排列组合

合集下载

小学数学《排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)1、计算①4356C A -;②2265C A ÷。

解答:①4356C A -=5432⨯⨯⨯-654321⨯⨯⨯⨯=120-20=100。

②2265C A ÷5465321⨯=⨯÷=⨯ 2、某班要从30名同学中选出3名同学参加数学竞赛,有多少种选法?如果从30名同学中选出3名同学站成一排,又有多少种站法?解答: 参加竞赛的选法:330302928321C ⨯⨯⨯⨯==4060种 站成一排的站法:330A =30×29×28=24360种参加竞赛的选法有4060种,站成一排的站法有24360种3、7个不同的小球放入4个不同的盒子中,每个盒子只能放一个,一共有多少种情况? 解答:47A =7654⨯⨯⨯=840(种)一共有840种不同的情况。

4、7个相同的小球放入4个不同的盒子中,每个盒子至少放一个,一共有多少种情况? 解答:1+1+1+0=3,1+2+0+0=3,3+0+0+0=3,分三种情况①选出一个盒子,不再放入球,其他三个盒子再各放入一个:14C ;②选出两个盒子,分别再放入一个球,两个球:24A③选出一个盒子,再放入三个球:14C总的放法:14C +24A +14C =20(种)5、从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?解答:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2、4、6、8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55A 种方法。

再由分步计数原理求总的个数。

325545A 7200C C ⨯⨯=(个) 一共能组成7200个没有重复数字的五位数。

6、在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法? 解答:437657A C C ⨯⨯=765000(种)有765000种排法。

排列组合公式排列组合公式

排列组合公式排列组合公式

推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少
出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥
3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
排列组合公式排列组合公式
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
排列组合公式排列组合公式
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。

(2x13x25x3)6
x13x2 x32
(x1x2 xr)n
项,其中
n n1 1, nn 22, ,n r为 nrn非负 n1整 n2n 数 nrx1n1x2n2 xrnr
排列组合公式排列组合公式
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
排列组合公式排列组合公式
多边形
排列组合公式排列组合公式
例题
• 对角线的条数为C(10,2)-10=45-10=35 • 任选两条对角线,可能相交在多边形内部,可能
交点为多边形的顶点,可能无交点(交点在多边 形外) • 任选四个顶点,对应一个交点,每个对角线分成 两段 • 每个对角线是一段 • 35+C(10,4) × 2=455

数学排列组合几种

数学排列组合几种

概率论
在概率论中,排列常用于 计算事件的概率,特别是 当事件的顺序有关时。
计算机科学
在计算机科学中,排列常 用于算法设计和数据结构 ,如排序算法、哈希表等 。
02
CATALOGUE
组合
组合的定义
组合
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数, 叫做从n个不同元素中取出m个元素的组合数。
根据排列的定义,从n个不同元素中取出m个元素进行排列,可以看成是先从n 个元素中取出m个元素进行全排列,再从剩余的(n-m)个元素中取出0个元素进 行全排列,所以排列的个数为A(n,m) = n! / (n-m)!。
排列的应用场景
01
02
03
组合数学
排列是组合数学中的重要 概念之一,在组合计数、 组合优化等领域有广泛的 应用。
数学排列组合
contents
目录
• 排列 • 组合 • 排列与组合的区别与联系 • 排列组合的扩展概念 • 排列组合在实际生活中的应用
01
CATALOGUE
排列
排列的定义
排列的定义
从n个不同元素中取出m个元素( 0≤m≤n),按照一定的顺序排成一 列,称为从n个不同元素中取出m个元 素的排列。
有序排列组合
在有序排列组合中,元素的顺序是有意义的。例如,在3个不 同数字中选取2个数字,并按照一定的顺序排列,可以得到不 同的结果。
无序排列组合
在无序排列组合中,元素的顺序是没有意义的。例如,在3个 相同数字中选取2个数字,不论选取的顺序如何,结果都是相 同的。
重复排列组合
重复排列组合是指在选取元素时,可以重复使用同一个元素。例如,在5个数字 中选取3个数字,其中有一个数字可以重复使用,那么选取的方式有4种。

排列组合写法

排列组合写法

排列组合写法排列组合是数学中常用的概念,用于计算从一组元素中选择若干个元素形成不同排列或组合的方法数。

1. 排列(Permutation):从n个元素中选择r个元素,按照一定的顺序排列,计算排列的方法数。

常用符号为P(n, r)。

排列的计算公式为:P(n, r) = n! / (n - r)!其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1。

2. 组合(Combination):从n个元素中选择r个元素,不考虑顺序,计算组合的方法数。

常用符号为C(n, r)或者(n choose r)。

组合的计算公式为:C(n, r) = n! / (r! * (n - r)!)排列和组合的计算公式可以用来解决各种组合问题,例如排列组合问题、概率计算、组合拳计数等。

以下是一些排列组合的常见写法示例:Python示例代码:1. 计算排列的方法数:```pythonimport mathn = 5r = 3permutations = math.perm(n, r)print("Permutations:", permutations)```2. 计算组合的方法数:```pythonimport mathn = 5r = 3combinations = b(n, r)print("Combinations:", combinations)```注:以上示例代码使用了Python标准库中的math模块,其中的perm()函数用于计算排列,comb()函数用于计算组合。

请确保您的Python环境已经安装了相应的库。

当然,您也可以根据需要自行编写排列组合的计算函数或者使用其他编程语言实现排列组合的计算逻辑。

排列组合经典练习(带答案)

排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合总结(含答案)

排列组合总结(含答案)

1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。

排列组合的经典教案

排列组合的经典教案排列组合的经典教案作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。

如何把教案做到重点突出呢?下面是店铺收集整理的排列组合的经典教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

排列组合的经典教案篇1一、课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二、命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三、要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系= =n·(n-1)…(n-m+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm= = ;(3)组合数的性质①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。

排列组合应用举例

排列组合应用举例排列组合是数学中的一个重要概念,它在实际生活中有着广泛的应用。

通过排列组合的计算,我们可以解决很多实际问题,例如概率计算、密码学、组合优化等等。

本文将通过几个具体的例子来说明排列组合在实际生活中的应用。

1. 考试座位安排在学校考试中,为了避免作弊和公平公正地安排考试座位,通常需要进行合理的座位安排。

考虑一个班级有30名学生,需要在一间教室里安排座位。

假设教室有6行5列的座位,那么我们可以通过排列组合来计算共有多少种座位安排方案。

首先,我们需要从30名学生中选择6名学生来坐在第一行,这可以通过组合的方式计算,即C(30, 6)。

然后,从剩下的24名学生中选择5名学生坐在第二行,这可以通过C(24, 5)计算。

以此类推,我们可以计算出将所有30名学生安排到6行5列座位的方案数为:C(30, 6) * C(24, 5) * C(19, 5) * C(14, 5) * C(9, 5) * C(4, 5)这个数值就是可行的座位安排方案数,通过排列组合的计算,我们可以得知一间教室里可以有多少种不同的座位安排方式。

2. 电话号码的组合在电话号码的组合问题中,我们通常需要计算给定一组数字,有多少种不同的电话号码组合方式。

例如,假设电话号码由7个数字组成,每个数字取值范围是0-9。

为了方便理解,我们假设第一个数字不能为0。

那么,第一个数字有9种选择(1-9),第二个数字到第七个数字各有10种选择(0-9)。

因此,将所有数字组合起来的电话号码的组合方式数量为:9 * 10 * 10 * 10 * 10 * 10 * 10通过排列组合的计算,我们可以得到电话号码的组合方式数量,这对于电话号码的生成、处理以及电话号码的统计有着重要的意义。

3. 字符串的排列在计算机科学和密码学中,字符串的排列问题是一个常见的应用。

给定一个字符串,我们需要计算其所有可能的排列方式。

例如,对于字符串"ABC",其可能的排列方式有"ABC"、"ACB"、"BAC"、"BCA"、"CAB"和"CBA"。

高中数学-排列组合100题(附解答)

高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒ﻫ(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒(2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ﻫ(3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒ 4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒ 6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒ 7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:1(ﻫ)男女间隔而坐且夫妇相邻____________﹒ﻫ(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒ﻫ14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒ 15. 1012⎛⎫⎪ ⎪⎝⎭展开式中﹐各实数项和为____________﹒ 16. 有一数列n a 满足11a =且1213nn a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列)19. 从1到1000的自然数中﹐ﻫ(1)是5的倍数或7的倍数者共有____________个﹒ﻫ(2)不是5的倍数也不是7的倍数者共有____________个﹒ﻫ(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒ﻫ21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则ﻫ(1)50元硬币至少要1个的换法有____________种﹒ﻫ(2)不含1元硬币的换法有____________种﹒ 23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒ 26.若{}|,,110000S x x x =≤≤為正整數正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒ (4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒ 29. ()10222x x -+除以()31x -所得的余式为____________﹒30.ﻫ如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒33.()101kk x =-∑展开式中5x 的系数为____________﹒____种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒ 38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒ 39.如圖,有三組平行線,每組各有三條直線,則 (1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.ﻫ如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.ﻫ圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒ (2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒46. 2颗苹果﹐3颗番石榴﹐4颗菠萝﹐将9颗水果任意装入4个不同的箱子﹐水果全装完每个箱子至少装一颗水果有____________种方法﹒(同种水果视为同物)47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖(1)(2)(3)ﻫ7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()nx y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则ﻫ(1)四球恰为红﹑白二色的情形有几种?ﻫ(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖1(ﻫ) (2)15. 如图﹐由A 至B 走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖ﻫ16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ﻫ(2)设n 为自然数﹐且满足1231,2311n nn nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖ﻫ(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D )0A ⊂ (E){}1,2A ∈ (F ){}1,2A ⊂ (G){}∅⊂A ﹒23. ﻫ設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖(1)(2) ﻫ31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ﻫ(1)(2)33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转)(1)(2)(3)ﻫ34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:ﻫ(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35.从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36.将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒ﻫ(2)分装入3个相同的袋子﹐每袋装3本﹒ﻫ(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37.学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒40. 求240的正因子个数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A ﹐B ﹐C 三题﹒结果答对A 题者有15人﹐答对B 题者有19人﹐答对C 题者有20人﹐其中A ﹐B 两题都答对者有10人﹐B ﹐C 两题都答对者有12人﹐C ﹐A 两题都答对者有8人﹐三题都答对者有3人﹒试问A ﹐B ﹐C 三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44. ﻫ用黑白兩種顏色的正方形地磚依照如右的規律拼圖形: 設n a 是第n 圖需用到的白色地磚塊數﹒ (1)寫下數列n a 的遞迴關係式﹒ (2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒ﻫ(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n nn n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖ ﻬ一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)2 2. (1)112;(2)0;(3)40 3. (1)4480;(2)90- 4. 48 5. 3 6. 468 7.56 8. 60 9. 9903 10. 44 11. (1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17.{}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30.780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)111735(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =-18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =; (2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44. (1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒ 2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r rr Cx C xx x ---⎛⎫-=- ⎪⎝⎭ﻫ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C-=﹒ﻫ(2)设第1r +项为3x 项﹐则()55255102112233r rrr r r rr Cx C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ﻫ(2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒ 6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐∴所求为33420167468+-=﹒7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-ﻫ()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ﻫ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ﻫ(2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯ﻫ()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒ 14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=ﻫ﹒15. 展开后各实数项和为246810864210101010100246811111222222222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ﻫ101010122C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ﻫ[另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒12=-+﹐ﻫ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ﻫ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 252表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-ﻫ 111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ﻫ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒18. 1234 3214ﻫ2134 3241ﻫ2314 3421ﻫ2341 4321ﻫ共8种﹒ 19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒ﻫ(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ﻫ(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐ﻫ故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦ﻫ﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ﻫ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂(个)﹒ﻫ22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐共119753136+++++=种﹒ﻫ②二个50⇒1种﹒∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++=ﻫ 10220x y z ⇒++=﹐ﻫ共116118++=种﹒ 23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ﻫ(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=ﻫ﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐令()222212232336x k k ==⨯⨯=⨯⨯=﹐ﻫ则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ﻫ(2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ﻫ(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ﻫ 5558332771111=+-=﹒ﻫ(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦ﻫ()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29.()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ﻫ故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.ﻫ①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐ 54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31. ﻫ(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒ﻫ(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ﻫ所求即分子()2131x +展开式中15x 项系数ﻫ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111k k x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐展开式中5x 系数即为()1111x --展开式中6x 系数﹐ ∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐6!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ﻫ+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.ﻫ()1142!4!192.⨯⨯⨯⨯=選位A a Bb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒ﻫ6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐②选二面4312⇒⨯=﹐ﻫ③选三面43224⇒⨯⨯=﹐④选四面⇒432124⨯⨯⨯=﹐ﻫ由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦ﻫ 3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭ﻫ ()5630241820=-+-=﹒不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下ﻫ631081263691836297=+++----=ﻫ ∴所求为72297369.+=ﻫ(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=ﻫ 左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換ﻫ③用三色:红+白+黄=7ﻫ 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒ﻫ ↑ﻫ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ﻫ 再安排4个l :p a m a △△△△△方法有545C =种﹒ﻫ由①②可知﹐排法有646554⨯+⨯=种﹒[另解]llll ﻫ不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)表示n a 为首项4﹐公差32的等差数列﹐ﻫ(1)2133114222a a =+=+=﹐ﻫ 3231137222a a =+=+=﹐ﻫ4333177222a a =+=+=﹐ﻫ 54317310222a a =+=+=﹒ﻫ(2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒(2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐ﻫ 因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ﻫ因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+ 4.()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SEN SE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:ﻫ(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐因此排法有333!6C ⨯=种﹒ﻫ(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒ﻫ(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂ﻫ253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯ﻫ909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅ﻫ77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅-7286xn y ⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐ﻫ∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白ﻫ 1322313.⇒共種(2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒ﻫ故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ﻫ ②先往左42232⨯=﹐ﻫ 共有323264+=﹒15. ﻫﻫ如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯ﻫ10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦ﻫ()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-ﻫ()10111c =-=-﹐ﻫ∵()1011x +展开式中才有x 项﹐∴1011101,a C ==ﻫ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ﻫ(2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ﻫ ↓6﹑7﹑8﹑9ﻫ(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ﻫ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.ﻫ 上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x x x x +-=++-()()()()()()21011011009910121012101212101111x Cx x C x x Cx =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐ﻫ∴x 项的系数1011101,a C ==ﻫ2x 项的系数10121014949,b C =-=ﻫ 3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒24. (1)∵()123n n a a n +=+-且15a =﹐ﻫ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐()43233538a a =+⨯-=+=﹐ﻫ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ﻫ ∴()21213a a =+⨯- ()32223a a =+⨯-ﻫ()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦ﻫ()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒ﻫ(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1→有363⨯⨯个→有123⨯⨯个→有113⨯⨯个ﻫ ∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒ (2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ﻫ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有ﻫ ()331312⨯+⨯=个﹐ 故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ﻫ 故百位数字和为()()1834592234⨯++⨯⨯=﹒ﻫ 由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111nn n m m m C C C ---=+﹐得ﻫ原式()66781920234516175C C C C C C =++++++- 778192034516175C C C C C =+++++-8819204516175C CC C =++++-21175C =-ﻫ 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ﻫ根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕ﻫ(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ﻫ 因此有339⨯=种选法﹒ 但是ﻫ①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ﻫ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ﻫ因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒30. ﻫ(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ﻫ 5433180⨯⨯⨯=﹐ﻫ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ﻫ 54333540⨯⨯⨯⨯=﹐ﻫ B ﹑D ﹑F 异色﹐A B D F C EG →→→→→→5432222960⨯⨯⨯⨯⨯⨯=﹐ﻫ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ﻫ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a =24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ﻫ(3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯ﻫ ()1222n n a a n --=+⨯-ﻫ ()1)21n n a a n -+=+⨯-ﻫ()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒33. (1) ﻫ ①A ﹑C 同色﹐541480,A B C D⨯⨯⨯=ﻫ②A ﹑C 异色﹐5433180,A B C D⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ﻫ(3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩 種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐ﻫ将此5本书作直线排列﹐有5!种排法﹐ﻫ故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒ﻫ由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ﻫ又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部展开式中2x 的系数为6﹒ 39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()332112323232323212322222A B xx C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为ﻫ()()()()32132320122C x x C x x -+-()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+ﻫ故4x 的系数为9﹒ 40. 将240作质因子分解﹐得411240235=⨯⨯﹒ﻫ因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐ﻫ所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:ﻫ ﻫ其中实线表电车路线﹐虚线表公交车路线﹒ﻫ因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:ﻫ(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒ﻫ(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒ 由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒ﻫ利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ﻫ()n A B C +⋂⋂151920101283=++---+27=﹒ﻫ故三题中至少答对一题者有27人﹒43.ﻫ設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ ()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒ 故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增ﻫ 加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒ﻫ(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等ﻫ 差数列﹐故()81553n a n n =+-⨯=+﹒ﻫ(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒ 45. (1)先将这8位转学生分成四堆﹐每堆2人﹐ﻫ 再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐ﻫ 故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ﻫ(2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐ﻫ 故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒46. 因为01232n n n nn n n C C C C C +++++=﹐ﻫ所以1230221n n nn n n nn C C C C C ++++=-=-﹒ﻫ即原式可改写为2000213000n <-<﹐ﻫ即200123001n <<﹐得11n =﹒47.(1)3119911!55 9!2!H C===组﹒ﻫ(2)338936628H H C-===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒49. 10310!1098720 7!P==⨯⨯=种选法﹒50.由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。

数学排列组合


dab dba
dac dca dbc dcb
第一步 组合
a b c a b d a c d abc acb abd adb
第二步 排列
bac bca bad bda cab cba dab dba
acd adc
bcd bdc
cad cda
cbd cdb
dac dca
dbc dcb
b c d
C
3 4
从甲、乙、丙三名同学中选两名同学担任正 副班长,共有多少种不同的方法。 思考:若从甲、乙、丙三名同学中选出两名 班长候选人有多少种方法? 2 A3 6 共3种 班长候选人 正副 正副
无 顺 序
甲乙
甲丙 乙丙
甲乙 乙甲
甲丙 丙甲 乙丙 丙乙
有 顺 序
概括为
从3个不同的元素中取出2个合成一组,一共有 多少个不同的组?
一般地,n个不同元素作圆形排 B A A B C D E C 列,共有(n-1)!种排法.如果 A 从n个不同元素中取出m个元素 D m E 1 An 作圆形排列共有 m
练习题 6颗颜色不同的钻石,可穿成几种钻石圈 120
六.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法 解:完成此事共分六步:把第一名实习生分配 到车间有7 种分法. 把第二名实习生分配 到车间也有7种分法, 依此类推,由分步计
从n个不同元素中取出 相同点 m(m≤n)个元素 不同点 与元素的 顺序有关 与元素的 顺序无关
组合数 从n个不同元素中取出m(m≤n)个元素的所有不 同组合的个数,叫做从n个不同元素中取出m个 元素的组合数 记C m n
从a:拙政园,b:西园,c:留园,d:狮子林这四 个风景点中任选三个景点,有多少种方法? 选三个景点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业九
1. 星期一有语文、数学、英语、物理、化学、生物、体育七节课,若体育不排在第一节上,
数学不排在第六、七节上,则这天课表的不同排法种数为
A.7575AA B.2545AA C.115565AAA D.61156455AAAA

2. 若20112011102011)21(xaxaax)(Rx,则

201120112
21

22
2

a
aa

A.-1 B.-2 C.0 D.2
3. 如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青
蛙按顺时针方向绕圆从一点跳到另一点.若它停在奇数点上,则下
一次.只能跳一个点;若停在偶数点上,则跳两个点.该蛙从5这点

跳起,经2008次.跳后它将停在的点是
A.1 B.2 C.3 D.4
4. 现有6名同学去听同时进行的5个课外知识讲座,每名同学可
自由选择其中的一个讲座,则不同选法的种数是

A.56 B.65 C.5×6×5×4×3×22 D.6×5×4×3×2
5. 为纪念辛亥革命100周年,某电视剧摄制组为制作封面宣传画,将该剧组的7位身高各
不相同的主要演员以伞形(中间高,两边低)排列,则可制作不同的宣传画的种数为
A.20 B.40 C.10 D.42

6. 在二项式121412nxx的展开式中,若前3项的系数成等差数列,则展开式中有理项的
项数为( )A.5 B.4 C.3 D.2
7. 现有8名青年,其中有5名能胜任英语翻译工作,4名能胜任电脑软件设计工作,现从中
选5名,承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选
派方法有( )A.60种 B.54种 C.42种 D.30种
8. 现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,
则不同的配法种数为( )A.7 B.12 C.64 D.81
9. 7个人排成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有
A.480种 B.720种 C.960种 D.1200种

10. 512axxxx的展开式中各项系数的和为2,则该展开式中常数项为
A.-40 B.-20 C.20 D.40
1.将4名学生分别安排到甲、乙,丙三地参加社会实践活动,每个地方至少安排一名学生参
加,则不同的安排方案共有()A.36种 B.24种 C.18种 D.12种

2赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2个的安排方案共有
A.60种 B.42种 C.36种 D.24种
3要从10名女生和5名男生中选出6名学生组成课外兴趣小组,如果按性别依比例分层随
机抽样,则组成此课外兴趣小组的概率为( )

A.42105615CCC B.33105615CCC C.615616AA D.42105615AAA

1

5

4

2


3

4.
5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同
的报名方法共有( )A.10种 B.20种 C.25种 D.32种
5..
一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包

含前5个题目中的3个,则考生答题的不同选法的种数是( )
A.40 B.74 C.84 D.200
6.
将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活
动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种 C.9种 D.8种
7.
各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,

选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生
不同的填报专业志愿的方法有( )A.210种 B. 180种 C.120种 D.95种
8.从数字0,1,2,3,,9中,按由小到大的顺序取出123,,aaa,且21322,2aaaa,则
不同的取法有( )A.20种 B.35 C.56种 D.60种
9.三人相互传球,由甲开始发球,经过5次传球后,球仍回到甲手中,则不同的传球方法的
种数是( )A、6 B、8 C、10 D、16
10.从集合{1,2,3, 4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线
最多有( )A.18条 B.20条 C.25条 D.10条

1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面
ABCD
,0DAB60,2AD=,1AM=,E是AB的中点.

(Ⅰ)求证:AN//平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角
PECD--

的大小为6?若存在,求出AP的长h;若不存在,请说明理

由.
N

A
D
M

B
E
C

相关文档
最新文档