信号与电子实验(吴大正)
吴大正《信号与线性系统分析》笔记及习题(离散系统的时域分析)【圣才出品】

第3章离散系统的时域分析3.1 复习笔记一、基本概念1.前向差分与后向差分一阶前向差分一阶后向差分2.差分方程包含未知序列及其各阶差分的方程式称为差分方程。
将差分展开为移位序列,得一般形式二、离散系统的时域分析与连续系统的时域分析类似,离散系统的时域分析也是分析求解系统响应的过程,全部在时间域里进行。
不同的是离散系统的数学模型是借助差分方程,求解系统响应常用两种方法:时域经典法与时域卷积和法。
1.经典解法与微分方程经典解类似,全解y(k)=齐次解y h(k)+特解y p(k)。
(1)齐次解y h(k)齐次解由齐次方程解出。
设差分方程的n个特征根为。
齐次解的形式取决于特征根,y h(k)又称自由响应。
①当特征根λ为单根时,齐次解y h(k)形式为:②当特征根λ为r重根时,齐次解y h(k)形式为:③有一对共轭复根,齐次解y h(k)形式为:,其中(2)特解y p(k)特解y p(k)的求解过程类同连续系统时求y p(t)的过程。
差分方程的齐次解又称为系统的自由响应,特解又称强迫响应。
2.卷积和法全响应y(k)=零输入响应y zi(k)+零状态响应y zs(k)其求解过程如下:①建立系统的差分方程;②特征值→求零输入响应y zi(k);③单位样值响应→利用卷积和求零状态响应y zs(k)=h(k)*f(k);④全响应y(k)=y zi(k)+y zs(k)。
三、零输入响应和零状态响应1.零输入响应y zi(k)激励为零时,仅由系统的初始状态引起的响应,若特征根为单根时,则零状态响应为起始条件代入上式求出。
2.零状态响应y zs(k)当系统的初始状态为零,仅由激励所产生的响应,若特征根为单根时,则零状态响应为y p(k)求法同经典解法一样。
由零状态条件用递推法导出,再代入上式求出。
系统的全响应既可以分解为自由响应和强迫响应,又可以分解为零输入响应和零状态响应。
四、单位序列响应和阶跃响应1.单位序列响应由单位序列δ(k)所引起的零状态响应,称为单位序列响应或单位样值响应或单位取样响应,或简称单位响应,记为h(k),即。
吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研

6.2课后习题详解
6.1复习笔记
6.3名校考研真题 详解
7.2课后习题详解
7.1复习笔记
7.3名校考研真题 详解
8.2课后习题详解
8.1复习笔记
8.3名校考研真题 详解
作者介绍
这是《吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解》的读书笔记模板,暂 无该书作者的介绍。
读书笔记
这是《吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可 以替换为自己的心得。
精彩摘录
这是《吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解》的读书笔记模板,可 以替换为自己的精彩内容摘录。
感谢观看
暂无内容
目录分析
1.2课后习题详解
1.1复习笔记
1.3名校考研真题 详解
2.2课后习题详解
2.1复习笔记
2.3名校考研真题 详解
3.2课后习题详解
3.1复习笔记
3.3名校考研真题 详解
4.2课后习题详解
4.1复习笔记
4.3名校考研真题 详解
5.2课后习题详解
5.1复习笔记
5.3名校考研真题 详解
吴大正《信号与线性系统分析》 (第4版)笔记和课后习题 (含考研
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
复习
域
笔记
习题
ห้องสมุดไป่ตู้时域
真题
频域
分析
内容
笔记 名校
状态变量
第版
吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解

吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
更多资料请在薇♥号精研学习网查找下载
本书是吴大正主编的《信号与线性系统分析》(第4版)的学习辅导书,主要包括以下内容:
(1)整理教材笔记,浓缩内容精华。
本书每章的复习笔记均对该章的知识点进行了整理,突出重点和考点。
(2)解析课后习题,提供详尽答案。
本书参考相关辅导资料,对教材的课后习题进行了详细的解答。
(3)精选考研真题,巩固重难点知识。
本书精选了多所名校近年的考研真题,并提供了详细的解答。
本书提供电子书及打印版,方便对照复习。
第1章信号与系统
1.1复习笔记
1.2课后习题详解
1.3名校考研真题详解
第2章连续系统的时域分析
2.1复习笔记
2.2课后习题详解
2.3名校考研真题详解
第3章离散系统的时域分析
3.1复习笔记
3.2课后习题详解
3.3名校考研真题详解
第4章傅里叶变换和系统的频域分析4.1复习笔记
4.2课后习题详解
4.3名校考研真题详解
第5章连续系统的s域分析
5.1复习笔记
5.2课后习题详解
5.3名校考研真题详解
第6章离散系统的z域分析
6.1复习笔记
6.2课后习题详解
6.3名校考研真题详解
第7章系统函数
7.1复习笔记
7.2课后习题详解
7.3名校考研真题详解
第8章系统的状态变量分析
8.1复习笔记
8.2课后习题详解8.3名校考研真题详解。
第六章 信号与线性系统 吴大正 教材课件

第 6 章 离散信号与系统的Z域分析 4. 序列域卷积定理 若
f ( k m) z F ( z )
m
z z
f ( k m) z F ( z )
式中,m为正整数
m
第 6 章 离散信号与系统的Z域分析 根据双边Z变换的定义,则有
Z [ f (k m)]
令 n=k+m, 则有
k
f (k m) z k
1 f (k ) f1 (k ) 2
由于
k
z z F1 ( z ) Z [ f1 (k )] z z3 z3
2
3<|z|<∞
第 6 章 离散信号与系统的Z域分析 根据时域乘ak性质,得
1 k F ( z ) Z [ f(k) Z f1 (k ) F1 (2 z ) ] 2 (2 z )2 4z2 2z 3 2z 3
f 2 (k ) (k m), m为正整数 .
F1 ( z )
k
(k m) z k z m
z 0 z
F2 ( z )
k
(k m) z
k
z
m
第 6 章 离散信号与系统的Z域分析 (3) f (k ) (k ).
f (k ) z
k
a k 0 z
k
所以,当|z|>|a|时F(z)收敛。于是得
a a z a F ( z) 1 z z za k 0 z
za
(6.1-12)
k
2
第 6 章 离散信号与系统的Z域分析 例 6.1 – 3 已知无限长反因果序列f(k)=bkε(-k-1)。求f(k)的双边 Z变换及其收敛域。 P274例6.1-3 解 f(k)的双边Z变换为
信与线性系统分析习题答案吴大正第四版高等教育出版社

第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t)t(t)】为斜升函数。
(2)f(t) et t(3)f(t)sin( t) (t)(4)f (t) (sint)(5)f(t)r(sin t)(7)f(t) 2k (k)(10f(k) [1 ( 1)k] (k))解:各信号波形为(2)f(t) e N, t(3)f(t)sin( t)(t)(4)f(t)(s int)(5)f(t)r(si n t)(7)f(t)2k (k)(10)f(k)[1 (1)k] (k)1-2画出下列各信号的波形[式中r(t) t (t)为斜升函数]。
(1)f(t) 2 (t 1) 3 (t 1) (t 2) (2)f (t) r(t) 2r(t 1) r(t 2)(5)f (t) r(2t) (2 t) (8)f(k) k[ (k) (k 5)](11) f(k) ksin( )[ (k) (k 7)]6(12)f(k) 2k[ (3 k) ( k)]解:: 各信号波「形为(1) f(t) 2 (t 1) 3 (t 1) (t 2)(2) f(t) r(t) 2r(t 1) r(t2)(5) f(t)r(2t) (2 t)(8)f(k)k[ (k) (k 5)](11)f(k)ksin( § )[ (k) (k7)](12) f(k) 2k [ (3 k) ( k)]1-3写出图1-3所示各波形的表达式。
1-4写出图1-4所示各序列的闭合形式表达式。
1-5判别下列各序列是否为周期性的。
如果是,确定其周期。
Q■(2) f 2(k) cos(- k ) cos(—k )(5) f 5(t)3cost 2sin( t)4 4 3 6解:1-6已知信号f(t)的波形如图1-5所示,画出下列各函数的波形。
(6)f(0.5t 2)(1) f(t 1) (t) (2) f(t 1) (t 1) (5) f (1 2t)df (t) t(7) K ( 8) f(X)dx解:各信号波形为(1)f(t 1) (t)(2)f(t 1) (t 1)(5)f(1 2t)(6) f (0.5t 2)df(t)(7)dtt(8) f (x)dx1-7已知序列f(k)的图形如图1-7所示,画出下列各序列的图形。
吴大正《信号与线性系统分析》(第4版)名校考研真题(信号与系统)【圣才出品】

第1章 信号与系统一、填空题 1.设)12()(5.0+-=-t et x t δ,则)(t x '=______。
[华中科技大学2008研]【答案】)5.0(5.0)(-'='t t x δ 【解析】根据冲激函数的尺度变换,有0.50.50.50.51()(21)0.5()210.5()210.5()2t t t t x t e t e t e t t δδδδ---=⎡⎤=-+=-⎢⎥⎣⎦=-=-。
另解:()()()()()()()0.521,0.5=0=-21=0.50.50.5t f t t t f t f t f t t f tt δδδ='=-+=∴-⎡⎤⎣⎦'=-当时,,得:()10.52x t t δ⎛⎫=- ⎪⎝⎭所以)5.0(5.0)(-'='t t x δ。
2.()sin n tdt tω∞-∞=⎰______。
[天津工业大学2006研]【答案】π【解析】()111sin sin t n t n tn t dt dn t Sa t dt t n tωωωωπω=∞∞+∞-∞-∞-∞===⎰⎰⎰令。
另解:根据常用函数的傅里叶变换可知,()()12Sa t g πω↔(2()g w 是τ为1的的矩形函数)()()()1111200j t Sa t dt Sa t e dt g ωωππ+∞+∞--∞-∞====⎰⎰3.已知一个可逆的LTI 系统可用方程[][]nk y n x k =-∞=∑来描述,试求描述该系统的逆系统方程为______,该逆系统的单位冲激响应为______,该逆系统是否稳定______。
[华南理工大学2011研]【答案】[][][]1z n y n y n =--;[][]1n n δδ--;稳定 【解析】由[][]nk y n x k =-∞=∑可知,该系统任意两个相邻的输出值之差就是该系统的输入值,即[][][]1y n y n x n --=,因此其逆系统的方程是[][][]1z n y n y n =--。
(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解
目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。
根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。
二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。
2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。
图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。
图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。
这里雷达接收到的目标回波信号就是延时信号。
3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。
《信号与系统 》PPT课件
1.6 系统的描述
一、连续系统 二、离散系统
1.7 LTI系统分析方法概
述
二、冲激函数
点击目录 ,进入相关章节
a
10
第1-10页
■
信号与系统 电子教案
第一章 信号与系统
1.1 绪言
思考问题:什么是信号?什么是系统?为什么把这两 个概念联系在一起?
一、信号的概念
1. 消息(message):
第1-12页
■
信号与系统 电子教案
1.1 绪论
语音信号:空气压力随时间变化的函数
0
第1-13页
0.1
0.2
0.3
语音信号“你好”的波
形
a
■
0.4
13
信号与系统 电子教案
1.1 绪论
静止的单色图象:
亮度随空间位置变化的信号f(x,y)。
a
14
第1-14页
■
信号与系统 电子教案
1.1 绪论
静止的彩色图象:
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息,常常需要将信息转 换成便于传输和处理的信号。
信号我们并不陌生,如刚才铃 声—声信号,表示该上课了;
十字路口的红绿灯—光信号,指 挥交通;
电视机天线接受的电视信息—电 信号;
日常生活中的文字信号、图像信 号、生物电信号等等,都是信号。
a
12
编,华中科技大学出版社 • 《信号与线性系统学习指导书》张永瑞、王松林,
高等教育出版社
a
4
第1-4页
■
信号与系统 电子教案
信号与系统的应用领域
通信 控制 电 类 信号处理 信号检测
吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解-第3~4章【圣才出品】
①建立系统的差分方程;
②特征值→求零输入响应 yzi(k); ③单位样值响应→利用卷积和求零状态响应 yzs(k)=h(k)*f(k);
④全响应 y(k)=yzi(k)+yzs(k)。
三、零输入响应和零状态响应 1.零输入响应 yzi(k) 激励为零时,仅由系统的初始状态引起的响应,若特征根为单根时,则零状态响应为
应。
四、单位序列响应和阶跃响应
1.单位序列响应
由单位序列 δ(k)所引起的零状态响应,称为单位序列响应或单位样值响应或单位取
样响应,或简称单位响应,记为 h(k),即
。
2.阶跃响应
由 阶 跃 序 列 ε ( k ) 所 引 起 的 零 状 态 响 应 , 称 为 阶 跃 响 应 , 记 为 g ( k ), 即
和 f i。 i
0, k 0
(1)
f
k
1 2
k
,
k
0
(2)
f
k
0, k k, k
0 0
解:(1)f(k)可以表示为:
f
k
1 2
k
k
f
k
f
k
1
f
k
1 2
k
1
k
1
1 2
k
k
10,,
k 1 k 1
1 2
k
1
,
k 0
f
k
f
k
f
k
1
1 k 2
k
1 2
k
1
k
1
f k f k f k 1 k k k 1 k 1 k 1
故
k
i
f
i
0924111-2信号教学日历
讲授
讲授
讲授
讲授
讲授
实验
讲授
讲授
讲授
实验
讲授讲授实验源自讲授讲授实验2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
《信号分析与处理》
赵光宙主编
机械工业出版社
《数字信号处理》
丁玉美主编
西安电子科技大学出版社
授课教师(签字):刘晓芳辅导教师(签字):刘晓芳教研室主任(签字):2013年9月9日
说明:此表一式四份,分别由教务处、系、教研室、任课班级保存。
第3周
第3周
第4周
第5周
第5周
第6周
第7周
第7周
第8周
第10周
第11周
第11周
第12周
第13周
第13周
第14周
第15周
第15周
第16周
第1章信号与系统
1.1绪言
1.2信号
1.3信号的基本运算
1.4阶跃函数和冲激函数
1.5系统的描述
1.6系统的性质
第二章连续系统的时域分析
2.1 LTI连续系统的响应
2.2冲激响应和阶跃响应
2.3卷积积分
2.4卷积积分的性质
第三章离散系统的时域分析
3.1 LTI离散系统的响应
3.2单位序列和单位序列响应
3.3卷积和
习题
第四章连续系统的频域分析
4.1信号分解为正交函数
4.2傅里叶级数
4.3周期信号的频谱
4.4非周期信号的频谱
4.5傅里叶变换的性质