2018届高考数学分类练习 第40练 数列中的易错题 含答案
高三数学-2018年高考数学试题知识分类汇编数列 精品

2018年高考数学试题汇编数列重庆文1在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( A ) A .2 B .3 C .4 D .8重庆理1若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A ) A .3 B .4 C .5 D .6安徽文3等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B ) A .12 B .10 C .8 D .6辽宁文5设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B ) A .63 B .45 C .36 D .27福建文2等比数列{}n a 中,44a =,则26a a ⋅等于( C ) A.4 B.8 C.16 D.32福建理2数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( B )A .1B .56C .16D .130广东理5已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B ) A .9 B .8 C. 7 D .6湖北理5已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( C ) A .0 B .1 C .p qD .11p q --湖南文4在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( B ) A .4122- B .2122- C .10122- D .11122-湖北理8已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是( D ) A .2 B .3 C .4 D .5湖南理10设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( B ) A .10 B .11 C .12 D .13辽宁理4设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27宁夏文6已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B ) A.3 B.2 C.1 D.2-宁夏理4已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( D )A.23- B.13- C.13 D.23陕西文5等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( C ) A .12 B .18 C .24 D .42四川文7等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( B )A .9B .10C .11D .12上海文14数列{}n a 中,22211100010012n n n a n n n n ⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( B ) A.等于0 B.等于1 C.等于0或1 D.不存在陕西理5各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( C ) A .80 B .30 C .26 D .16天津理8设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( B ) A.2 B.4 C.6 D.8重庆理14设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842=+x x 的两根,则=+20072006a a _____.18天津理13设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= .3全国2文14已知数列的通项52n a n =-+,则其前n 项和n S = .(51)2n n +-全国1理15等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .13宁夏文16已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = .12江西理14已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .4江西文14已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.7广东文13已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = . 2n-10 ; 8北京理10若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第项.211n -3北京文10若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为.211n -重庆理21已知各项均为正数的数列{n a }的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++= (1)求{n a }的通项公式;(2)设数列{n b }满足1)12(=-n b n a ,并记n T 为{n b }的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+(Ⅰ)解:由)2)(1(611111++==a a S a ,解得a 1=1或a 1=2,由假设a 1=S 1>1,因此a 1=2。
高优指导2018高三数学(浙江)参考练习考点规范练40直线、平面垂直的判定及其性质含解析

考点规范练40直线、平面垂直的判定及其性质考点规范练第48页基础巩固组1.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是().A。
若α⊥β,α∩β=n,m⊥n,则m⊥αB。
若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD。
若m∥α,n∥β,m⊥n,则α⊥β答案:C解析:与α,β两垂直平面的交线垂直的直线m,可与α平行或相交,故A错;对B,存在n∥α的情况,故B错;对D,存在α∥β的情况,故D错;由n⊥α,n⊥β,可知α∥β,又m⊥β,所以m⊥α,故C正确。
2.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是().A。
平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案:C解析:因为AB=CB,且E是AC的中点,所以BE⊥AC.同理有DE⊥AC,于是AC⊥平面BDE。
因为AC在平面ABC内,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.3。
设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()。
A.不存在B。
有1对C.有2对D.有无数对答案:D解析:过直线a的平面α有无数个,当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α,当平面α与b相交时,过交点作平面α的垂线与b确定的平面β⊥α。
故选D.4。
(2015浙江高考)如图,已知△ABC,D是AB的中点,沿直线CD 将△ACD翻折成△A’CD,所成二面角A’-CD-B的平面角为α,则()。
A.∠A’DB≤αB.∠A'DB≥αC.∠A'CB≤αD。
∠A'CB≥α答案:B解析:设∠ADC=θ,设AB=2,则由题意AD=BD=1。
在空间图形中,设A'B=t。
2018年高考压轴题之数列含答案

2.与数列有关的压轴小题1.设等差数列{a n }的前n 项和为S n ,S m -1=13,S m =0,S m +1=-15,其中m ∈N *且m ≥2,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和的最大值为( )A.24143B.1143C.2413D.6132.(2017·保定模拟)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -6,x ≤10,a x -9,x >10,若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A.(1,3) B.(1,2] C.(2,3) D.⎣⎡⎭⎫2411,33.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099B.101100C.100101D.991004.(2017·安徽淮北一中四模)已知等差数列{a n }的公差d >0,且a 2,a 5-1,a 10成等比数列,若a 1=5,S n 为数列{a n }的前n 项和,则2S n +n +32a n +1的最小值为( )A.3 3B.27C.203D.1735.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4aa n -1的最小值为( )A.276B.358C.143D.3786.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A.310 B.212 C.180 D.1217.抛物线x 2=12y 在第一象限内图象上的一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( ) A.21 B.32 C.42 D.648.(2017届天津六校联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝⎛⎭⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( ) A.λ>23 B.λ>32 C.λ<32 D.λ<239.(2017届湖南省岳阳市质量检测)执行如图所示的程序框图,则输出s 的值为( )A.1B.2 0182 019C.2 0182 017D.2 0162 01710.已知[)x 表示大于x 的最小整数,例如[)3=4,[)-1.3=-1,下列命题中正确的是( ) ①函数f (x )=[)x -x 的值域是(]0,1;②若{a n }是等差数列,则{}[)a n 也是等差数列; ③若{a n }是等比数列,则{}[)a n 也是等比数列; ④若x ∈(1,2 014),则方程[)x -x =12有2 013个根.A.②④B.③④C.①③D.①④11.数列{a n }的前n 项和为S n =n 2-6n ,则a 2=________;数列{}||a n 的前10项和||a 1+||a 2+…+||a 10=________.12.(2016届长春外国语学校质量检测)已知数列{a n }为等比数列,且a 2 013+a 2 015=ʃ204-x 2d x ,则a 2 014(a 2 012+2a 2 014+a 2 016)的值为______.13.(2017·辽宁庄河月考)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3,数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,则M 的最小值为__________.14.设S n ,T n 分别为等差数列{a n },{b n }的前n 项和,且S n T n =3n +24n +5.设点A 是直线BC 外一点,点P 是直线BC 上一点,且AP →=a 1+a 4b 3·AB →+λ·AC →,则实数λ的值为________.2.与数列有关的压轴小题1.设等差数列{a n }的前n 项和为S n ,S m -1=13,S m =0,S m +1=-15,其中m ∈N *且m ≥2,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和的最大值为( )A.24143B.1143C.2413D.613 答案 D解析 由题意可得a m =S m -S m -1=-13,a m +1=S m +1-S m =-15,d =a m +1-a m =-2, 由S m =ma 1+m (m -1)d 2=0可得a 1-m =-1,又a m =a 1+(m -1)d =-13,可得a 1-2m =-15,a 1=13,m =14,a n =15-2n , 故T n =1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎣⎡⎦⎤⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1 =-12⎝⎛⎭⎫113-113-2n =-126+12(13-2n ),可知当n =6时,T n 取得最大值613.2.(2017·保定模拟)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -6,x ≤10,a x -9,x >10,若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A.(1,3) B.(1,2] C.(2,3) D.⎣⎡⎭⎫2411,3 答案 C解析 因为{a n }是递增数列, 所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×10-6<a 11-9,解得2<a <3,故选C.3.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099B.101100C.100101D.99100 答案 C解析 由题意,得a 2n +1=2a n a n +1+14-a 2n, 所以a 2n +1a 2n +2a n a n +1+1=4a 2n +1,(a n +1a n +1)2=4a 2n +1,所以a n +1a n +1=2a n +1,即a n +1=12-a n ,由a 1=12,得a 2=23,a 3=34,…,a n =n n +1,所以a n n 2=1n (n +1)=1n -1n +1,a 1+a 222+a 332+…+a 1001002=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1100-1101=100101. 4.(2017·安徽淮北一中四模)已知等差数列{a n }的公差d >0,且a 2,a 5-1,a 10成等比数列,若a 1=5,S n 为数列{a n }的前n 项和,则2S n +n +32a n +1的最小值为( )A.3 3B.27C.203D.173答案 C解析 由于a 2,a 5-1,a 10成等比数列,所以(a 5-1)2=a 2·a 10,(a 1+4d -1)2=(a 1+d )·(a 1+9d ),解得d =3,所以2S n +n +32a n +1=3n 2+8n +323n +3=13⎣⎡⎦⎤3(n +1)+27n +1+2≥203,当且仅当n =2时“=”成立.5.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4aa n -1的最小值为( )A.276B.358C.143D.378 答案 D解析 由题意可得a 2-4=2a -8或a 2-4+2a -8=2×⎝⎛⎭⎫-a +82,解得a =1或a =-4.当a =1时,f (x )=x 2+9x -10,数列{a n }不是等差数列; 当a =-4时,f (x )=x 2+4x ,S n =f (n )=n 2+4n , ∴a 1=5,a 2=7,a n =5+(7-5)(n -1)=2n +3,∴S n -4a a n -1=n 2+4n +162n +2=12×(n +1)2+2(n +1)+13n +1=12×⎣⎡⎦⎤(n +1)+13n +1+2≥12⎝ ⎛⎭⎪⎫2(n +1)×13n +1+2=13+1, 当且仅当n +1=13n +1,即n =13-1时取等号,∵n 为正整数,故当n =3时原式取最小值378,故选D.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A.310 B.212 C.180 D.121 答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3, 因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1, S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎫1+212n -12≤121. 7.抛物线x 2=12y 在第一象限内图象上的一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( ) A.21 B.32 C.42 D.64 答案 C解析 抛物线x 2=12y 可化为y =2x 2,y ′=4x 在点(a i ,2a 2i 处的切线方程为y -2a 2i =4a i (x -a i ),所以切线与x 轴交点的横坐标为a i +1=12a i ,所以数列{a 2k }是以a 2=32为首项,14为公比的等比数列,所以a 2+a 4+a 6=32+8+2=42,故选C.8.(2017届天津六校联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝⎛⎭⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( ) A.λ>23 B.λ>32 C.λ<32 D.λ<23答案 D解析 ∵a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝⎛⎭⎫1a n +1⇒1a n +1=⎝⎛⎭⎫1a 1+1·2n -1=2n, ∴b n +1=(n -2λ)·2n ,∵数列{b n }是单调递增数列,∴当n ≥2时,b n +1>b n ⇒(n -2λ)·2n >(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23,故选D.9.(2017届湖南省岳阳市质量检测)执行如图所示的程序框图,则输出s 的值为( )A.1B.2 0182 019C.2 0182 017D.2 0162 017答案 D解析 第一次循环, n =1,s =24×12-1,第二次循环, n =2,s =24×12-1+24×22-1, 直至n =1 008, s =24×12-1+24×22-1+…+24×1 0082-1,结束循环,输出s =24×12-1+24×22-1+…+24×1 0082-1 =12×1-1-12×1+1+12×2-1-12×2+1+…+12×1 008-1-12×1 008+1=11-13+13+15+…+12 015-12 017=1-12 017=2 0162 017,故选D. 10.已知[)x 表示大于x 的最小整数,例如[)3=4,[)-1.3=-1,下列命题中正确的是( ) ①函数f (x )=[)x -x 的值域是(]0,1;②若{a n }是等差数列,则{}[)a n 也是等差数列; ③若{a n }是等比数列,则{}[)a n 也是等比数列; ④若x ∈(1,2 014),则方程[)x -x =12有2 013个根.A.②④B.③④C.①③D.①④答案 D解析 当x ∈Z 时, [)x =x +1,f (x )=[)x -x =x +1-x =1; 当x ∉Z 时,令x =n +a ,n ∈Z ,a ∈(0,1),则[)x =n +1,f (x )=[)x -x =1-a ∈(0,1),因此f (x )=[)x -x 的值域是(]0,1;0.9,1,1.1是等差数列,但[)0.9=1,[)1=2,[)1.1=2不成等差数列; 0.5,1,2是等比数列,但[)0.5=1,[)1=2,[)2=3不成等比数列;由前分析可得当x ∈Z 时, f (x )=1;当x ∉Z ,x =n +a ,n ∈Z ,a ∈(0,1)时, f (x )=1-a =1-(x -n )=n +1-x ,所以f (x +1)=f (x ) ,即f (x )=[)x -x 是周期为1的函数,由于x ∈(1,2)时f (x )=2-x =12,x =32,即一个周期内有一个根,所以若x ∈()1,2 014,则方程[)x -x =12有2 013个根. ①④正确,故选D.11.数列{a n }的前n 项和为S n =n 2-6n ,则a 2=________;数列{}||a n 的前10项和||a 1+||a 2+…+||a 10=________. 答案 -3 58解析 当n =1时,a 1=S 1=-5,当n ≥2时,a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7, ∴a 2=2×2-7=-3,∴|a 1|+|a 2|+…+|a 10|=5+3+1+1+3+…+13=9+1+132×7=9+49=58.12.(2016届长春外国语学校质量检测)已知数列{a n }为等比数列,且a 2 013+a 2 015=ʃ204-x 2d x ,则a 2 014(a 2 012+2a 2 014+a 2 016)的值为______. 答案 π2解析 因为ʃ204-x 2d x =π, 所以a 2 013+a 2 015=ʃ204-x 2d x =π,则a 2 014(a 2 012+2a 2 014+a 2 016)=a 2 014a 2 012+2a 22 014+a 2 014a 2 016=a 22 013+2a 2 013a 2 015+a 22 015=(a 2 013+a 2 015)2=π2.13.(2017·辽宁庄河月考)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,且满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3,数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和为T n ,若T n <M 对一切正整数n 都成立,则M 的最小值为__________. 答案 10解析 由已知可得⎩⎪⎨⎪⎧q +6+d =10,2d =2q ,解得d =q =2,所以a n =2n +1,b n =2n -1,则a n b n =2n +12n -1,故T n =3×120+5×121+7×122+…+(2n +1)×12n -1,由此可得12T n =3×121+5×122+7×123+…+(2n +1)×12n ,以上两式两边错位相减可得12T n =3+2⎝⎛⎭⎫121+122+123+…+12n -1-(2n +1)×12n =3+2-12n -2-2n +12n ,即T n =10-12n -3-2n +12n -1,故当n →+∞时, 12n -3→0,2n +12n -1→0,此时T n →10,所以M 的最小值为10.14.设S n ,T n 分别为等差数列{a n },{b n }的前n 项和,且S n T n =3n +24n +5.设点A 是直线BC 外一点,点P 是直线BC 上一点,且AP →=a 1+a 4b 3·AB →+λ·AC →,则实数λ的值为________.答案 -325解析 不妨取S n =3n 2+2n ,T n =4n 2+5n ,当n =1时,a 1=S 1=5,当n ≥2时, a n =S n -S n -1=6n -1,验证得n =1上式成立.综上,a n =6n -1, 同理可得b n =8n +1⇒a 1+a 4b 3=2825.AP →=AB →+BP →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →=2825AB →+λ·AC →⇒1-λ=2825,λ=-325.。
2018届高考数学(文)专题复习习题:第1部分 专题四 数列 1-4-1 含答案

限时规范训练十等差数列、等比数列限时45分钟,实际用时________分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.等差数列{an }的公差d≠0,a1=20,且a3,a7,a9成等比数列.Sn为{an}的前n项和,则S10的值为( )A.-110 B.-90 C.90 D.110解析:选D.依题意得a27=a3a9,即(a1+6d)2=(a1+2d)·(a1+8d),即(20+6d)2=(20+2d)(20+8d).因为d≠0,解得d=-2,故S10=10a1+10×92d=110,故选D.2.等差数列{an }的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=( )A.n(n+1) B.n(n-1)C.n n+12D.n n-12解析:选A.∵a2,a4,a8成等比数列,∴a24=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2,∴Sn =2n+n n-1 ·22=n(n+1),故选A.3.在各项均为正数的等比数列{an }中,若am+1·am-1=2am(m≥2),数列{an}的前n项积为Tn ,若T2m-1=512,则m的值为( )A.4 B.5 C.6 D.7解析:选B.由等比数列的性质可知am+1·am-1=a2m=2am(m≥2),所以am=2,即数列{an }为常数列,an=2,所以T2m-1=22m-1=512=29,即2m-1=9,所以m=5,故选B.4.设等差数列{an }的前n项和为Sn,若a2=-11,a5+a9=-2,则当Sn取最小值时,n=( )A.9 B.8C.7 D.6解析:选C.设等差数列{a n }的首项为a 1,公差为d , 由⎩⎨⎧ a 2=-11,a 5+a 9=-2,得⎩⎨⎧a 1+d =-11,2a 1+12d =-2,解得⎩⎨⎧a 1=-13,d =2.∴a n =-15+2n.由a n =-15+2n ≤0,解得n ≤152. 又n 为正整数,∴当S n 取最小值时,n =7.故选C.5.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( )A .1B .2C .4D .8 解析:选D.因为数列{a n }为等差数列,所以a 4+3a 8=(a 4+a 8)+2a 8=2a 6+2a 8=2(a 6+a 8)=2×2a 7,所以由a 4-2a 27+3a 8=0得4a 7-2a 27=0,又因为数列{a n }的各项均不为零,所以a 7=2,所以b 7=2,则b 2b 8b 11=b 6b 7b 8=(b 6b 8)b 7=(b 7)3=8,故选D.6.已知数列{a n }是各项均为正数的等比数列,且满足a 12+a 22=2a 1+2a 2,a 34+a 44=4a 3+4a 4,则a 1a 5=( ) A .24 2 B .8 C .8 2D .16解析:选C.设正项等比数列的公比为q ,q >0,则由a 12+a 22=2a 1+2a 2得a 1+a 22=2 a 1+a 2 a 1a 2,a 1a 2=4,同理由a 34+a 44=4a 3+4a 4得a 3a 4=16,则q 4=a 3a 4a 1a 2=4,q =2,a 1a 2=2a 21=4,a 21=22,所以a 1a 5=a 21q 4=82,故选C. 二、填空题(本题共3小题,每小题5分,共15分)7.已知数列{a n }为等差数列,其前n 项和为S n ,若S k -2=-4(k >2),S k =0,S k+2=8,则k =________.。
高三数学-2018年全国高考分类汇编(第三章数列) 精品

2018年全国高考分类汇编第三章 数列1.(2018年福建卷)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于A .40B .42C .43D .45 2.(2018年广东卷)已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是A .5B .4C . 3D .2解:3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C .3.(2018年广东卷)在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、……堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示) .解:=)3(f 10,6)2)(1()(++=n n n n f4.( 2018年重庆卷)在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为A .48B .54C .60D .66 5.(2018年全国卷II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612S S =A .310B .13C .18D .196.(2018年全国卷II )函数f (x )=∑i =119|x -n |的最小值为A .190B .171C .90D .45 7.(2018年天津卷)已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于 A .55 B .70 C .85 D .100 8.(2018年湖北卷)若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a ,则a =A .4B .2C .-2D .-4解:选D :依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩9.(2018年全国卷I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=A .120B .105C .90D .75解:12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=。
2018年高考数列专题复习精典版知识点大题分类选择题答案解析详解

WORD格式整理文科数列专题复习一、等差数列与等比数列1. 基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。
转化为“基本量”是解决问题的基本方法。
2. 等差数列与等比数列的联系1)若数列〔a n〕是等差数列,则数列{ a a n}是等比数列,公比为a d,其中a是常数,d是’a n,的公差。
(a>0且a z 1);2)若数列a n「是等比数列,且a n - 0,则数列log a a n,是等差数列,公差为log a q , 其中a是常数且a 0, a 1 , q是^a n,的公比。
3)若{ a n}既是等差数列又是等比数列,则{ a n}是非零常数数列。
4、典型例题分析【题型1】 等差数列与等比数列的联系例1 (文16)已知{a n }是公差不为零的等差数列,a i = 1,且a i , a 3, a 9成等比数列(I )求数列{a n }的通项;(H )求数列{2 an }的前n 项和S n .解:(1)由题设知公差d 工0,+1 2d 1 8d11 +2d故{a }的通项 a = 1+ ( n — 1) x 1 = n.nn(n )由(I )知2a m=2n ,由等比数列前 n 项和公式得2(1 2n) n+1=2 -2.1"2在①中令 n = 1,可得a 1= 8 = 24 —1,.••an = 24 n (n GN ).由题意知 b 1= 8,解得d = 1, d = 0 (舍去), 2 3S m =2+2 +2 + +2 =小结与拓展:数列 a n 」是等差数列,则数列 { a a n }是等比数列,公比为 a d ,其中a 是 常数,d 是'的公差。
(a>0且a 工1).【题型2】 与“前n 项和Sn 与通项nn已知数列{a }的前三项与数列{b }的前三项对应相同, 对任意的n GN *都成立,数列{b n + 1 — b n }是等差数列.例21a n= 8nan ”、常用求通项公式的结合1223 n且 a + 2a + 2 a + + 2 求数列{a n }与{b n }的通项公式。
2018届高三数学(文)二轮复习专题集训专题四 数列4.1 Word版含解析
级.(·全国卷Ⅲ)等差数列{}的首项为,公差不为.若,,成等比数列,则{}前项的和为( ).-.-..解析:由已知条件可得=,≠,由=可得(+)=(+)(+),解得=-.所以=×+=-.故选.答案:.设等差数列{}满足=,=,是数列{}的前项和,则使得>成立的最大的自然数是()....解析:由题可得{}的公差==-,=,所以=-+,可见{}是递减数列,且>>,+=,于是=·>,=·=,=·<,从而该题选.答案:.已知数列{},{}均为等差数列,其前项和分别为和,若=,则的值是( )..无法确定解析:等差数列的前项和=+,故可设=(+)·,=(+)·.∴=-=,=-=,∴=.答案:.已知等比数列{}的公比为,前项和为,若点(,)在函数=++的图象上,则=( )..-.-.解析:易知≠,==-=-+,又点(,)在函数=++的图象上,所以=++,所以=,(\\((-)=,,-((-()=,))得=-.答案:.已知等差数列{}的公差为,关于的不等式+≥的解集为[],则使数列{}的前项和最大的正整数的值是( )....解析:∵关于的不等式+≥的解集为[],∴是一元二次方程+=的两个实数根,且<,∴-=,=-.∴=+(-)=,可得=->,=<.∴使数列{}的前项和最大的正整数的值是.故选.答案:.已知数列{}满足+=++,且++=,则+++…+=.解析:因为数列{}满足+=++,故数列{}为等差数列,因为++=,所以=,解得=,+++…+====×=.答案:.已知数列{}的前项和为,满足+=(∈*),则通项公式=.解析:因为+=①,所以=,-+-=②,①-②可得--+=,即得=,所以数列{}是首项为,公比为的等比数列,则=×-=.答案:.设是等差数列{}的前项和,=,-=,则=.解析:依题意,,-,-,…,-依次成等差数列,设该等差数列的公差为.又=,-=,因此-==+(-)=+,解得=,因此=+=×+×=.答案:.已知数列{}的前项和为,且=-(∈*).()求数列{}的通项公式;()设=+,求{}的前项和.解析:()当≥时,=--=-,当=时,=-=,满足=-,∴数列{}的通项公式为=-(∈*).()由()得,=+=,则+-=-=,∴数列{}是首项为,公差=的等差数列,∴=+=..已知数列{}满足:+-=(∈*),前项和记为,=,=.()求数列{}的通项公式;()设数列{}满足=,+-=,求数列{}的通项公式.解析:()由已知数列{}为等差数列,公差为,则=×+=,解得=,所以数列{}的通项公式为=+.()由()得+-=+.当≥时,=(--)+(---)+…+(-)+,所以=-+-+…++=+=×+(≥).又=满足=×+,所以∀∈*,=×+.。
高考数学压轴专题(易错题)备战高考《数列》全集汇编附答案
高考数学《数列》课后练习一、选择题1.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.2.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.4.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.5.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.6.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.7.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知:()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.8.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( ) A .8 B .9C .8或9D .8.5【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】设等比数列{a n }的公比为q ,∵a n >0,∴q >0. ∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=. ∴a n =25611()2n -⨯=29﹣n .T n =28•27•……•29﹣n=28+7+…+9﹣n()217289[)89242222n n n ⎛⎤--- ⎥+-⎝⎦==.∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.9.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.10.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.11.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20C .20或-10D .-20或10【答案】B 【解析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q ∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用12.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.13.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r, 所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===.【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.14.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.15.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.16.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n+=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.17.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.18.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.19.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁【答案】C【解析】【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.故选C .【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.。
数列求和精选难题易错题含答案
上,。
y=2x+1 Sn,a1=t在直线,点1、数列{an}的前n项和记为(1)若数列{an}是等比数列,求实数t的值;(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn;的个数称为这个数列{cn}中,的整数所有满足0(3)设各项均不为的数列)的条件下,求数列的“积异号数”。
,在(2的”,令()时,有)由题意,当(1 解:)两式相减,得(即:是等比数列,要使时,当时是等比数列,,从而得出则只需的首项为2)由(1)得,等比数列,公比,(①可得②得,)知3()由(2,,数列递增,。
1的“积异号数”为数列时,,得当由.,满足.Sn 、已知数列{an}的前n项和为2 an;(Ⅰ)求数列{an}的通项公式满足,求n项和为Tn的最小值;(Ⅱ)令,且数列{bn}的前n(Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列?证明你的结论.解:,(Ⅰ)∵,∴,由是以∴数列为首项,为公比的等比数列,,又;∴,即(Ⅱ),∴,,即n的最小值为5;∴(Ⅲ)∵,,成等比数列,若,即,∴,由已知条件得,∴,∴上式可化为∴∵,,,∴.为奇数,为偶数,∴不可能成立,因此,不可能成等比数列.,∴3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15(1)求{an},{bn}的通项公式。
满足求数列{cn}(2)若数列{cn} 。
的前n项和Wnq 的公比为的公差为d,等比数列{bn} 设等差数列{an} ,得1+d+3q=8 ①a1=1∵,b1=3由a2+b2=8 (3+3d)=15 ②(T3-S3=15得3q2+q+1)-由∴消去d 得q2+4q-12=0 化简①②∴q=2或q=-6∵q>0∴q=2则d=1∴an=n bn=3·2n-1∴①⑵∵an=n时,②…当②得由①-∴cn=3n+3∴c1=7 又由⑴得n…项和∴{an}的前的前四项和是a1,a7。
(完整word)2018届高三年级数学二轮复习_数列专题与答案
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d .(2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1q n -1. (4)等比数列前n 项和公式: S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2).(7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n -m .(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练
目标
(1)数列知识的深化应用;(2)易错题目矫正练.
训练
题型
数列中的易错题.
解题
策略
(1)通过Sn求an,要对n=1时单独考虑;(2)等比数列求和公式
应用时要对q=1,q≠1讨论;(3)使用累加、累乘法及相消求和时,
要正确辨别剩余项,以免出错.
一、选择题
1.等差数列{an}的公差为d,前n项和为Sn,当首项a1和d变化时,a2+a
8
+a11是一个定值,则下列各数也为定值的是( )
A.S7 B.S8
C.S13 D.S15
2.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a
2
-a1)的值为( )
A.8 B.-8
C.±8 D.89 N*).若a8a7<-1,则( ) 6.已知数列{an}满足:an= 3-an-3,n≤7,an-6,n>7(n∈N*),且{an}是递增 10.(2016·辽宁五校联考)已知数列{an}满足an=1+2+3+„+nn,则数列 {1anan+1}的前n项和为________.
3.已知函数y=f(x),x∈R,数列{an}的通项公式是an=f(n),n∈N*,那
么“函数y=f(x)在[1,+∞)上递增”是“数列{an}是递增数列”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
4.(2017·抚州月考)设Sn为等差数列{an}的前n项和,(n+1)Sn
A.Sn的最大值是S8 B.Sn的最小值是S8
C.Sn的最大值是S7 D.Sn的最小值是S7
5.(2016·湖北黄冈中学等八校联考)已知实数等比数列{an}的前n项和为
Sn,则下列结论一定成立的是( )
A.若a3>0,则a2 013<0 B.若a4>0,则a2 014<0
C.若a3>0,则S2 013>0 D.若a4>0,则S2 014>0
数列,则实数a的取值范围是( )
A.(94,3) B.[94,3)
C.(1,3) D.(2,3)
7.(2016·江南十校联考)已知数列{an}的通项公式为an=log3nn+1(n∈N*),
则使Sn<-4成立的最小自然数n为( )
A.83 B.82
C.81 D.80
8.数列{an}满足a1=1,an+1=r·an+r(n∈N*,r∈R且r≠0),则“r=1”
是“数列{an}为等差数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题
9.若数列{an}的前n项和Sn=n2-2n-1,则数列{an}的通项公式为
________________.
11.已知数列{an}是递增数列,且对于任意的n∈N*,an=n2+λn恒成立,
则实数λ的取值范围是________.
12.在数列{an}中,a1=1,a2=2,数列{anan+1}是公比为q (q>0)的等比数
列,则数列{an}的前2n项和S2n=____________.