。
2. 蒸汽吞吐法蒸汽吞吐法是通过注入高温高压蒸汽到稠油沉积层,使得原油粘度降低,提高采收率。
这种方法主要应用于地表和近井筒地段,对油层温度、压力等参数要求严格,需要考虑地下岩石热传导、蒸汽分布等问题。
3. 电热法电热法是通过在油层中布设加热电缆或电极,利用电能转化为热能,提高原油流动性。
这种方法适用于稠油储量大、开采难度大的情况,并且对地下温度、电热能量传递等因素要求严格。
热力开采稠油技术的特点包括:能够有效提高稠油资源的采收率;可以改善油田开采技术条件,降低原油开采成本;具有较好的环境效益和社会效益。
1. 应用现状目前,热力开采稠油技术已经在全球范围内得到了广泛应用。
在加拿大、委内瑞拉等地,已经有大规模的稠油资源开采项目采用了热力开采技术,取得了较好的效果。
我国油田开采中也有一些热力开采稠油技术的应用案例,如在塔里木盆地、达里湖盆地等地,一些稠油沉积层已经开始采用燃烧法、蒸汽吞吐法等技术进行开采。
2. 发展趋势未来,热力开采稠油技术的发展将朝着以下方向发展:(1)技术综合应用热力开采稠油技术需要和水平井、压裂、水驱等其他现代油田开采技术相互配合,形成技术综合应用,提高热力开采的效率和可操作性。
(2)节能环保技术随着社会对能源节约和环保的要求越来越高,热力开采稠油技术需要向着节能、低碳、无排放的方向发展,减少对资源和环境的损害。
(3)新技术研发在燃烧法、蒸汽吞吐法、电热法等传统热力开采技术的基础上,需要不断开展新技术研发,如微波加热、纳米材料应用等,以提高稠油开采的技术水平。
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采是一种特殊的油田开采方式,针对在稠油油藏中,采油难度大、采油成本高的问题,通过高温高压等措施,提高稠油流动性,降低油藏粘度,从而增加采油效率,降低采油成本,实现对油田资源的有效开发利用。
本文将介绍稠油热采工艺技术的应用及效果分析。
1.地热采油地热采油是一种利用地下热能加热稠油,提高稠油流动性的采油方式。
采用地热采油技术,要选址在地热资源丰富、热储量大、地温高的区域开发,通过地下加热设备把高温蒸汽或者热水注入到油田井位,使稠油流动性提高,达到提高采油效率的目的。
同时,地热采油还可以减少能源消耗,降低碳排放,具有显著的环保效益。
2.蒸汽注入蒸汽注入是一种将高温高压蒸汽注入到油藏中,使油藏温度升高、压力增大的方法。
在高温高压的作用下,稠油的粘度降低,流动性增强,能够顺畅地流入油井中。
蒸汽注入技术具有注入量大、渗透能力强、采出量高、生产周期短等优点,对于稠油热采具有重要的应用价值。
3.电加热电加热技术是将电流直接作用于稠油中,通过油井中的电极产生的热量提高油藏温度,从而降低油层粘度,提高粘度低的油井采出率。
由于电能输入量大,作用范围广,电加热技术被广泛应用于大规模的稠油油田开发中。
稠油热采技术能够将深层次、稠黏度高的稠油采出,大大提高稠油油田的采油率。
例如,CNPC在塔里木油田应用稠油热采技术,采出的原油产量比传统采油技术提高了25%以上,有效释放了油田的潜力和能源资源。
2.降低采油成本稠油热采技术通常需要在油田内注入大量的高温高压水、蒸汽、电能等,这样做的目的是将深层稠油流动化,加快采出速度,降低采油成本。
稠油热采技术的应用,能够大大降低采油成本,提高企业的经济效益。
3.提高资源利用价值稠油往往被视为难以采集的能源资源,但是稠油热采技术的应用,可以将那些一度被认为是无法开采的资源变成国家和企业的宝贵财富。
眼下国内外的稠油资源大量存在,通过稠油热采技术的研究与应用,还可以打破能源稀缺的格局。
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种采用高温热媒注入井底,使稠油升温稀释,从而提高油井产
能的一种采油方法。
稠油热采工艺技术在国内外得到广泛应用,并取得了显著的效果。
稠油热采工艺技术的应用主要体现在以下几个方面:
1. 热媒选择:稠油热采中,热媒的选择至关重要。
常用的热媒有油品混合气、蒸汽
和燃烧气。
不同的热媒具有不同的特点,其选择应根据实际情况进行。
蒸汽可通过高温高
压水蒸气进行注入,使稠油升温稀释,提高流动性,并通过密封能力强、渗透性好的特点,迅速到达油层,提高稠油的采收率。
2. 注入方式:稠油热采中,注入方式包括水平井、斜井和垂直井等。
水平井注入方
式可以增加井底温度和井筒壁面积,提高热媒与稠油之间的接触面积,从而有效提高稠油
的采收率。
斜井注入方式利用重力效应,提高泵入油井的采油效果。
垂直井注入方式则通
过井底的孔隙和裂缝来实现热媒与稠油的接触,稠油热采效果比较稳定。
3. 采油效果分析:稠油热采工艺技术经过多年的应用和实践,已经取得了显著的效果。
热采后原油凝固度降低,粘度减小,流动性增加,提高了原油的采收率。
稠油热采还
可以减少管内结垢、梯度阻力和物质阻塞等问题,延长井眼的寿命,降低了采油的成本。
稠油热采工艺技术的应用对于提高稠油的采收率、降低采油成本具有重要意义。
在具
体的应用中还需要根据实际情况综合考虑各种因素,确定最佳的工艺参数。
稠油热采工艺
技术在应用过程中还需要注意环保和安全等问题,确保工艺的可持续发展。
稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术摘要:依据稠油油田的特点,采取加热的方式,降低稠油的粘度,提高油流的温度,满足稠油油藏开发的条件。
热力采油技术措施是针对稠油油藏的最佳开采技术措施,经过油田生产的实践研究,采取注蒸汽开采,蒸汽吞吐采油等方式,提高稠油油藏的采收率。
关键词:稠油热采;工艺技术;探讨前言稠油热采工艺技术的应用,解决稠油油藏开发的技术难题,达到稠油开采的技术要求。
稠油热采可以将热的流体注入到地层中,提高稠油的温度,降低了稠油的粘度,达到开采的条件。
也可以在油层内燃烧,形成一个燃烧带,而提高油层的温度,实现对稠油的开发。
为了满足油田生产节能降耗的技术要求,因此,稠油开采过程中,优先采取注入热流体的方式,达到预期的开采效率。
1稠油热采概述稠油具有高粘度和高凝固点,给油田开发带来一定的难度。
采取化学降粘开采技术措施,应用化学药剂的作用,降低了油流的粘度,同时也会导致油流的化学变化,影响到原油的品质,因此,在优选稠油开采技术措施时,选择最佳热采技术措施,进行蒸汽驱、蒸汽吞吐等采油方式,并不断研究热力采油配套技术措施,节约稠油开发的成本,才能达到预期的开采效率。
2稠油的基本特点2.1稠油中胶质与沥青含量比较高,轻质馏分含量少稠油含有比例极高的胶质组分及沥青,轻质馏分比较少,稠油的黏度和密度在其中胶质组分及沥青质的成分增长的同时也会随之增加。
由此可见,黏度高并且密度高是稠油比较突出的特征,稠油的密度越大,其黏度越高。
2.2稠油对温度非常敏感稠油的黏度随着温度的增长反而降低。
在ASTM黏度-温度坐标图上做出的黏度-温度曲线,大部分稠油油田的降黏曲线均显现出斜直线状,这也验证了稠油对温度敏感性的一致性。
2.3稠油中含蜡量低。
2.4同一油藏原油性质差异较大。
3稠油热采技术的现状针对稠油对温度极其敏感这一特征,热力采油成为当前稠油开采的主要开采体系。
热力采油能够提升油层的温度,稠油的黏度和流动阻力得到了降低,增加稠油的流动性,实现降黏效果,从而使稠油的采收率变高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注汽井井筒隔热效率分析
注汽井能量平衡示意图
井口注入热量 (压力1、温度1、干度1、流量)
井筒隔热
井筒散热 (地层温度)
井底注入热量 (压力2、温度2、干度2、流量)
注汽井井筒隔热效率分析
齐40试验区开发历程
齐40块蒸汽吞吐
• 1987年以200m正方形井网投入蒸汽吞吐开发 • 1990年确定莲Ⅰ、莲Ⅱ两套井网同井场布井 • 1991年6月加密至141m的井网 • 1994年7月中部地区又加密成100m井网 • 至1997年底,该块吞吐累积产油613104t,平均单井吞吐7.7个周期, 累积吞吐油汽比0.73,吞吐采出程度16.9%,吞吐开采取得了很好的 开采效果。
• 稠油热采数值模拟技术 – 井筒传热模拟:注汽井、生产井 – 油藏模拟:模型特点、主要参数
• 稠油热采模拟应用实例 – 辽河齐40汽驱系统热效率分析 – 新疆百重7热采技术对策
稠油热采主要机理
• 稠油粘温关系 – ASTM粘温坐标系 – 稠油粘度的温度敏感性 – 油水粘度比
• 汽驱残余油 – 汽驱残余油<0.15
1. 三次采油与EOR 2. IOR与EOR
ASR
钻加密井 聚合物驱 调剖、流体深部转向
开采可流动油
扩大波及体积
IOR
RI ED
EOR
热采 气混相驱
化学驱
蒸汽驱、注热水 火烧油层
CO2、烃 惰性气体
碱 表面活性剂 各种复合驱
开采不可 流动油 提高
驱油效率
稠油热采数值模拟技术
• 稠油热采主要机理 – 稠油粘温关系、汽驱残余油、水蒸汽热物性
T Kr(T-Tr)
T+dT
WHeat模拟结果
空心抽油杆开式循环
空心抽油杆闭式循环
稠油热采数值模拟模型
• 模拟对象 – 稠油油藏、热采开发 – 注蒸汽、注热水、注气体、注泡沫剂、火烧油藏
• 模型特点 – 多组分模型功能 – 能量守恒、传热、导热问题 • 顶底盖层散热、隔夹层吸热升温 – 热物性、水蒸汽特性 • 油藏比热、导热系数 • 稠油粘温关系 • 相渗数据随温度变化
– dT/dZ=ZDKl(T-Tl)+ZDKr(T-Tr) – ZD:方向系数
– Ki=l或r:当量传热系数,与热阻、流量有关 – 不考虑纵向导热
Ql Z
• 热物性变化 – 油水两相混合物性
Kl(T-Tl)
– 忽略相变影响 • 边界条件
Z+dZ
– 注入流体温度、地层温度、井底温度、循环深度等
920 27.4 0.48 30.0 2200 3127~4648 75 9.2 39.2
齐40试验区井组数据
• 4个70m井距的反九点井组 • 共有各类井27口,其中注汽井4口,生产井21口, 观察井2口 • 在1998年10月正式转入汽驱; • 试 验 井 组 的 含 油 面 积 为 0.172km2 , 地 质 储 量 127.0104t;
饱和水蒸汽温度、压力关系曲线
温度(℃)
400
气态(过热水蒸气)
350
300
250
液态(未饱和水)
200
临界温度374.1℃ 临界压力22.1MPa
150
100
饱和温度随压力上升而升高,5MPa以下温度升高较快, 5MPa饱和温度达到264℃,10MPa饱和温度为311℃。
50
0
0
5
10
15
20
25
• 从1998年1月--1998年10月,新老井陆续投入汽驱前的吞吐预热解堵 开 采 , 该 阶 段 试 验 区 共 注 汽 4.35104t , 产 油 2.53104t , 产 水 2.46104t,油汽比0.51,采出程度5.1%。 • 从1998年10月--2001年12月底,汽驱阶段注汽66.3104t(包括吞吐 引 效 注 汽 5.7104t ) , 产 液 55.3104t , 产 油 11.33104t , 综 合 含 水 80%,采注比0.83,油汽比0.17,阶段采出程度22.6%。
稠油热采数值模拟模型
• 模型特点 – 注汽井 • 注汽速度、注汽压力(温度)、注汽干度 • 干度>0时:根据饱和蒸汽压力,自动算出饱和温度 – 生产井 • 限产液、最小流压、最高含水、最高气油比
稠油热采数值模拟模型
• 井组模型的网格特点
– 单井径向坐标模型
– 直角坐标的对角网格、平行 网格
r
注汽井模拟SIWS
• 流动是气液两相流问题 – 连续方程、能量方程和动量方程 – 考虑流体流态:气泡、气弹、泡沫及 环状流
• 水泥环内采用稳态传热 – 传热与时间无关
• 在水泥环外为拟稳态传热 – 传热与连续注汽时间有关
• 从井口到井底迭代求解 – 考虑水蒸汽、隔热管的热物性
• 模拟计算 – 流体温度变化、压力变化、套管温度 变化、热量损失、隔热效果
20 000
10 000
5 000
3 000
2 000
1 000
D84-35-40
Qi40脱气油 Qi40含气油
1 000
500 400
500 400
300
300
200
200
150
150
100
100
动
75
75
50
50
力
40
40
30
30
粘
20
20
15
15
度
10 9.0
10 9.0
8.0
8.0
7.0
井系数修正
稠油热采数值模拟主要数据
• 地质模型 – 深度、油层厚度、净总比、孔渗饱
• 模型数据 – PVT、粘温曲线、相渗曲线、残余油与温度关系 – 压缩系数、导热系数(J/m.day.℃)、比热(J/m3.℃)
• 动态数据 – 井数据:完井井段 – 注汽数据:注汽速度、压力、温度、干度 – 生产数据:产油、含水、压力变化 – 热损失:地面、井筒
Z=0 Z=Z+Z
P1、l赋初值
计算物性、热阻、 热流及温度
判断流型 计算摩阻
解方程求P、
P-P1<P?
否
-1<?
是
是 Z<L?
否
输出结果
井筒温度模拟软件
SIWS模拟结果
Wheat流体循环图
空心抽油杆开式循环 空心抽油杆闭式循环
油套环空开式循环
热流体循环模拟WHeat
• 传热方程
• Multi Segment Wells
Segment node Grid cell
Segment
井边界条件
• 注汽井 – 注入速度,m3/d – 压力MPa、温度℃ • 根据饱和压力、干度,计算注入热量。 – 干度,小数
• 生产井条件 – 最大产液、产油、含水 – 最小流压
• 边界修正 – 网格修正:与流动方向有关 • *VAMOD key v ai aj ak – 井系数修正
• 水蒸汽热物性 – 饱和温度、饱和压力、干度、比容、热焓
KINEMATIC VISCOSITY CENTISTORES (mPa.s) KINEMATIC VISCOSITY CENTISTORES (mPa.s)
TEMPERATURE,DEGREES FAHRENHEIT(F)
20 000 000 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 340 360 380 400 420 440
7.0
6.0
6.0
5.0
5.0
4.0
4.0
3.0
ASTM坐标图
3.0
2.0
2.0
1.75
1.75
1.50
1.50
1.25
1.25
1.00 0
1.00
20
40
60
80
100
120
140
160
180 200 220 240 260 280 300 320 340 360
0
TEMPERATURE,DEGREES CENTIGRADE(℃)
30
干度降30%
干度降20%
干度降10% 25
热焓变化(%)
20
15
10
0
2
3
4
5
6
7
8
压9 力(1M0Pa) 11
初始干度70%,4MPa时:干度下降40%,水蒸汽热焓变化30%; 干度下降10%,热焓变化7%。干度变化值与热损失值不同。
井筒温度模拟
• 井筒温度模拟软件WTSP – Wellbore Temperature Simulator Package – 注汽井模拟SIWS • Steam Injection Wellbore Simulator • 计算井筒温度、压力、干度、热损失 – 生产井热流体循环模拟WHeat • Wellbore Heating Simulator • 考虑产油、含水、地温变化、注入流体温度等 • 计算井筒温度变化 – 生产井电加热模拟EHeat • Electrical Heating Simulator • 考虑产油、含水、析蜡温度、加热功率线性变化等 • 计算产液温度及加热功率
Kro
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0
吞吐相渗曲线
Kro Kro2 Krw Krw2
0.2
0.4
0.6
0.8 So
Krw
0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1