高三数学 周测试卷(理科,含答案)

合集下载

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析(考试时间:120分钟全卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.设集合{}23100,{33}A xx x B x x =+-<=-<<∣∣,则A B ⋂=()A.{32}x x -<<∣B.{52}x x -<<∣C.{33}x x -<<∣D.{53}xx -<<∣2.已知i 为虚数单位,且32i1i z =+,则z =()A.1i- B.1i + C.1i-+ D.1i --3.设函数()()()121log 2(1)31x x x f x x +⎧-<⎪=⎨⎪⎩,则()()32log 8f f -+=()A.8B.9C.22D.264.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()A.560B.35C.-35D.-5605.已知点(,)x y 满足不等式组21400x y y x y ⎧⎪⎨⎪≥≥+--+⎩≤,则2z x y =+的最小值为()A.3- B.1- C.5D.76.华为在过去几年面临了来自美国政府的封锁和限制,但华为并没有放弃,在自主研发和国内供应链的支持下,成功突破了封锁,实现了5G 功能.某手机商城统计了最近5个月华为手机的实际销量,如下表所示:若y 与x 线性相关,且线性回归方程为2ˆ0.4ˆyx a =+,则下列说法不正确的是()A.样本中心点为()3,1.0 B.由表中数据可知,变量y 与x 呈正相关C.ˆ0.28a =D.预测7x =时华为手机销量约为1.86(万部)7.已知n S 是数列{}n a 的前n 项和,若11a =,112n n S a +=,则()A.数列{}n a 是等比数列B.数列{}n a 是等差数列C.数列{}n S 是等比数列D.数列{}n S 是等差数列8.函数24()exx xf x -=的图象大致是()9.将函数()cos()(0)6f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于原点对称,则ω的最小值是()A.23B.32 C.53D.11310.某校举办中学生乒乓球运动会,高一年级初步推选3名女生和4名男生参赛,并从中随机选取3人组成代表队参赛,在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A.12 B.715C.713D.111511.漏刻是中国古代科学家发明的一种计时系统,“漏”是指带孔的壶,“刻”是指附有刻度的浮箭.《说文解字》中记载:“漏以铜壶盛水,刻节,昼夜百刻.”某展览馆根据史书记载,复原唐代四级漏壶计时器.如图,计时器由三个圆台形漏水壶和一个圆柱形受水壶组成,水从最上层的漏壶孔流出,最终全部均匀流入受水壶.当最上层漏水壶盛满水时,漂浮在最底层受水壶中的浮箭刻度为0当最上层漏水壶中水全部漏完时,漂浮在最底层受水壶中的浮箭刻度为100.已知最上层漏水壶口径与底径之比为5:2,则当最上层漏水壶水面下降至其高度的三分之一时,浮箭刻度约为(四舍五入精确到个位)()A.88B.84C.78D.7212.已知函数()(),f x g x 的定义域为()R,g x 的图像关于1x =对称,且()22g x +为奇函数,()()()11,31g f x g x ==-+,则下列说法正确的个数为()①(3)(5)g g -=;②(2024)0g =;③(2)(4)4f f +=-;④20241()2024n f n ==∑.A.1B.2C.3D.4二、填空题:本大题共4个小题,每小题5分,共20分13.若函数()212ln 2f x x ax x =-+-在1x =处的切线平行于x 轴,则a =__________.14.已知(2,1)AC = ,(1,)AB t = ,且3AC AB ⋅=,则t =__________.15.已知等差数列{}n a 的公差为23π,集合{}*sin |n S a n =∈N ,若{},S a b =,则22a b +=__________.16.正方体1111ABCD A B C D -的校长为1,点P 为线段1CC 的中点,则三棱锥1P BDD -外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,且279a a +=,945S =.(1)求数列{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n T .18.(12分)如图所示,△ABC 是正三角形,AE ⊥平面ABC ,AE CD ∥,2AE AB ==,1CD =,且F 为BE 的中点.(1)求证:DF ∥平面ABC ;(2)求平面BDE 与平面ABC 所成二面角的正弦值.19.(12分)自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.我国设立这一制度是为全面深入地推动中小学生安全教育工作,大力降低各类伤亡事故的发生率,切实做好中小学生的安全保护工作,促进他们健康成长.为了迎接“安全教育日”,某市将组织中学生进行一次安全知识有奖竞赛,竞赛奖励规则如下,得分在[70,80)内的学生获三等奖,得分在[80,90)内的学生获二等奖,得分在[90,100]内的学生获一等奖,其他学生不获奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下:(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获一等奖的概率;(2)若该市所有参赛学生的成绩X 近似服从正态分布(65,100)X N ~,利用所得正态分布模型解决以下问题:(i )若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过85分的学生数(结果四舍五入到整数);(ii )若从所有参赛学生中(参赛学生数大于100000)随机抽取4名学生进行访谈,设其中竞赛成绩在65分以上的学生数为Y ,求随机变量Y 的分布列及数学期望.附参考数据:若随机变量X 服从正态分布()2,N μσ,则:()6827.0≈+<<-σμσμX P ,()9545.022≈+<<-σμσμX P ,()9973.033≈+<<-σμσμX P .20.(12分)已知抛物线()()200:2(0),4,0E y px p P y y =>>为E 上一点,P 到E 的焦点F 的距离为5.(1)求E 的标准方程;(2)设O 为坐标原点,A ,B 为抛物线E 上异于P 的两点,且满足PA PB ⊥.判断直线AB 是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.21.(12分)已知()ln 1f x x x x =--,记()f x 在1ex =处的切线方程为()g x .(1)证明:()()g x f x(2)若方程()f x m =有两个不相等的实根()1212,x x x x <,证明:12122x x m e e->+--.(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修44-:坐标系与参数方程]在平面直角坐标系xOy 中,射线l 的方程为(0)y x x =≥,曲线C 的方程为2214x y +=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求射线l 和曲线C 的极坐标方程;(2)若射线l 与曲线C 交于点P ,将射线OP 绕极点按逆时针方向旋转2π交C 于点Q ,求△POQ 的面积.23.(10分)[选修45-:不等式选讲]已知函数()2121f x x x =-++.(1)求不等式()3f x ≥的解集;(2)记函数()f x 的最小值为m ,若a ,b ,c 均为正实数,且23a b c m ++=,求11a cb c+++的最小值.参考答案一、选择题1.A 解析:∵{}{}2501032<<-=<-+=x x x x x A ,∴{}23<<-=x x B A .2.B解析:由题意:()i i i i i i i z +-=+=+=-=1212122.3.C 解析:()()[]222log 221-=--=-f .∵18log 3>,∴()243338log 24log 3log 8log 18log 33333====++f ,∴()()222428log 23=+-=+-f f .4.D 解析:由题意知712⎪⎭⎫ ⎝⎛-x x 的展开式()()rr r r rr rr xC x x C T 27777712112---+-=⎪⎭⎫ ⎝⎛-=,令127=-r ,得3=r ,∴x 的系数为()5602137373-=--C .5.B解析:作出可行域如图,当目标函数y x z +=2的图象经过点()1,1-A 时,z 有最小值,此时1min -=z .6.D解析:由表格数据可以计算出3554321=++++=x ,0.155.12.10.18.05.0=++++=y ,则样本中心点为()0.1,3,即A 说法正确;从表格数据可得:y 随着x 的增加而增加,∴变量y 与x 正相关,即B 说法正确;将样本中心点为()0.1,3代入a x yˆ24.0ˆ+=,可得28.0ˆ=a ,即C 说法正确;由C 可知线性回归方程为28.024.0ˆ+=x y,将7=x 代入可得96.128.0724.0ˆ=+⨯=y,则D 说法不正确.7.C解析:因121+=n n a S ①可得,当2≥n 时,n n a S 211=-②,①-②得:n n n n a a S S 212111-=-+-,即n n n a a a 21211-=+,可得31=+n n a a ,因11=a ,在121+=n n a S 中,取1=n ,可得2212==S a ,即3212≠=a a ,故数列{}n a 不是等比数列,选项A ,B 错误;又因当*∈N n 时,都有n n n S S a -=++11,代入121+=n n a S 中,可得()n n n S S S -=+121,整理得:31=+nn S S ,故数列{}n S 是等比数列,即选项C 正确,D 错误.8.A解析:令()0>x f ,得4>x 或0<x ;令()0<x f ,得40<<x ,故排除CD,又当+∞→x 时,()042→-=xexx x f ,故排除B.9.A解析:由题意可知:函数()()06cos >⎪⎭⎫ ⎝⎛+=ωπωx x f 的图象关于点⎪⎭⎫⎝⎛02,π对称,则Z k k ∈+=+,262πππωπ,且0322>+=k ω,解得31->k ,即N k k ∈+=,322ω∴当0=k 时,ω取到最小值是32.10.B解析:用A 表示事件“代表队既有男生又有女生”,B 表示事件“女生甲被选中”,则在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A B P .∴()30333437=--=C C C A n ,()1468241412=+=+=C C C AB n ,∴()()()1573014===A n AB n A B P .11.B解析:有题意可知:最上层漏水壶所漏水的体积与浮箭刻度成正比,设最上层漏水壶的口径与底径分别为a a 25,,高为h ,则体积为()()()()h a h a a a a V 2222213252531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,当最上层漏水壶水面下降到高度的三分之一时,设此时浮箭刻度为x ,∵已漏下去的水组成以上下口径为a a 3,5,高为h 32的圆台,体积为()()()()h a h a a a a V 22222199832353531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,可得1001399822x h a ha =ππ,解得84≈x .12.C解析:∵()22+x g 为奇函数,∴()()2222+-=+-x g x g ,则()()22+-=+-x g x g ,∴()x g 对称中心为()0,2,又∵()x g 对的图象关于1=x 对称,则()()x g x g =+-2,∴()()x g x g =+-2,则()()()x g x g x g =+-=+24,∴()x g 的周期4=T ,①()()()5833g g g =+-=-,∴①正确;②∵()11=g ,()()x g x g =+-2,()x g 对称中心为()0,2,∴()()020==g g ,∴()()002024==g g ,∴②正确;③∵()()13+-=x g x f ,∴()()2112=+=g f ,∵()()x g x g =+-2,∴()()11g g -=-,则()()()011114=+-=+-=g g f ,∴()()242=+f f ,∴③错误;④∵()()13+-=x g x f 且()x g 周期4=T ,∴()()()()x f x g x g x f =+-=++-=+131434,则()x f 的周期为4=T ,∵()()1121=+=g f ,()22=f ,()()1103=+=g f ,()04=f ,∴()()()()44321=+++f f f f ,∴()()()()()[]20244506432150620241=⨯=+++=∑=f f f f n f n ,∴④正确.二、选择题13.3解析:∵()x ax x x f ln 2212-+-=,∴()xa x x f 2-+-=',则()0211=-+-='a f ,解得3=a .14.1解析:32=+=⋅t AB AC ,解得1=t .15.45(1.25)解析:∵等差数列{}n a 的公差为32π,∴ππ23233+=⨯+=+n n n a a a ,∴()()n n n a a a sin 2sin sin 3=+=+π,∴数列{}n a sin 是周期为3的数列,又{}b a S ,=,故1sin a ,2sin a ,3sin a 中必有两者相等,不妨设()31sin sin ≤<≤=j i a a j i ,则Z k k a a j i ∈+=,2π(舍)或Z k k a a j i ∈+=+,2ππ,而π32=+-j i a a 或π34=+-j i a a ,若π32=+-j i a a ,则Z k k a i ∈+=,6ππ,Z k k a j ∈+=,65ππ,连续三个中第三数为Z k k a i ∈+=,23ππ或Z k k a i ∈+-=,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .若π34=+-j i a a ,则Z k k a i ∈+-=,6ππ,Z k k a j ∈+=,67ππ,此时这两个数的中间数Z k k ∈+,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .综上,4541122=+=+b a .16.825π解析:以D 为坐标原点,DA ,DC ,1DD 方向分别为z y x ,,轴建立如图所示空间直角坐标系.则()()()⎪⎭⎫ ⎝⎛21101000110001,,,,,,,,,,,P D B D ,M 为线段1BD 的中点,则⎪⎭⎫⎝⎛21,21,21M ,显然点M 为1BDD ∆的外接圆圆心.则()()⎪⎭⎫ ⎝⎛-===0,21,210111001PM DB DD ,,,,,,,∴,,0212101=-=⋅=⋅DB PM DD PM 即PM 为平面1BDD 的一个法向量,即⊥PM 平面1BDD .则三棱锥1BDD P -外接球的球心O 在直线PM 行,连接OD ,则设R OP OD ==.设⎪⎭⎫⎝⎛-==0,2,2λλλPM OP ,即⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=-=21,21,20,2,22110λλλλ,,OP DP DO .=,即222222121222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛λλλλ,解得45-=λ,则⎪⎭⎫ ⎝⎛=21,83,85DO ,∴32252183852222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=R .则三棱锥1BDD P -外接球的表面积为82542ππ=R .三、解答题17.解:(1)设数列{}n a 的公差为d ,则⎩⎨⎧=+=+++4536996111d a d a d a ,解得⎩⎨⎧==111d a ,∴n a n =.(2)由(1)得nn n b 2⋅=,nn n T 2222121⋅++⨯+⨯= ,132222212+⋅++⨯+⨯=n n n T ,两式相减得:()()()2212121222222211132-⋅-=⋅---=⋅-++++=-+++n n n n nn n n n T ∴()2211+-=+nn n T .18.解:(1)证明:取AB 中点M ,连接MF 、MC ,则MF ∥AE ,且CD AE MF ===121.又∵AE ∥CD ,∴MF ∥CD ,即四边形MFDC 为平行四边形,∴DF ∥MC .又有⊄DF 平面ABC ,⊂MC 平面ABC ,∴DF ∥平面ABC .(2)延长ED 、AC 相交于点N ,连接BN ,则BN 为平面BDE 与平面ABC 的交线.∵AE ∥CD ,CD AE 2=,则DC 为ABC ∆的中位线,∴42==AC AN ,即BC CN AC ==,∴BN AB ⊥,∴3222=-=AB AN BN .而5222=+=AN AE EN ,2222=+=AB AE BE ,∴222EN BNBE =+,即BNBE ⊥∴EBA ∠即为平面BDE 与平面ABC 所成二面角的平面角.∴22222sin ===∠BE AE EBA 故平面BDE 与平面ABC 所成二面角的正弦值为22.19.解:(1)从该样本中随机抽取两名学生的竞赛成绩,基本事件总数为2100C ,设抽取的两名学生中恰有一名学生获一等奖为事件A ,则事件A 包含的基本事件的个数为190110C C ,∵每个基本事件出现的可能性都相等,∴()1122100190110==C C C A P 故抽取的两名学生中锋恰有一名学生获一等奖的概率为112.(2)(i )∵852=+σμ,∴()02275.029545.0185=-≈>X P ,∴参赛学生中成绩超过85分的学生数约为22802275.010000≈⨯人.(ii )由65=μ,得()2165=>X P ,即从所有参赛学生中随机抽取1名学生,该生竞赛成绩在65分以上的概率为21,∴随机变量Y 服从二项分布Y ~⎪⎭⎫ ⎝⎛214,B ,∴()161210404=⎪⎭⎫ ⎝⎛==C Y P ;()41211414=⎪⎭⎫ ⎝⎛==C Y P ;()83212424=⎪⎭⎫ ⎝⎛==C Y P ;()41213434=⎪⎭⎫ ⎝⎛==C Y P ;()161214444=⎪⎭⎫ ⎝⎛==C Y P .∴随机变量Y 的分布列为:∴期望为()216144138324111610=⨯+⨯+⨯+⨯+⨯=Y E.20.解:(1)∵()0,4y P 在抛物线E :()022>=p px y 上,且P 到E 的焦点F 的距离为5,即5=PF ,∴524=+p,解得2=p .∴E 的标准方程为x y 42=.(2)由(1)得P 点坐标为()4,4,由题知直线AB 斜率不为0,设直线AB 为b my x +=,联立⎩⎨⎧+==bmy x x y 42,得0442=--b my y ,()()01616424422>+=-⨯⨯--=∆b m b m ,即02>+b m ,m y y 421=+,b y y 421-=,∴()b m b y y m x x 24222121+=++=+,()22212116b y y x x ==,∵()4,411--=y x P A ,()4,422--=y x PB ,()()324421212121++-++-=⋅y y y y x x x x PB P A ()32161216324442442222=+---=+⨯--+-=m b m b m b b m b ∴41616361222++=+-m m b b ,即()()22246+=-m b ,当6-b 与24+m 同号时,246+=-m b ,即84+=m b ,此时()04284222>++=++=+m m m b m ,∴直线AB 的方程()8484++=++=y m m my x 过定点()48-,,当6-b 与24+m 异号时,246+=-m b ,即44+-=m b ,此时()0244222≥-=+-=+m m m b m ,∴直线AB 的方程()4444+-=--=y m m my x 过定点()44,,则此时与点B A P ,,中任意两点不重合矛盾,故直线AB 过定点,定点坐标为()48-,.21.解:(1)证明:()1ln --=x x x x f 的定义域为()∞+,0,∵()()x x x f ln 1ln 1-=+-=',∴11=⎪⎭⎫ ⎝⎛'e f ,121111-=-+=⎪⎭⎫ ⎝⎛ee e ef ,∴()e x e xg 112-=⎪⎭⎫⎝⎛--,即()11-+=e x x g .令()()()()x x ex x e x x f x g x F ln 11ln 11+=----+=-=,()+∞∈,0x ,()x x F ln 1+=',令()0='x F ,解得ex 1=,∴当e x 10<<时,()0<'x F ,()x F 在⎪⎭⎫⎝⎛e 10,单调递减,当e x 1>时,()0>'x F ,()x F 在⎪⎭⎫⎝⎛+∞,1e 单调递增,∴()01min =⎪⎭⎫⎝⎛=e F x F ,∴()0≥x F 恒成立,即()()x f x g ≥.(2)由(1)知()x x f ln -=',令()0='x f ,得1=x .∴当10<<x 时,()0>'x f ,()x f 在()1,0单调递增,当1>x 时,()0<'x f ,()x f 在()∞+,1单调递减,∴()()01max ==f x f ,当0→x 时,()1-→x f ;当e x >时,()()1-=<e f x f ,∵方程()m x f =有两个不相等的实根()2121,x x x x <,∴01<<-m 且e x x <<<<2110,∵()1-='e f ,()1-=e f ,∴函数()x f 在e x =处的切线方程为()()e x y --=--1,即1-+-=e x y .下证:()1-+-≤e x x f 令()()e x x x x f e x x h ++-=--+-=ln 21,()+∞∈,0x ∵()x x x h ln 11ln 2+-=++-=',令()0='x h ,解得e x =,∴当e x <<0时,()0<'x h ,()x h 在()e ,0单调递减,当e x >时,()0>'x h ,()x h 在()∞+,e 单调递增,∴()()0min ==e h x h ∴()0≥x h 恒成立,即()1-+-≤e x x f ,当且仅当e x =时等号成立.∵e x <<21,∴()122-+-<=e x x f m ,即12+->-e m x ,由(1)知,()()11-+=≤e x x g x f ,∵101<<x ,∴()1111-+≤=e x x f m ,即111+-≥em x ,∴ee m x x 12221--+>-.22.解:(1)将θρcos =x ,θρsin =y 代入()0≥=x x y 得θρθρcos sin =,∴1tan =θ,∴射线l 的极坐标方程为04≥=ρπθ,,将θρcos =x ,θρsin =y 代入1422=+y x 得()()1sin 4cos 22=+θρθρ,∴曲线C 的极坐标方程为θρ22sin 314+=(2)由题可知,可以设⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛43,4,21πρπρQ P ,,则584sin 314221=+=πρ,5843sin 314222=+=πρ,∴510221==ρρ,∴542sin 2121==∆πρρPOQ S .23.解:(1)由题意可得()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<--≤-=21,42121,221,4x x x x x x f ,不等式()3≥x f 等价于⎪⎩⎪⎨⎧-≤≥-2134x x 或⎪⎩⎪⎨⎧≥≥2134x x ,解得43-≤x 或43≥x .即不等式()3≥x f 的解集为⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,4343 .(2)由(1)可知,函数()x f 在⎥⎦⎤ ⎝⎛-∞-21,上单调递减,在⎪⎭⎫⎢⎣⎡∞+,21上单调递增,且22121=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-f f ,即函数()x f 在最小值2=m ,即232=++c b a .()()c b c b c b c c b c b c a +++-=+++--=+++222211322111()()()[]c b c b c b c b +++-⎥⎦⎤⎢⎣⎡+++-=121121,∵()022>+-=+c b c a ,∴10<+<c b .令()1,0,∈+=t c b t ,则()t t t t c b c a +-⎪⎭⎫⎝⎛+-=+++12112111()()2231212321121321+=⎪⎪⎭⎫ ⎝⎛-⋅-+≥⎪⎭⎫ ⎝⎛-+-+=t t t t t t t t ,当且仅当()t t t t -=-121,即22-=t 时,取等号.即c b c a +++11的最小值为223+.。

高三数学测试卷含答案解析

高三数学测试卷含答案解析

一、选择题(每题5分,共50分)1. 下列函数中,在实数范围内是单调递增的是()A. y = -x^2 + 2xB. y = x^3 - 3xC. y = 2^xD. y = log2(x)答案:C解析:选项A和B都是二次函数,开口向下,存在最大值,不是单调递增。

选项D 是底数为2的对数函数,在定义域内是单调递增的,但题目要求在实数范围内,所以排除。

选项C是指数函数,底数大于1,在整个实数范围内都是单调递增的。

2. 已知等差数列{an}的首项a1=1,公差d=2,则第10项an=()A. 19B. 21C. 23D. 25答案:B解析:等差数列的通项公式为an = a1 + (n-1)d,代入a1=1,d=2,n=10,得an = 1 + (10-1)×2 = 21。

3. 若复数z满足|z-2i|=|z+1|,则复数z在复平面内的对应点在()A. x轴上B. y轴上C. 第一象限D. 第二象限答案:A解析:根据复数的模的定义,|z-2i|表示点z到点(0,2)的距离,|z+1|表示点z到点(-1,0)的距离。

若这两个距离相等,则点z位于这两点的垂直平分线上,即y轴上。

但由于|z-2i|是z到y轴的距离,|z+1|是z到x轴的距离,所以点z在x轴上。

4. 已知函数f(x) = ax^2 + bx + c,若f(1) = 0,f(-1) = 0,则函数的图像与x轴的交点坐标为()A. (1,0),(-1,0)B. (0,1),(0,-1)C. (0,0),(1,0)D. (-1,0),(0,0)答案:A解析:由f(1) = 0和f(-1) = 0可知,1和-1是函数的根,因此函数的图像与x轴的交点坐标为(1,0)和(-1,0)。

5. 在直角坐标系中,点A(2,3),点B(-3,1),则线段AB的中点坐标为()A. (-1,2)B. (-1,1)C. (1,2)D. (1,1)答案:A解析:线段AB的中点坐标为两个端点坐标的算术平均值,即中点坐标为((2-3)/2, (3+1)/2) = (-1,2)。

【高三数学试题】高三数学试题1(理科)及参考答案

【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

高三理科数学试卷(含答案)

高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。

高三数学经典周测卷 高三上周考卷及答案详解

高三年级上学期数学周测试卷(答案附后)姓名: 班级: 学号: 得分: 1 一、填空题(请把正确的答案写在题后的横线上,每小题5分,共80分)1.设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T = ;2.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B = ;3.已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁U B )∩A ={1},(∁U A )∩(∁U B )={2,4},则B ∩(∁U A )= ;4.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为 个;5.已知集合{}{}131x A x x B x =<=<,,则=B A ,=B A ;6.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B = ;7.已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B = ; 8.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为 ;9..已知f (x )=⎩⎪⎨⎪⎧ log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))= ; 10.已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值为 ; 11..函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是 ;112.函数()f x =的定义域为 ; 13.设函数f (x )=是(﹣∞,+∞)上的增函数,那么实数k 的取值范围为 ;14.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )= ;15.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x , 则()2=f ;16.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f =___________;111二、解答题(20分)17.(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.高三年级上学期数学周测试卷参考答案1.解析:T ={x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},2.解析:0<log 4x <1,即log 41<log 4x <log 44,∴1<x <4,∴集合A ={x |1<x <4},∴A ∩B ={x |1<x ≤2}.3.解析:依题意及韦恩图得,B ∩(∁U A )={5,6}.答案:{5,6}4.【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,5.【解答】{}1A x x =<,{}{}310x B x x x =<=< ∴{}0A B x x =<,{}1A B x x =<,6.【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,7.【答案】{1,0,1,2}-8.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0,恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]9.解析:f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12. 故f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=210.解析:当a >0时,由f (a )+f (1)=0得2a +2=0,故此时不存在实数a 满足条件;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3,满足条件11.【解答】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤|又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤或[]13,12.【解答】(2,)+∞13.【解答】解:∵f (x )=是(﹣∞,+∞)上的增函数,∴,解得k ≤﹣1或1≤k ≤2,则实数k 的取值范围是(﹣∞,﹣1]∪[1,2],故答案为:(﹣∞,﹣1]∪[1,2].14.解析:设-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)] 15.【答案】1216.【答案】117.解析:(1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1. (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b =2x +17,则有a =2,b +5a =17,∴a =2,b =7,故f (x )=2x +7.(3)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①令x =-x 得,2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).。

人教A版高三数学理科一轮复习滚动检测试卷(五)含答案

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.滚动检测五第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,集合A={x|x(x-2)<0},B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是()A.[0,+∞)B.(0,+∞)C.[2,+∞)D.(2,+∞)2.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f1(x)=2log2(x+1),f2(x)=log2(x+2),f3(x)=log2x2,f4(x)=log2(2x),则“同根函数”是() A.f2(x)与f4(x) B.f1(x)与f3(x)C.f1(x)与f4(x) D.f3(x)与f4(x)3.若命题p:函数y=lg(1-x)的值域为R;命题q:函数y=2cos x是偶函数,且是R上的周期函数,则下列命题中为真命题的是()A.p∧q B.(綈p)∨(綈q)C.(綈p)∧q D.p∧(綈q)4.(·河南名校联考)在△ABC中,a、b、c分别为角A、B、C的对边,若a2+b2=2 016c2,则2tan A·tan Btan C(tan A+tan B)的值为()A .0B .2 014C .2 015D .2 0165.《张邱建算经》有一道题:今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布( ) A .110尺 B .90尺 C .60尺D .30尺6.(·渭南模拟)已知椭圆x 24+y 23=1上有n 个不同的点P 1,P 2,…,P n ,且椭圆的右焦点为F ,数列{|P n F |}是公差大于11 000的等差数列,则n 的最大值为( ) A .2 001 B .2 000 C .1 999D .1 9987.(·河北衡水中学第二次调研考试)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列{f (n )g (n )}的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8D .98.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC 且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC 且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC 且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC 且三棱锥D -ABC 的体积为1639.若tt 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( )A .[16,1]B .[16,2 2 ]C .[16,413]D .[213,1]10.已知点G 为△ABC 的重心,∠A =120°,A B →·A C →=-2,则|A G →|的最小值是( ) A.33B.22C.23D.3411.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或712.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8,则lg(y +1)-lg x 的取值范围为( )A .[0,1-2lg 2]B .[1,52]C .[12,lg 2]D .[-lg 2,1-2lg 2]第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是面对角线A 1C 1上的两个不同动点,给出以下判断:①存在P ,Q 两点,使BP ⊥DQ ; ②存在P ,Q 两点,使BP ∥DQ ;③若|PQ |=1,则四面体BDPQ 的体积一定是定值; ④若|PQ |=1,则四面体BDPQ 的表面积是定值;⑤若|PQ |=1,则四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值. 其中真命题是________.(将正确命题的序号全填上)14.已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.15.设a >1,若曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,则a =________.16.已知M 是△ABC 内的一点(不含边界),且A B →·A C →=23,∠BAC =30°,若△MBC ,△BMA 和△MAC 的面积分别为x ,y ,z ,记f (x ,y ,z )=1x +4y +9z ,则f (x ,y ,z )的最小值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π,-π6]时,求f (x )的取值范围.18.(12分)(·咸阳模拟)数列{a n }的前n 项和为S n ,且a n 是S n 和1的等差中项,等差数列{b n }满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明:13≤T n <12.19.(12分)如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且AA1⊥平面P AB.(1)求证:BP⊥A1P;(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.20.(12分)(·保定调研)已知函数f(x)=ln x+ax-a2x2(a≥0).(1) 若x=1是函数y=f(x)的极植点,求a的值;(2)若f(x)<0在定义域内恒成立,求实数a的取值范围.21.(12分)如图,P -AD -C 是直二面角,四边形ABCD 是∠BAD =120°的菱形,AB =2,P A ⊥AD ,E 是CD 的中点,设PC 与平面ABCD 所成的角为45°.(1)求证:平面P AE ⊥平面PCD ;(2)试问在线段AB (不包括端点)上是否存在一点F ,使得二面角A -PF -D 的大小为45°?若存在,请求出AF 的长,若不存在,请说明理由.22.(12分)(·合肥第二次质检)已知△ABC 的三边长|AB |=13,|BC |=4,|AC |=1,动点M 满足CM →=λCA →+μCB →,且λμ=14.(1)求|CM →|最小值,并指出此时CM →与C A →,C B →的夹角;(2)是否存在两定点F 1,F 2,使||MF 1→|-|MF 2→||恒为常数k ?,若存在,指出常数k 的值,若不存在,说明理由.答案解析1.C 2.A 3.A 4.C 5.B 6.B 7.A 8.C 9.D [t t 2+9=1t +9t,而u =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t ≤213(当且仅当t =2时,等号成立),t +2t 2=1t +2t 2=2(1t +14)2-18, 因为1t ≥12,所以t +2t 2=1t +2t 2=2(1t +14)2-18≥1(当且仅当t =2时等号成立),故a 的取值范围是[213,1].]10.C [设BC 的中点为M ,则A G →=23AM →.又M 为BC 的中点,∴AM →=12(A B →+A C →),∴A G →=23AM →=13(A B →+A C →),∴|A G →|=13A B →2+A C →2+2A B →·A C →=13A B →2+A C →2-4.又∵A B →·A C →=-2,∠A =120°, ∴|A B →||A C →|=4.∵|A G →|=13AB →2+AC →2-4≥132|A B →||A C →|-4=23,当且仅当|A B →|=|A C →|=2时取“=”,∴|A G →|的最小值为23,故选C.]11.A [因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.]12.A [如图所示,作出不等式组⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8确定的可行域.因为lg(y +1)-lg x =lg y +1x ,设t =y +1x,显然,t 的几何意义是可行域内的点P (x ,y )与定点E (0,-1)连线的斜率. 由图可知,点P 在点B 处时,t 取得最小值; 点P 在点C 处时,t 取得最大值.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y =8,解得⎩⎪⎨⎪⎧x =3,y =2,即B (3,2),由⎩⎪⎨⎪⎧ y =3x -2,2x +y =8,解得⎩⎪⎨⎪⎧x =2,y =4,即C (2,4).故t 的最小值为k BE =2-(-1)3=1,t 的最大值为k CE =4-(-1)2=52,所以t ∈[1,52].又函数y =lg x 为(0,+∞)上的增函数, 所以lg t ∈[0,lg 52],即lg(y +1)-lg x 的取值范围为[0,lg 52].而lg 52=lg 5-lg 2=1-2lg 2,所以lg(y +1)-lg x 的取值范围为[0,1-2lg 2]. 故选A.] 13.①③⑤解析 当P 与A 1点重合,Q 与C 1点重合时,BP ⊥DQ , 故①正确;BP 与DQ 异面,故②错误;设平面A 1B 1C 1D 1两条对角线交点为O ,则易得PQ ⊥平面OBD ,平面OBD 可将四面体BDPQ 分成两个底面均为平面OBD ,高之和为PQ 的棱锥,故四面体BDPQ 的体积一定是定值, 故③正确;若|PQ |=1,则四面体BDPQ 的表面积不是定值, 故④错误;四面体BDPQ 在上下两个底面上的投影是对角线互相垂直且对角线长度分别为1和2的四边形,其面积为定值,四面体BDPQ 在四个侧面上的投影, 均为上底为22,下底和高均为1的梯形,其面积为定值, 故四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值, 故⑤正确.14.a >6解析 以A 点为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,如图所示. 则D (0,a,0),设P (0,0,b ),E (3,x,0),PE →=(3,x ,-b ),DE →=(3,x -a,0), ∵PE ⊥DE ,∴PE →·DE →=0, ∴9+x (x -a )=0, 即x 2-ax +9=0,由题意可知方程有两个不同根, ∴Δ>0,即a 2-4×9>0,又a >0,∴a >6. 15.e 2解析 ∵a >1,曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,∴ʃa 11x d x =2,∴ |ln x a 1=2,ln a =2,∴a =e 2. 16.36解析 由题意得A B →·A C →=|A B →|·|A C →|cos ∠BAC =23,则|A B →|·|A C →|=4,∴△ABC 的面积为12|A B →|·|A C →|·sin ∠BAC =1,x +y +z =1,∴f (x ,y ,z )=1x +4y +9z =x +y +z x +4(x +y +z )y +9(x +y +z )z =14+(y x +4x y )+(9x z +z x )+(4zy +9y z )≥14+4+6+12=36(当且仅当x =16,y =13,z =12时,等号成立). 17.解 (1)由图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1, 将(π6,1)代入得1=sin(π6+φ),而-π2<φ<π2,所以φ=π3, 因此函数f (x )=sin(x +π3). (2)由于x ∈[-π,-π6],-2π3≤x +π3≤π6, 所以-1≤sin(x +π3)≤12, 所以f (x )的取值范围是[-1,12]. 18.(1)解 ∵a n 是S n 和1的等差中项,∴S n =2a n -1.当n =1时,a 1=S 1=2a 1-1,∴a 1=1;当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1)=2a n -2a n -1.∴a n =2a n -1,即a n a n -1=2, ∴数列{a n }是以a 1=1为首项,2为公比的等比数列,∴a n =2n -1,S n =2n -1.设{b n }的公差为d ,b 1=a 1=1,b 4=1+3d =7,∴d =2,∴b n =1+(n -1)×2=2n -1.(2)证明 c n =1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1). ∴T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1, ∵n ∈N *,∴T n =12(1-12n +1)<12, T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13, 综上所述,13≤T n <12. 19.(1)证明 易知AP ⊥BP ,由AA 1⊥平面P AB ,得AA 1⊥BP ,且AP ∩AA 1=A ,所以BP ⊥平面P AA 1,又A 1P ⊂平面P AA 1,故BP ⊥A 1P .(2)解 由题意得V =π·OA 2·AA 1=4π·AA 1=12π,解得AA 1=3.由OA =2,∠AOP =120°,得∠BAP =30°,BP =2,AP =23,∴S △P AB =12×2×23=23, ∴三棱锥A 1-APB 的体积V =13S △P AB ·AA 1=13×23×3=2 3. 20.解 (1)函数的定义域为(0,+∞),f ′(x )=-2a 2x 2+ax +1x. 因为x =1是函数y =f (x )的极值点,所以f ′(1)=1+a -2a 2=0,解得a =-12(舍去)或a =1, 经检验,当a =1时,x =1是函数y =f (x )的极值点,所以a =1.(2)当a =0时,f (x )=ln x ,显然在定义域内不满足f (x )<0恒成立;当a >0时,令f ′(x )=(2ax +1)(-ax +1)x=0 得,x 1=-12a (舍去),x 2=1a,所以当x 变化时,f ′(x ),f (x )的变化情况如下表: x (0,1a ) 1a (1a ,+∞) f ′(x )+ 0 -f (x )极大值所以f (x )max =f (1a )=ln 1a<0,所以a >1. 综上可得a 的取值范围是(1,+∞).21.(1)证明 因为P A ⊥AD ,二面角P -AD -C 是直二面角,所以P A ⊥平面ABCD ,因为DC ⊂平面ABCD ,所以P A ⊥CD ,连接AC ,因为ABCD 为菱形,∠BAD =120°,所以∠CAD =60°,∠ADC =60°,所以△ADC 是等边三角形.因为E 是CD 的中点,所以AE ⊥CD ,因为P A ∩AE =A ,所以CD ⊥平面P AE ,而CD ⊂平面PCD ,所以平面P AE ⊥平面PCD .(2)解 以A 为坐标原点,AB ,AE ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为P A ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 所成角,所以∠PCA =45°,所以P A =AC =AB =2,于是P (0,0,2),D (-1,3,0),PD →=(-1,3,-2).设AF =λ,则0<λ<2,F (λ,0,0),所以PF →=(λ,0,-2).设平面PFD 的法向量为n 1=(x ,y ,z ),则有n 1·PD →=0,n 1·PF →=0,所以⎩⎪⎨⎪⎧ -x +3y -2z =0,λx -2z =0, 令x =1,则z =λ2,y =λ+13, 所以平面PFD 的法向量为n 1=(1,λ+13,λ2). 而平面APF 的法向量为n 2=(0,1,0).所以|cos 〈n 1,n 2〉|=2|λ+1|7λ2+8λ+16=22, 整理得λ2+8λ-8=0,解得λ=26-4(或λ=-26-4舍去),因为0<26-4<2,所以在AB 上存在一点F ,使得二面角A -PF -D 的大小为45°,此时AF =26-4.22.解 (1)由余弦定理知cos ∠ACB =12+42-132×1×4=12⇒∠ACB =π3, 因为|CM →|2=CM →2=(λC A →+μC B →)2=λ2+16μ2+2λμC A →·C B →=λ2+1λ2+1≥3, 所以|CM →|≥3, 当且仅当λ=±1时,“=”成立,故|CM →|的最小值是3,此时〈CM →,C A →〉=〈CM →,C B →〉=π6或5π6. (2)以C 为坐标原点,∠ACB 的平分线所在直线为x 轴,建立平面直角坐标系(如图),所以A (32,12),B (23,-2),设动点M (x ,y ), 因为CM →=λC A →+μC B →, 所以⎩⎨⎧ x =32λ+23μ,y =12λ-2μ⇒⎩⎨⎧ x 23=(λ2+2μ)2,y 2=(λ2-2μ)2,再由λμ=14知x 23-y 2=1, 所以动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点,实轴长为23的双曲线,即||MF 1→|-|MF 2→||恒为常数23,即存在k =2 3.。

高三数学一轮复习周测试卷

1高三数学一轮复习 周测试卷一:选择题1.命题“对任意x R ∈都有21x ≥”的否定是( )A .对任意x R ∈,都有21x <B .不存在x R ∈,使得21x <C .存在0x R ∈,使得201x ≥D .存在0x R ∈,使得201x <2.设{}62|≤≤=x x A ,{}32|+≤≤=a x a x B ,若A B ⊆,则实数a 的取值范围是( ) A 、[]3,1 B 、),3[+∞ C 、),1[+∞ D 、()3,1 3.已知函数()21f x +的定义域为12,2⎛⎫- ⎪⎝⎭,则()f x 的定义域为( )A . 31,24⎛⎫-⎪⎝⎭ B . 31,2⎛⎫- ⎪⎝⎭C . ()3,2-D . ()3,3-4.函数()22x f x x =-在区间[]1,4-内的零点个数是( ) A .0B .1C .2D .35.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角,则下列不等式中正确的是( )A .(sin )(co s )f f αβ>B .(co s )(co s )f f αβ<C .(co s )(co s )f f αβ>D .(sin )(co s )f f αβ<6.如图,当直线:l y x t =+从虚线位置开始,沿图中箭头方向平行匀速移动时,正方形A B C O 位于直线l 下方(图中阴影部分)的面积记为S ,则S t 与的函数图象大致是( )7.若函数)(log)(3ax xx f a-=)1,0(≠>a a 在区间21(-,0)内单调递增,则a 取值范围是 ( )A.[41,1) B.[43,1) C.49(,)+∞D.(1,49)8.设定义在区间(),b b -上的函数()1lg12a x f x x+=-是奇函数(),,2a b R a ∈≠-且,则ba 的取值范围是( )2A.( B.(0, C.( D.(0,9.函数()3f x m x =-+有零点,则实数m 的取值范围是( )A .0,2⎛⎫ ⎪ ⎪⎝⎭ B .0,2⎡⎢⎣⎦ C .0,4⎡⎢⎣⎦ D .0,4⎛⎫⎪ ⎪⎝⎭ 10.设A 是自然数集的一个非空子集,对于k A ∈,如果2k A ∉,且A ,那么k 是A 的一个“酷元”,给定{}2lg (36)S x N y x =∈=-,设集合M 由集合S 中的两个元素构成,且集合M 中的两个元素都是“酷元”,那么这样的集合M 有( )A .3个B .4个C .5个D .6个二:填空题11.已知函数()322f x x a x b x a =+++在1x =处取得极值10,则a b +取值的集合为 12.若函数3()12f x x x =-在(1,1)k k -+上不是..单调函数,则实数k 的取值范围 为 .13.已知函数()f x 对于任意x R ∈都有()()2f x f x =-,()1y f x =-的图象关于()1,0对称,且当[]1,1x ∈-时,()3f x x =,则()2013f =__. 14.已知函数21(1),0()2,0n x x f x x x x +>⎧=⎨--≤⎩ , 若函数()()g x f x m =-有3个零点,则实数m 的 取值范围是15.若关于x 的方程43210x a x a x a x ++++=有实根,则实数a 的取值范围 三:解答题16.设p:实数x 满足22430x a x a -+<, ,命题:q 实数x 满足.|x-3|<1(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围;(Ⅱ)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.17.已知数列{}n a 中,)(3,1*11N n a a a a n n n ∈+==+求数列{}n a 的通项公式n a ;318.已知函数()2in c o s c o s f x x x x ωωω=-,其中ω为使()f x 能在23x π=时取得最大值的最小正整数. (1)求ω的值;(2)设A B C 的三边长a 、b 、c 满足2b ac =,且边b 所对的角θ的取值集合为A ,当x A ∈时,求()f x 的值域.19.工厂生产某种产品,次品率P 与日产量x (万件)间的关系()()10623x c xP xc ⎧<≤⎪⎪-=⎨⎪>⎪⎩(c 为常数,且06c <<),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元,(1)将日盈利额y (万元)表示为日产量x (万件)的函数; 18.为使日盈利额最大,日产量应为多少万件?(注: 100⨯次品数次品率=%产品总数)20.已知椭圆2222:1(0)x y C a b ab+=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -+=相切,直线:4l xm y =+与椭圆C 相交于A 、B 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)求O A O B⋅的取值范围;421.已知函数()()()()()1212ln ,x f x a x x g x x e -=---=(a 为常数,e 为自然对数的底)(1)当1a =时,求()f x 的单调区间; (2)若函数()f x 在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (3)若对任意的(]00,x e ∈,在(]0,e 上存在两个不同的()1,2i x i =使得()()0i f x g x =成立,求a的取值范围.。

高中高三数学上学期周测试卷 理(10.9,含解析)-人教版高三全册数学试题

2014-2015学年某某省某某高中高三(上)周测数学试卷(理科)(10.9)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数的定义域为()A.C.∪(1,+∞)2.已知集合M={y|y=2x,x>0},N={x|y=lg(2x﹣x2)},则M∩N为()A.C.[2,+∞)D.[1,+∞)3.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1 D.44.关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根;其中假命题的个数是()A.0 B.1 C.2 D.35.(5分)已知集合M={x|y=},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为()A.{x|﹣≤x≤1} B.{x|﹣3≤x≤1} C.{x|﹣3≤x<﹣} D.{x|1≤x≤}6.(5分)(2014春某某期末)函数f(x)=在点(x0,f(x0))处的切线平行于x轴,则f(x0)等于()A.﹣B.C.D.e27.(5分)(2014碑林区校级一模)已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象大致为()A.B. C.D.8.函数是奇函数,且在(0,+∞)上单调递增,则a等于()A.0 B.1 C.﹣1 D.±19.(5分)(2014莘县校级模拟)函数f(x)=(x+2a)(x﹣a)2的导数为()A.2(x2﹣a2)B.2(x2+a2)C.3(x2﹣a2)D.3(x2+a2)10.(5分)(2012五华区校级模拟)函数f(x)=lgx与g(x)=7﹣2x图象交点的横坐标所在区间是()A.(1,2)B.(2,3)C.(3,4)D.(1,5)11.(5分)(2014开福区校级模拟)设函数f′(x)=x2+3x﹣4,则y=f(x+1)的单调减区间为()A.(﹣4,1)B.(﹣5,0)C.D.12.(5分)(2014某某模拟)若函数y=﹣x2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2016某某二模)已知函数f(x)=lnx﹣f′(1)x2+3x﹣4,则f′(1)=.14.(5分)(2014武侯区校级模拟)已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值X围是.15.(5分)(2014秋青羊区校级期中)定义在R上的偶函数f(x)在[0,+∞)上是增函数,则方程f(x)=f(2x﹣3)的所有实数根的和为.16.(5分)(2009奉贤区一模)已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤)17.(10分)(2013秋某某期中)已知集合A={x|x2﹣3x﹣10≤0},B={x|m+1≤x≤2m﹣1},若A∪B=A,某某数m的取值X围.18.(12分)(2012裕安区校级模拟)已知函数f(x)=ka﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).(1)某某数k,a的值;(2)若函数,试判断函数g(x)的奇偶性,并说明理由.19.(12分)已知函数f(x)=x(k∈Z)且f(2)<f(3)(1)某某数k的值;(2)试判断是否存在正数p,使函数g(x)=1﹣pf(x)+(2p﹣1)x在区间[﹣1,2]上的值域为[﹣4,],若存在,求出这个p的值;若不存在,说明理由.20.(12分)(2013秋康乐县校级期中)已知函数f(x)=x3﹣4x2+5x﹣4.(1)求曲线f(x)在x=2处的切线方程;(2)求经过点A(2,﹣2)的曲线f(x)的切线方程.21.(12分)(2014秋吴兴区校级期中)已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为f(x)=﹣(x∈R).(Ⅰ)求f(x)在[0,1]上的解析式;(Ⅱ)求f(x)在[0,1]上的最大值.22.(12分)(2012新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.2014-2015学年某某省某某高中高三(上)周测数学试卷(理科)(10.9)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数的定义域为()A.C.∪(1,+∞)【分析】由函数的解析式可得log2x≠0,即,由此求得函数的定义域.【解答】解:由函数的解析式可得log2x≠0,∴,故函数的定义域(0,1)∪(1,+∞),故选D.【点评】本题主要考查函数的定义域的求法,对数函数的定义域,属于基础题.2.已知集合M={y|y=2x,x>0},N={x|y=lg(2x﹣x2)},则M∩N为()A.C.[2,+∞)D.[1,+∞)【分析】通过指数函数的值域求出M,对数函数的定义域求出集合N,然后再求M∩N.【解答】解:M={y|y>1},N中2x﹣x2>0∴N={x|0<x<2},∴M∩N={x|1<x<2},故选A【点评】本题考查指对函数的定义域和值域,不要弄混.3.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1 D.4【分析】根据奇函数的性质f(0)=0,求得a的值;再由f(﹣2)=﹣f(2)即可求得答案.【解答】解:∵f(x)为定义在R上的奇函数,∴f(0)=0,解得a=﹣1.∴当x≥0时,f (x)=3x﹣2x﹣1.∴f(﹣2)=﹣f(2)=﹣(32﹣2×2﹣1)=﹣4.故选B.【点评】本题考查了奇函数的性质,充分理解奇函数的定义及利用f(0)=0是解决此问题的关键.4.关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根;其中假命题的个数是()A.0 B.1 C.2 D.3【分析】将方程的问题转化成函数图象的问题,画出可得.【解答】解:关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0可化为(x2﹣1)2﹣(x2﹣1)+k=0(x ≥1或x≤﹣1)(1)或(x2﹣1)2+(x2﹣1)+k=0(﹣1<x<1)(2)当k=﹣2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根当k=0时,方程(1)的解为﹣1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根故选A【点评】本题考查了分段函数,以及函数与方程的思想,数形结合的思想.5.(5分)已知集合M={x|y=},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为()A.{x|﹣≤x≤1} B.{x|﹣3≤x≤1} C.{x|﹣3≤x<﹣} D.{x|1≤x≤} 【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于N但不属于M的元素构成,所以用集合表示为N∩(∁U M).则M={x|y=}={x|3﹣x2≥0}={x|﹣≤x≤},则∁U M={x|x>或x<﹣}.N={x||x+1|≤2}={x|﹣3≤x≤1},则N∩(∁U M)={x|﹣3≤x<﹣},故选:C【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.6.(5分)(2014春某某期末)函数f(x)=在点(x0,f(x0))处的切线平行于x轴,则f(x0)等于()A.﹣B.C.D.e2【分析】求出原函数的导函数,再由f′(x0)=0求得x0,则f(x0)可求.【解答】解:由f(x)=,得,∴,由=0,得x0=e.∴f(x0)=.故选:B.【点评】本题考查利用导数研究曲线上某点处的切线方程,过曲线上某点的切线的斜率,就是函数在该点处的导数值,是中档题.7.(5分)(2014碑林区校级一模)已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象大致为()A.B. C.D.【分析】根据题意,易得(x﹣a)(x﹣b)=0的两根为a、b,又由函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;根据函数图象变化的规律可得g(x)=a X+b的单调性即与y轴交点的位置,分析选项可得答案.【解答】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的两根为a、b;根据函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,即函数图象与x轴交点的横坐标;观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;在函数g(x)=a x+b可得,由0<a<1可得其是减函数,又由b<﹣1可得其与y轴交点的坐标在x轴的下方;分析选项可得A符合这两点,BCD均不满足;故选A.【点评】本题综合考查指数函数的图象与函数零点的定义、性质;解题的关键在于根据二次函数的图象分析出a、b的X围.8.函数是奇函数,且在(0,+∞)上单调递增,则a等于()A.0 B.1 C.﹣1 D.±1【分析】利用函数是奇函数,可得f(﹣x)=﹣f(x),结合在(0,+∞)上单调递增,即可求得a的值.【解答】解:∵函数是奇函数∴f(﹣x)=﹣f(x)∴=﹣[]∴1﹣a2=0∴a=±1a=1时,,f′(x)=1+0,∴函数在(0,+∞)上单调递增,a=﹣1时,,f′(x)=1﹣,∴函数在(0,1)上单调递减,在(1,+∞)上单调递增,综上知,a=1故选B.【点评】本题考查函数的奇偶性与单调性的结合,考查奇函数的定义,属于中档题.9.(5分)(2014莘县校级模拟)函数f(x)=(x+2a)(x﹣a)2的导数为()A.2(x2﹣a2)B.2(x2+a2)C.3(x2﹣a2)D.3(x2+a2)【分析】把给出的函数采用多项式乘多项式展开后直接运用和函数的导数求导即可.【解答】解:由f(x)=(x+2a)(x﹣a)2=(x+2a)(x2﹣2ax+a2)=x3﹣3a2x+2a3,所以,f′(x)=(x3﹣3a2x+2a3)′=3(x2﹣a2).故选C.【点评】本题考查了导数的运算,解答的关键是熟记基本初等函数的导数运算公式,此题是基础题.10.(5分)(2012五华区校级模拟)函数f(x)=lgx与g(x)=7﹣2x图象交点的横坐标所在区间是()A.(1,2)B.(2,3)C.(3,4)D.(1,5)【分析】本题即求函数h(x)=f(x)﹣g(x)=lgx+2x﹣7 的零点,根据h(3)h(4)<0,可得函数h(x)的零点所在区间.【解答】解:本题即求函数h(x)=f(x)﹣g(x)=lgx+2x﹣7 的零点,由于函数h(x)是连续函数,且 h(3)=lg3﹣1<0,h(4)=lg4+1>0,故 h(3)h(4)<0,故函数h(x)的零点所在区间是(3,4),故选C.【点评】本题主要考查函数的零点与方程的根的关系,函数零点的判定定理,体现了化归与转化的数学思想,属于基础题.11.(5分)(2014开福区校级模拟)设函数f′(x)=x2+3x﹣4,则y=f(x+1)的单调减区间为()A.(﹣4,1)B.(﹣5,0)C.D.【分析】已知函数f′(x),可以求出f′(x+1),要求y=f(x+1)的单调减区间,令f′(x+1)<0即可,求不等式的解集;【解答】解:∵函数f′(x)=x2+3x﹣4,f′(x+1)=(x+1)2+3(x+1)﹣4=x2+5x,令y=f(x+1)的导数为:f′(x+1),∵f′(x+1)=x2+5x<0,解得﹣5<x<0∴y=f(x+1)的单调减区间:(﹣5,0);故选B.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.12.(5分)(2014某某模拟)若函数y=﹣x2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是()A.B.C.D.【分析】对函数求导y′=x2﹣2x=(x﹣1)2﹣1,由0<x<2可求导数的X围,进而可求倾斜角的X围【解答】解:y′=x2﹣2x=(x﹣1)2﹣1∵0<x<2∴当x=1时,y′最小﹣1,当x=0或2时,y′=0∴﹣1<y′<0即﹣1≤tanα<0∴即倾斜角的最小值故选D.【点评】本题考查导数的几何意义:导数在切点处的值是曲线的切线斜率.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2016某某二模)已知函数f(x)=lnx﹣f′(1)x2+3x﹣4,则f′(1)=.【分析】f′(1)是一个常数,对函数f(x)求导,能直接求出f′(1)的值.【解答】解:∵f(x)=lnx﹣f′(1)x2+3x﹣4,∴f′(x)=﹣2f′(1)x+3∴f′(1)=1﹣2f′(1)+3,解得f′(1)=,故答案为:【点评】本题考查了求导法则,解题时应知f′(1)是一个常数,根据求导法则进行计算即可,是基础题.14.(5分)(2014武侯区校级模拟)已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值X围是m<﹣3或m>6 .【分析】求出函数f(x)的导函数,根据已知条件,导函数必有两个不相等的实数根,只须令导函数的判别式大于0,求出m的X围即可.【解答】解:∵函数f(x)=x3+mx2+(m+6)x+1既存在极大值,又存在极小值f′(x)=3x2+2mx+m+6=0,它有两个不相等的实根,∴△=4m2﹣12(m+6)>0解得m<﹣3或m>6故答案为:m<﹣3或m>6.【点评】本题主要考查了函数在某点取得极值的条件.导数的引入,为研究高次函数的极值与最值带来了方便.15.(5分)(2014秋青羊区校级期中)定义在R上的偶函数f(x)在[0,+∞)上是增函数,则方程f(x)=f(2x﹣3)的所有实数根的和为 4 .【分析】根据偶函数f(x)在[0,+∞)上是增函数,可得x=2x﹣3或﹣x=2x﹣3,由此可得方程f(x)=f(2x﹣3)的所有实数根的和.【解答】解:由题意,x=2x﹣3或﹣x=2x﹣3∴x=3或x=1∴方程f(x)=f(2x﹣3)的所有实数根的和为4故答案为:4【点评】本题考查函数奇偶性与单调性的结合,考查学生的计算能力,求出方程的根是关键.16.(5分)(2009奉贤区一模)已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= ﹣8 .【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤)17.(10分)(2013秋某某期中)已知集合A={x|x2﹣3x﹣10≤0},B={x|m+1≤x≤2m﹣1},若A∪B=A,某某数m的取值X围.【分析】分别解出集合A,B,根据A∪B=A,可得B⊆A,从而进行求解;【解答】解:∵A∪B=A,∴B⊆A 又A={﹣2≤x≤5},当B=∅时,由m+1>2m﹣1,解得m<2,当B≠∅时,则解得2≤m≤3,综上所述,实数m的取值X围(﹣∞,3].【点评】此题主要考查集合关系中的参数的取值问题,还考查子集的性质,此题是一道基础题;18.(12分)(2012裕安区校级模拟)已知函数f(x)=ka﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).(1)某某数k,a的值;(2)若函数,试判断函数g(x)的奇偶性,并说明理由.【分析】(1)由函数f(x)=ka﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B (3,8),分别代入函数解析式,构造关于k,a的方程组,解方程组可得实数k,a的值;(2)由(1)求出函数的解析式,并根据指数的运算性质进行化简,进而根据函数奇偶性的定义,可得答案.【解答】解:(1)∵函数f(x)=ka﹣x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).∴k=1,且ka﹣3=8解得k=1,a=(2)函数g(x)为奇函数,理由如下:由(1)得f(x)=﹣x=2x,∴函数=则g(﹣x)===﹣=﹣g(x)∴函数g(x)为奇函数【点评】本题考查的知识点是指数函数的图象和性质,函数奇偶性的判断,是函数图象和性质的简单综合应用,难度不大.19.(12分)已知函数f(x)=x(k∈Z)且f(2)<f(3)(1)某某数k的值;(2)试判断是否存在正数p,使函数g(x)=1﹣pf(x)+(2p﹣1)x在区间[﹣1,2]上的值域为[﹣4,],若存在,求出这个p的值;若不存在,说明理由.【分析】(1)根据幂函数的性质,结合题意得﹣k2+k+2>0,从而求出k的值;(2)由k的值得出f(x)=x2,写出g(x)的解析式,配方后讨论对称轴的X围,从而求出g(x)的最值,得出值域,即可求出对应的p.【解答】解:(1)由f(2)<f(3),得﹣k2+k+2>0,即k2﹣k﹣2<0,又k∈Z,解得k=0或1;(2)k=0或1时,f(x)=x2,g(x)=1﹣pf(x)+(2p﹣1)x=﹣p+,当,即时,,解得p=2,g(﹣1)=﹣4,g(2)=﹣1;当时,∵p>0,∴这样的p不存在;当,即时,,这样的p不存在;综上得,p=2.【点评】本题考查了幂函数的定义与性质的应用问题,也考查了分类讨论思想的应用问题,是综合性题目.20.(12分)(2013秋康乐县校级期中)已知函数f(x)=x3﹣4x2+5x﹣4.(1)求曲线f(x)在x=2处的切线方程;(2)求经过点A(2,﹣2)的曲线f(x)的切线方程.【分析】(1)求出导函数f′(x),根据导数的几何意义可知,切线的斜率为f′(2),又切点在函数f(x)上,求出切点的坐标,根据直线的点斜式方程写出函数f(x)在x=2处的切线方程;(2)设切点坐标为P(a,a3﹣4a2+5a﹣4),根据导数的几何意义求出切线的斜率,由点斜式写出切线方程,而点A(2,﹣2)在切线上,列出关于a的方程,求解a,即可得到曲线的切线方程.【解答】解:(1)∵函数f(x)=x3﹣4x2+5x﹣4,∴f′(x)=3x2﹣8x+5,根据导数的几何意义,则曲线f(x)在x=2处的切线的斜率为f′(2)=1,又切点坐标为(2,﹣2),由点斜式可得切线方程为y﹣(﹣2)=1×(x﹣2),即x﹣y﹣4=0,∴求曲线f(x)在x=2处的切线方程为x﹣y﹣4=0;(2)设切点坐标为P(a,a3﹣4a2+5a﹣4),由(1)可知,f′(x)=3x2﹣8x+5,则切线的斜率为f′(a)=3a2﹣8a+5,由点斜式可得切线方程为y﹣(a3﹣4a2+5a﹣4)=(3a2﹣8a+5)(x﹣a),①又根据已知,切线方程过点A(2,﹣2),∴﹣2﹣(a3﹣4a2+5a﹣4)=(3a2﹣8a+5)(2﹣a),即a3﹣5a2+8a﹣4=0,∴(a﹣1)(a2﹣4a+4)=0,即(a﹣1)(a﹣2)2=0,解得a=1或a=2,将a=1和a=2代入①可得,切线方程为y+2=0或x﹣y﹣4=0,故经过点A(2,﹣2)的曲线f(x)的切线方程为y+2=0或x﹣y﹣4=0.【点评】本题考查了利用导数研究曲线上某点切线方程.导数的几何意义即在某点处的导数即该点处切线的斜率,解题时要注意运用切点在曲线上和切点在切线上.关于曲线的切线问题,要注意审清题中的条件是“在”点处还是“过”点,是本题问题的易错点.属于中档题.21.(12分)(2014秋吴兴区校级期中)已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为f(x)=﹣(x∈R).(Ⅰ)求f(x)在[0,1]上的解析式;(Ⅱ)求f(x)在[0,1]上的最大值.【分析】(Ⅰ)设x∈[0,1],则﹣x∈[﹣1,0].利用已知条件以及函数的奇偶性即可求f (x)在[0,1]上的解析式;(Ⅱ)通过换元法化简函数f(x)利用二次函数的性质求解在[0,1]上的最大值.【解答】解:(Ⅰ)设x∈[0,1],则﹣x∈[﹣1,0].∴f(﹣x)=﹣=4x﹣2x.又∵f(﹣x)=﹣f(x)∴﹣f(x)=4x﹣2x.∴f(x)=2x﹣4x.所以,f(x)在[0,1]上的解析式为f(x)=2x﹣4x…(6分)(Ⅱ)当x∈[0,1],f(x)=2x﹣4x=2x﹣(2x)2,∴设t=2x(t>0),则f(t)=t﹣t2.∵x∈[0,1],∴t∈[1,2].当t=1时,取最大值为1﹣1=0.所以,函数在[0,1]上的最大值分别为0…(12分)【点评】本题考查函数的解析式的求法,函数的最值的求法,奇偶性的应用,基本知识的考查.22.(12分)(2012新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a 的取值X围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学 周测试卷(理科)含答案命题人: 审题人:一、选择题(本题共12小题,每小题5分)1.下列说法正确的是( )A .若a R ∈,则“11a<”是“1a >”的必要不充分条件 B .“p q ∧为真命题”是 “p q ∨为真命题”的必要不充分条件C .若命题p :“x R ∀∈,sin cos 2x x +≤”,则p ⌝是真命题D .命题“0x R ∃∈,200230x x ++<”的否定是“x R ∀∈,2230x x ++>”2.平面βα,和直线m ,给出条件①α⊂m ;②α⊥m ;③α//m ;④βα//;⑤βα⊥,为使β//m ,应选择下面四个选项中的条件( )A 、①⑤ B 、①④ C 、②⑤ D 、③⑤3.在等差数列{}n a 中,()()35710133224,a a a a a ++++=则该数列前13项的和是( ) A .13 B .26 C .52 D .1564.点(),M x y 是不等式组0333x y x y⎧≤≤⎪⎪≤⎨⎪≤⎪⎩表示的平面区域Ω内的一动点,且不等式20x y m -+≥恒成立,则m 的取值范围是( )A .323m ≥- B .3m ≥ C .0m ≥ D .123m ≥-5.一空间几何体的三视图如图所示, 该几何体的体积为35812+π,则正视图中x 的值为( )A.5B.4C.3 D .26.一个简单组合体的三视图及尺寸如右图所示(单位:mm ),则该组合体的体积为( )A.32 B .48 C .64 D .56(第5题图) (第6题图)7.下图是一个空间几何体的三视图,则该几何体的体积为( )A .3B .43 C .1 D .23(第7题图) (第8题图)8.如图,四面体ABCD 中,1AB DC ==,2BD =,3AD BC ==,二面角A BD C --的平面角的大小为60,,E F 分别是,BC AD 的中点,则异面直线EF 与AC 所成的角的余弦值是( )A .13B .33C .63D .2239.正四面体P ABC -中,,,D E F 分别是,,AB BC CA 的中点,下面四个结论中不成立的是( ) A .//BC 平面PDF B .平面PDF ⊥平面ABC C .DF ⊥平面PAE D .平面PAE ⊥平面ABC10.在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,PA =AB ,D 为PB 的中点,则下列推断不正确的是( ) A .BC ⊥平面PAB B .AD ⊥PC C .AD ⊥平面PBC D .PB ⊥平面ADC11.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A .33B .1C .3D .33212.如图,在棱长均为2的正四棱锥P ABCD -中,点E 为PC 中点,则下列命题正确的是( )A .//BE 平面PAD ,且直线BE 到平面PAD 的距离为3B .//BE 平面PAD ,且直线BE 到平面PAD 的距离为263C .BE 不平行于平面PAD ,且BE 到平面PAD 所成角大于30 D .BE 不平行于平面PAD ,且BE 到平面PAD 所成角小于30二、填空题(本题共4小题,每小题5分)13.若向量()()3,1,7,2==-a b ,则-a b 的单位向量的坐标是______。

14. 设θ为第二象限角,若21)4tan(=+πθ,则=θcos 15.若函数()3sin(2)3f x x π=-的图象为C ,则下列结论中正确的序号是__________.①图象C 关于直线1112x π=对称; ②图象C 关于点2(,0)3π对称; ③函数()f x 在区间5(,)1212ππ-内不是单调的函数;④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C .侧视图俯视图正视图4x33x 416.在棱长为a 的正方体1111D C B A ABCD -中,M 是AB 的中点,则点C 到平面DM A 1的距离为 三、解答题(本题共6个小题,共70分)17. 在ABC ∆中,角C B A ,,对应的边分别是c b a ,,,已知43π=C ,且)cos(sin 2sin B A A B += (1)证明:222a b =(2)若ABC ∆的面积是1,求c 的值;18.已知数列}{n a 中,n n a nn a a 21,2111+==+,*N n ∈ (1)求证:}{nan 为等比数列(2)求数列}{n a 的前n 项和n S19.甲、乙两所学校进行同一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下2×2列联表: 班级与成绩列联表 优秀 不优秀 总计 甲队 80 40 120 乙队 240 200 240 合计320240560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为成绩与学校有关系;(Ⅱ)采用分层抽样的方法在两所学校成绩优秀的320名学生中抽取16名同学.现从这16名同学中随机抽取3名运同学作为成绩优秀学生代表介绍学习经验,记这3名同学来自甲学校的人数为X ,求X 的分布列与数学期望.附: P (K 2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:K 2=,n=a +b +c +d )20已知函数12)(+--=x x x f (1)解不等式1)(>x f(2)当0>x ,函数)0(1)(2>+-=a xx ax x g 的最小值总大于函数)(x f ,试求实数a 的取值范围。

21.在长方体1AC 中,1,21===AA AB AD ,E 为11C D 的中点,如图所示 (1)在所给图中画出平面1ABD 与平面EC B 1的交线(不必说明理由) (2)证明:EC B BD 11//平面(3)求平面1ABD 与平面EC B 1所成锐二面角的正切值;22.已知函数)1,0(523)(2≠>-+-=a a x bx a x f x,)('x f 为)(x f 的导函数,0)0('=f (1)求b a ,满足的关系式(用a 表示b )(2)当e a =(e 为自然对数的底数)时,若不等式0)(<x f 在开区间),(21n n 上恒成立),(21Z n n ∈,求12n n -的最大值;(3)当1>a 时,若存在]1,1[,21-∈x x ,使21)()(21-≥-e x f x f 成立,求a 的取值范围;数学周测试卷答案1. A2. B3. B4.B5.C6.C7.A8.B9.B 10.D 11.A 12.D 13.43,55⎛⎫- ⎪⎝⎭14. 10103- 15.①② 16.a 36选择题详解:1.1110a a a <⇔><或,所以“11a <”是“1a >”的必要不充分条件;若p q ∧为真命题,则,p q皆为真命题, 若p q ∨为真命题,则,p q 至少有一个为真命题,所以“p q ∧为真命题”是 “p q ∨为真命题”的充分不必要条件;因为sin cos 2sin(x )24x x π+=+≤,所以命题p 为真命题,p ⌝是假命题;命题“0x R∃∈,200230x x ++<”的否定是“x R ∀∈,2230x x ++≥”,因此正确的是A .2.∵m ⊂α,α∥β,∴m ∥β. 故①④⇒m ∥β. 故选B3.()()735710134107131323224,6624,24,262a a a a a a a a a S ⨯++++=∴+=∴=∴==,故选B . 4.若20x y m -+≥总成立,即2m y x ≥-总成立,设2z y x =-即求z 的最大值即可,作出不等式组的平面区域如图,由2z y x =-得2y x z =+,则图象可知当直线经过点(0,3)C 时,直线的截距最大,此时z 最大,303,3z m =-=∴≥,故选B.5.该几何体是由一个圆柱和圆柱上一个正四棱锥组成的.则有222118524432123323x x ππ⨯⋅+⨯⨯⨯-=+∴=,故选C. 6.由三视图知,该几何体是由两个长方体叠加构成的简单组合体,且下面长方体的长、宽、高分别为6mm 、4mm 、1mm ,上面长方体的长、宽、高分别为2mm 、4mm 、5mm ,所以该组合体的体积为64124564⨯⨯+⨯⨯=,故选C . 7.该几何体是一个四棱柱,1(12)1232V =⨯+⨯⨯=.故选A .8.(理科)取DC 的中点为G ,连FG EG ,,则2321,2221====AC FG BD EG ,易知21=EF ,则θ=∠EFG 就是异面直线EF 与AC 所成角,故在EFG ∆中,3321232214143cos =⨯⨯-+=θ,故应选B.(文科)试题分析:显然,D D BB 1111面⊥C A ,垂足为O (1111D B A 与C 的交点).则O B A 1∠即为B A 1与平面D D BB 11所成的角,在OB A RT 1∆中,21B A sin 111==∠B A O A O ,故B A 1与平面D D BB 11所成的角是30°.9.由//DE BC 得//BC 平面PDF ;//,,BC PE ,DF PE DF BC BC AE DF AE ⊥⊥⇒⊥⊥得DF ⊥平面PAE ;而DF ⊂平面ABC ,所以平面PAE ⊥平面ABC ,因此选B.10.∵PA ⊥平面ABC ,∴PA ⊥BC 且AB ⊥BC ,∴BC ⊥平面PAB ,A 正确,由BC ⊥平面PAB 得BC ⊥AD ,BC ⊥PB ,∵PA =AB ,D 为PB 的中点,∴AD ⊥PB ,从而AD ⊥平面PBC ,C 正确,而PC ⊂平面PBC ,∴AD ⊥PC ,B 正确,在平面PBC 中,∵PB ⊥BC ,∴PB 与CD 不垂直,故PB 不垂直平面ADC ,D 错误. 11.因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S ∴在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C 的距离相等.3SH =,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC =,1SM ∴=,30OSM ∠=︒,233,33SO OH ∴==,即为O 到平面ABC 的距离,故选A .12.(理科)若//BE 平面PAD ,而//BC 平面PAD ,所以平面//PBC 平面PAD ,矛盾,所以,A B 不正确.取PD 中点F ,取AB 中点G ,连接,,EF AF GF ,依题意有1,3,3EF AF GF ===,故33153cos 2362AFG +-∠==>⋅,故30AFG ∠<,线面角为直线与平面内直线所成角的最小值,故BE到平面PAD 所成角小于30.(文科)试题分析:E 是AC 中点,连接EB DE ,ABC ADC ,∆都是等腰直角三角形 a AC BE DE 2221===, BDE a BD ∆=,也是等腰直角三角形BE DE AC DE ⊥⊥,,⊥DE 平面ABC ,DE 就是三棱锥ABC D -的高221a S ABC =∆三棱锥ABC D -的体积:32122222131a a a =⨯⨯⨯,故选D . 17.(Ⅰ)由A B C π+=-,以及正弦定理得,2cosC b a =- ,又43π=C ,所以2b a =,从而有222b a =.(Ⅱ)由1sin 2ABC S ab C ∆=214ab ==,所以22ab =,即:22a b ⎧=⎪⎨=⎪⎩,由余弦定理知, 2222cosC c a b ab =+-22442102=++⋅=,所以10c =. 18.(1)}{n a n 是以21为首项,21为公比的等比数列 (2)1222++-=n n n S19.解:(Ⅰ)由题意得K 2=≈5.657>5.024,∴能在犯错误的概率不超过0.025的前提下认为成绩与所在学校有关系.… (Ⅱ)(理科)16名同学中有甲学校有4人,乙学校有12人…..… X 的可能取值为0,1,2,3…..… P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==X 的分布列为 X 0 1 2 3P…..… ∴EX=0×+1×+2×+3×=…..…(文科)73=P20.(1)}0{<x x(2)当0>x ,)1,3[)(-∈x f ,12min -=a g , 所以112≥-a ,1≥a21.(Ⅰ)连接1BC 交C B 1于M ,则直线ME 即为平面1ABD 与平面EC B 1的交线,如图所示;……………………4分 (Ⅱ)由(Ⅰ)因为在长方体1AC 中,所以M 为1BC 的中点,又E 为11C D 的中点所以在B C D 11∆中EM 是中位线,所以1//BD EM ,…………………………6分 又⊂EM 平面EC B 1,⊄1BD 平面EC B 1, 所以//1BD 平面EC B 1;……………………8分 (Ⅲ)因为在长方体1AC 中,所以11//BC AD , 平面1ABD 即是平面11D ABC ,过平面EC B 1上 点1B 作1BC 的垂线于F ,如平面图①, 因为在长方体1AC 中,⊥AB 平面11BCC B⊂F B 1平面11BCC B ,所以AB F B ⊥1, B AB BC =⋂1,所以⊥F B 1平面1ABD 于F .过点F 作直线EM 的垂线于N ,如平面图②,连接N B 1,由三垂线定理可知,EM N B ⊥1.由二面角的平面角定义可知,在FN B Rt 1∆中, NF B 1∠即是平面1ABD 与平面EC B 1所成锐二面角的平面角.因长方体1AC 中,2==AB AD ,11=AA ,在平面图①中,525211=⨯=F B ,………………………………………………………………………10分1053=FM , 251=M C ,11=E C ,在平面图②中,由1EMC ∆相似1FMN ∆可知EMFM EC FN ⋅=1225110531⎪⎪⎭⎫ ⎝⎛+⨯=55=, 所以NF B 1tan ∠NF F B 1=25552=⋅=,解:(Ⅰ)f'(x )=a x lna ﹣b +3x , ∵f'(0)=lna ﹣b=0, ∴b=lna ,(Ⅱ)当a=e 由(Ⅰ)知b=1,f (x )=e x ﹣x +x 2﹣5, ∴f ′(x )=e x ﹣1+3x ,当x >0时,e x ﹣1>0,f ′(x )>0,则f (x )在(0,+∞)上为增函数, 当x <0时,e x ﹣1<0,f ′(x )<0,则f (x )在(﹣∞,0)上为减函数,又f (﹣2)=+3>0,f (﹣1)=﹣<0,f (1)=e ﹣<0,f (2)=e 2﹣1>0,∵n 1,n 2∈Z ,∴(n 1)min =﹣1,(n 2)max =1,∴(n 2﹣n 1)max =1﹣(﹣1)=2,(Ⅲ)若存在存在x 1,x 2∈[﹣1,1],使|f (x 1)﹣f (x 2)|≥e ﹣成立,即x ∈[﹣1,1]时f (x )max ﹣f (x )min ≥e ﹣,∵f ′(x )=a x lna ﹣lna +3x=3x +(a x ﹣1)lna ,①当0<x ≤1时,由a >1,a x ﹣1>0,lna >0,∴f ′(x )>0 ②当﹣1≤x <0时,由a >1,a x ﹣1<0,lna >0,∴f ′(x )<0③当x=0时,f ′(x )=0∴f (x )在[﹣1,0]为减函数,在[0,1]为增函数, ∴f (x )min =f (0)=4,f (x )max =max {f (﹣1),f (1)}, ∵f (1)﹣f (﹣1)=a ﹣﹣2lna (a >1) 设g (x )=x ﹣=2lnx ,(x >1),∴g ′(x )=1+﹣=>0,∴g (x )在(1,+∞)为增函数,又∵g (1)=1﹣=0, ∴g (x )>0在(1,+∞)恒成立MB平面图①F1C MD C 1 BAENF平面图②A CDA 1B 1C 1BD 1EM即f(1)>f(﹣1),∴f(x)max=f(1)=a﹣lna﹣,∴f(x)max﹣f(x)min=a﹣lna﹣+4≥e﹣,即a﹣lna≥e﹣1=e﹣lne,令h(a)=a﹣lna,(a>1),∴h′(a)=1﹣>0,∴h(a)在(1,+∞)为增函数,∴h(a)≥h(e),∴a≥e.。

相关文档
最新文档