色散对光纤通信系统的影响与补偿

色散对光纤通信系统的影响与补偿
色散对光纤通信系统的影响与补偿

编号:

审定成绩:

×××××××××××

××××届毕业设计(论文)

色散对光纤通信系统的影响与补偿

设计(论文)题目:

——基于Optisystem运用

学院名称:

学生姓名:

专业:

班级:

学号:

指导教师:

日期:××××年××月

中文摘要

色散是光纤的一种重要的光学特性,它引起光脉冲的展宽,严重限制了光纤的传输容量。对于在长途干线上实际使用的单模光纤,起主要作用的是色度色散,在高速传输时偏振模色散也是不可忽视的因素。随着脉冲在光纤中传输,脉冲的宽度被展宽,劣化的程度随数据速率的平方增大,因而对色散补偿的研究是一项极有意义的课题。

色散是影响光纤通信质量的一个主要因素,啁啾光纤光栅色散补偿技术是一种实用的色散补偿方式,因而成为目前光纤通信领域的一个研究热点。本论文以光纤传输通信系统为研究对象,对系统的模型,仿真方法和系统的性能进行了深入的研究和探索,通过对仿真结果的研究验证系统的性能,得到最佳系统参数,采取了较佳的方案。

论文主要工作如下:

1)介绍、分析布拉格光纤光栅的基本原理及其相关基础知识;

2)分析研究色散对光纤的短程及远程传输信号的影响;

3)利用OptiSystem仿真软件对色散对光纤传输的影响进行适当的仿真分析。

4)利用OptiSystem仿真软件实现布拉格光纤光栅对光纤脉冲信号传输中色散的补偿作用。

关键词:光纤光栅,色散补偿,时延,带宽,补偿距离,光通信系统,OptiSystem,仿真

ABSTRACT IN CHINESE

Dispersion is an important optical properties of the fiber, which causes optical pulse broadening, and severely limits the transmission capacity of optical fiber. Play a major role for actual use on a long haul single-mode fiber, chromatic dispersion, polarization mode dispersion in high-speed transmission, can’t be ignored. Pulses in optical fibers, the pulse width broadening the extent of degradation increases with the square of the data rate, and thus the study of the dispersion compensation is a very significant issue.

So dispersion is an important factor that impact the optical communication. Chirped fiber grating is considered to be one of the most useful technology for high-bit-rate optical communication. Therefore, it has been a hot topic in recent years. The communication optical fiber transmission system, the system model, simulation method and system performance conducted in-depth study and exploration of the performance of the verification system through the simulation results, the optimal system parameters, adopted a more excellent program.

The research works in the dissertation are summarized as follows:

1) Introduction and analysis of the basic principles and basic knowledge of fiber Bragg gratings;

2) Analyze the impact of dispersion on the short-and long-range transmission signal of the fiber;

3) The use of appropriate simulation analysis the simulation OptiSystem software dispersive optical fiber transmission.

4) Fiber Bragg gratings for dispersion compensation in optical pulse signal transmission of OptiSystem simulation software.

Key words:Optical fiber grating, the dispersion compensation and time delay, bandwidth, compensation distance, optical communication system, OptiSystem, simulation

目录

中文摘要 (1)

ABSTRACT IN CHINESE (2)

第一章绪论 (4)

1.1 光纤通信的发展历程 (4)

1.2 光纤通信研究的目的和意义 (5)

1.3 光纤通信系统的概述 (6)

第二章光纤色散与布拉格光纤光栅的补偿 (8)

2.1 光色散与光时延 (8)

2.1.1 光的色散、相速、群速和时延 (8)

2.1.2 色散和时延 (10)

2.2 光纤光栅的色散 (11)

2.3 光纤光栅的色散特性及其应用 (13)

第三章 OptiSystem系统仿真设计 (16)

3.1 OptiSystem系统简介 (16)

3.2 OptiSystem系统运用及仿真 (18)

3.2.1 系统一:光纤通信光信号传输中时域与频域的变化 (18)

3.2.2 系统二:光纤光栅对光信号传输中的色散补偿分析 (21)

3.2.3 系统三:光纤光栅色散补偿系统改进及数据分析 (25)

结论 (27)

附录 (28)

参考文献 (29)

致谢........................................................ 错误!未定义书签。

第一章绪论

1.1 光纤通信的发展历程

1966年,英国标准电信研究所英籍华裔科学家高锟(CharlesK ,C)博士和G.A.Hockham 详细研究了玻璃纤维的传输损耗后,首先提出了光纤通信的思想。当时,他们撰写的论文Dielectric Fiber Surface Waveguide for Optical Frequencies发表在伦敦电气工程师协会会刊上,文中明确提出用石英玻璃纤维(简称光纤)传送光信号来进行通信。该论文从理论上指出:光纤可实现超高速通信;光线中光能的损失可抵达20dB/km。

此外,他还给出了光纤的原始构造,及其几何尺寸精度要求达到微米数量级。高锟的思想得到了当时英国邮电总局电信研究所和美国贝尔实验室部分科学家的认同。随后,他们与美国康宁公司(Coming Glass Works)合作,在1970年,研制成功了世界上第一根损耗低于20dB/km的光纤,为光通信找到了一个优良的传输介质,光信通信在实用化的道路上向前迈进了一大步,从此便进入了光纤通信迅猛发展的时代。

光器件是实现光通信系统的基石,为了适应光通信系统的快速发展,人们在光器件和相关材料方面的开发研究上花费了大量的精力,并取得了丰硕的成果,光纤光栅是今年来发展最快的光纤器件之一。1978年加拿大渥太华通信研究中心的K.O.Hill等人首次在掺锗石英光纤中发现光纤的光敏效应,并将紫外光从光纤的端面注入光纤的芯层中,用驻波写入法制成世界上第一只光纤光栅。1989年,美国东哈特福德联合技术研究中心的G.Meltz 等人用244nm的紫外光双光束全息干涉形成干涉条纹,实现了光纤布拉格光撒(FBG)的UV激光侧面写入技术,使光纤光栅的制作技术取得了重大进展,光纤光栅进入实用阶段。20世纪90年代以来若干关键技术获得的了重要的突破,主要有:利用两束紫外光束的干涉,通过光纤侧面在纤芯中写入光栅,增加了选择工作波长的自由度;利用相位掩膜技术进行光栅写入,降低了对紫外光源相干性和稳定性的要求;利用高压载氢敏化技术对光纤进行预处理,提高了普通商用通信光纤的光敏性,降低了光纤光栅的成本;特殊组分和配比的专用光敏光纤,改善了光纤光栅的传输谱。随着这些光纤光栅制造技术的不断完善,其应用的范围越来越广泛,从光纤通信、光纤传感到光计算和光信息处理的各个领域都将由于光纤光栅的实用化而发生革命性的变化,光纤光栅技术是光纤通信领域中继掺铒光纤放大器(EDFA)之后的又一重大技术突破。

光纤光栅是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生相应变化的特性(这种现象也成为光致折射率变化效应)。比如上文中提到的用激光干涉条纹从侧面辐照掺锗光纤,就可使其成为光纤光栅,这种光栅在大约500°C以下稳定不变,而用500°C以上高温可擦除。在纤芯内形成的空间相位光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或

反射镜。利用这一特性可制作出许多性能独特的光纤无源器件。这些器件具有反射带宽范围大、附加损耗小、体积小,能与光纤很好的耦合,可与与它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。光纤光栅的种类很多,主要分两大类:一是布拉格光栅(也称为反射或短周期光栅);二是透射光栅(也称为长周期光栅)。对光纤光栅的研究主要集中在光栅的写入技术(尤其是非周期光栅的写入技术)、光栅的传输和传感特性以及光栅的应用等几个方面。本论文研究的是光纤光栅在高速光纤通信系统中的色散补偿的应用。

1.2 光纤通信研究的目的和意义

纵观光纤通信的发展历史,我们可以清晰地看到,光纤通信中传输容量的扩大、传输速度的提高、传输距离的延长都与光纤的损耗、非线性效应、色散效应紧密相连。这些都是阻碍光纤通信向前发展的主要因素。损耗限制了站间距离的增加,非线性效应则会严重地影响系统的传输质量,同时也限制中继距离,而色散则造成脉冲展宽,引起码间干扰。

随着掺铒光纤放大器、波分复用技术在光纤通信系统中的商用化后,损耗问题基本得到了解决,色散便上升为首要限制因素。而光纤的色散还能够有效地抑制四波混频等非线性效应,因此对光通信系统进行升级扩容的关键将集中体现在色散问题上。在高速率、超长距离的大容量光纤通信系统中,也只有进行有效色散补偿才能满足通信系统进一步传输的要求,因此,研究色散广利对于解决超长距离传输具有重大意义。色散补偿技术是未来高速、大容量、长距离光纤通信系统中必不可少的重要技术。

如今已经埋设的单模光纤大多是一阶色散零点位于1.31μm波长处的常规单模光纤,在此波长上传输可以不考虑一阶色散的影响。然而由于1.55μm是石英光纤3个低损耗窗口中损耗最低的一个,而且掺铒光纤放大器也是工作在此波长上,这使得人们倾向于利用1.55μm处的波长,在此波长处常规光纤的色散系数约为17ps/(nm·km),因此色散问题就很突出。从长远来看,随着人们对信息量需求的增加,要求通信系统能够在较宽波段范围内工作,波段资源的开发必然对色散补偿提出更高的要求。

40Gbit/s系统的色散容限只有10Gbit/s系统的十六分之一,也就是说,这种容限与信号速率的平方成反比。光纤色散对通信系统的新能影响主要表现在对传输中继距离和传输速率的限制。当色散引起光信号脉冲的展宽大于0.3倍的输入脉宽时,光接收灵敏度急剧下降、均衡困难、误码率增加。因此要想保证通信质量必须加大码艰巨,这就不得不付出降低码速率、减少通信容量的代价。另外色散随着传输距离的增加将越来越严重,也必须减小中继距离以保证通信质量。特别是对于长距离、高速光通信系统来说影响尤为严重。因此,色散效应成为了重要的研究课题之一。

如何解决色散问题已引起全世界的关注,各国研究人员先后提出色散补偿方法有:色散补偿光纤补偿技术(DCF,Dispersion Comqensation fiber)、光纤光栅补偿技术(CFG,Chirped Fiber Grating)、虚像相位整列法(VIPA,Virtual Imaged Phased Array)、光

纤孤子传输(Fiber,Soliton Transmission)、中点谱反转法(MSSI,Mid-Span Spectral Inversion)、色散支持传输(DST,Diapeision Supported Transmission)、平面光路法(POC,Planar Optical Circuit)、预啁啾补偿技术(per-chirping)等等,这些方法各有优缺点。

色散补偿光纤补偿技术早在1980年有Lin等人提出,如今它已经成为应用十分广泛的补偿技术,已经大规模地商业化制造和生产。色散补偿光纤是无源器件,可放在传输网中的任何位置,使用灵活、方便、可靠。但在器件小型化和加大传输距离方面有明显不足:损耗大、非线性强;为了实现对不同信道的补偿,必须采用复杂剖面结构的色散和斜率同时补偿光纤,增大了工艺难度和成本。

1986年,Ouellette首次提出了采用啁啾光纤光栅对光纤的色散进行补偿。1994年J.A.R Williams等人进行了线性啁啾光纤光栅色散补偿的10Gb/s100km传输系统,首次论证了切趾对改善光纤光栅时延特性的作用。光纤光栅补偿法特点是器件小型化、损耗低、对偏振不敏感、色散补偿量大、反射率高以及反射带宽宽等;而且光栅体积小,可以很容易安装在现有传输系统中,很方便地进行全光通信的一维集成;而且它的工艺简单,造价不高,还可以根据传输距离灵活地设计我们所需要的补偿量,因此,光纤光栅最具有优势。

1.3 光纤通信系统的概述

光纤通信作为现代通信的主要通信方式,在现代通信网中起着举足轻重的作用。随着社会的不断进步,通信向大容量,长距离方向发展是必然趋势。光通信是以电通信发展而来的,是成熟的电通信技术与先进光子技术的结合,是利用光作为信息载体,以二氧化硅为基本原材料来传输携带信息的光波达到通信的目的。由光发射机、光纤与光接受机组成。

光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。光纤系统可分为三个基本单元:光发射机、光纤和光接收机。光发射机由将带有信息的电信号转换成光信号的转换装置和将光信号送入光纤的传输装置组成。光源是其核心部件,由半导体光二极管LED或者激光二极管LD构成;光纤在实用系统中一般以光缆的形式存在;光接收机由光检测器、放大电路和信号恢复电路组成。光发射机光接收机也称为光端机。在光纤通信系统中还包括大量的有源、无源光器件,连接器起着各种设备与光纤之间的连接作用,光耦合器用于需要将传输的光分路或合路的场合,光放大器起着对光波放大的作用,用于弥补光信号传输一定距离后,因光纤衰减产生的光功率减弱。

光纤通信系统可以根据系统所使用的传输信号形式、传输光的波长和光纤的类型进行不同的分类。按传输信号的不同,光纤通信系统可以分为:模拟光纤通信系统、数字光纤通信系统。按波长和光纤类型分类,光纤通信系统分为四类:短波长(0.85μm左右)多模光纤通信系统;长波长(1.31μm)多模光纤通信系统;长波长(1.31μm)单模光纤通

信系统;长波长(1.55μm)单模光纤通信系统。

光纤通信与其他通信手段相比,其特点在于:频带宽,通信容量大;损耗低、中继距离长;无串音干扰,保密性好;适应能力强、体积小、重量轻、便于施工与维护、原材料来源丰富,价格低廉。

虽然光纤还存在光放大难,电力传输困难,纤芯质地脆弱,弯曲半径不宜太小,机械强度低等一些缺陷,但这些问题都不是严重的,随着科技的发展这些问题将会一一获得解决。

随着人类社会发展到信息社会对声音、图象和数据等信息的交流量非常大。以往的通信手段已不能满足人们的需要,而光纤通信以其通信容量大、保密性能高、体积小、重量轻、原材料资源丰富、造价低廉、施工手段多样、灵活、方便、无再生中继距离长等一系列优点。其应用领域普及通信、交通、工业、医疗、教育、航天航空和计算机等各个行业,并向着更广更深的层次发展。

由于光纤损耗低、通信容量大、直径小、重量轻、不导电、不短路和敷设容易等优特点,现广泛运用于公用电信网、局域网、不同网络层面、专网及其危险环境下的通信线等。基于社会的发展和需要,光纤通信系统也正向超高速、超大容量波分复用(WDM)系统发展,并逐渐步入全面光联网;同时为了适应干线网和城域网的不同发展需要,开发新型光纤是必经之途,目前已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。

本章小结

本章是论文的绪论部分,主要对光纤通信系统的发展历程,研究意义和基本概述等做了简要的介绍,阐明了论文研究的理论背景和实际研究的目的意义。

第二章 光纤色散与布拉格光纤光栅的补偿

纵观光纤通信的发展,损耗与色散一直是长期阻碍光纤通信向前发展的主要因素。损

耗限制了站间距的增加,而色散则造成脉冲展宽,引起码间干扰。当码速小于5Gbit/s 时,

传输距离的限制主要由光纤的损耗决定。若码速超过6Gbit/s ,则色散成为决定光纤通信

系统性能优劣的主要因素。由于单模光纤的损耗主要是由瑞利散射所引起,而瑞利散射光

强正比于4/1λ,因此当单模光纤的工作波长从1.3 μm 移向1.55μm 波段时,其损耗就从

0.4dB/km 降到0.2dB/km ,由此就得到最低损耗窗口,使光纤通信的中继距离得到扩大。

尤其是近年来掺铒光纤放大器(EDFA )的开发成功和实用化,它工作于1.55μm 波段,可

在约35nm 宽范围内提供达40dB 的增益,较好地解决了光纤通信中的损耗问题,使人类向

实现超高速、大容量、长距离的光纤通信又迈出了坚实的一步。

本文对光纤通信系统研究主线就是如何有效地控制色散,使信号在高码速,长距离传

输中不失真地传输到接收端。在光纤通信系统中,信息是通过编了码的光脉冲序列在光纤

中传输的,光脉冲的宽度由系统比特率B 决定。如果脉冲扩宽到指定的比特隙(B T B /1=)

之外,就会与探测过程相互干扰并产生误码。当用光纤放大器补偿光纤损耗时,L 超过数

千千米,色散问题变得相当严重。因此,光纤色散成为限制光纤通信系统传输性能的主要

因素之一。

2.1 光色散与光时延

2.1.1 光的色散、相速、群速和时延

不同频率(波长)的光在同一个介质中的折射率不同,这种光在介质中传播时传播速

度(折射率)随频率不同而变化的现象称为色散。色散通常是由于材料的不同特性引起的,

实际上主要是指材料色散。

在真空中,所有频率的光(电磁波)都以相同的速度c 传播,在各向同性介质中,不

同频率的光的传播速度不同。理想的单色光以速度 n c /=υ沿z 轴传播,n 为光在这种介

质中的折射率。单色波列可以表示为:

)]/(cos[)cos(00υωωz t A kz t A A -=-= (2.1.1)

其中,ω为光的角频率,k=2π/λ为光在该介质中的波数,λ为光在该介质中的波长。这

里的速度υ实际上表示的是光的等相位面在介质中的传播速度,称为相速度(简称相速),

一般用p υ来表示,可见:

k p /ωυ= (2.1.2)

考虑最简单的情况,假设非单色光是由两个频率分立的单色波构成,两者均沿z 方向

传播,振幅均为0A ,频率为1ω和2ω,而且相差不大,它们叠加后的波列为:

)cos()cos(20kz t kz t A A -?-?=ωω (2.1.3)

其中2/)(;2/)(;2/)(;2/)(21212121k k k k k k +=-=?+=-=?ωωωωωω。式中的第一项形成缓

变包络,第二项形成高频载波。

一般来说,低频包络向前的移动速度和高频载波向前移动的速度是不同的。高频载波

的速度速度即前面提到的相速度p υ,它是高频载波的等相面向前的推移速度。低频包络的

移动速度称为群速度,用g υ表示,是低频包络在空间向前的移动速度。

可见,同一束光有两个传播速度,一个是相速,一个是群速,由于光的频率很高,高

频载波的相位变化很快,而能量主要集中在波包上,因此,实际测量得到的是波包在两点

之间的传播时间,而不是高频载波的传播时间。通常,称波包在介质中传播单位长度的距

离所需要的时间为群时延,用τ来表示。因此,在实验中测量的光信号通过单位长度的传

播时间为群时延。所以(2.1.3)式可以变为:

)]/(cos[()]/(cos[20k k z t z t A A ωωωω--?=??

(2.1.4) 其中,第一个余弦函数表示波包的移动;第二个余弦函数表示载波的移动,因此有

k p /ωυ= ,k g ??=/ωυ。

实际的准单色波可以看作由无限多频率在ω附近、Δω范围内连续分布的单色波组成,

其合成波也是由载波和慢变包络组成,这样的包络通常称为波包,波包的移动速度即群速

度,波包中振幅最大的地方时能量最集中的地方,群速度(简称群速)代表了能量的传播

速度,也就是信号的传播速度。群速可表示为:

dk d g /ωυ= (2.1.5)

上式即材料中光的群速度表达式。可见,波包在介质中通过单位长度距离需要的时间

为:

dk d g //1ωυτ== (2.1.6)

其中,τ即群时延,简称时延。

2.1.2 色散和时延

同样,光在光纤中传输时也会存在色散,光纤中一般用传播常数β来表示前面的波数k ,

即在光纤中,βωυd d g /=。时延τ是波长λ的函数,即)(λττ=,则在光纤中的时延为: 02

00211)(λπλββωβυλτcd d dk d c d d g ?-=?=== (2.1.7) 其中,c k //200ωλπ==,0λ为真空中的光波长,c 为真空中的光波。式中利用了

02020

λλπd dk -=。 不同速度的信号传输单位长度的距离需要不同的时间,即各信号的时延不同,这种时

延上的差别称为时延差,用τ?来表示。当光在确定的介质中传输时,时延差可由信号中

的不同频率成分引起,也可由不同的模式成分引起。对单模光纤,主要是不同频率成分引

起的时延差。时延差使得沿光纤传输的光脉冲信号随时间的增加而加宽。时延差越大,光

脉冲展宽越严重,因此,常用时延差来表示光纤色散的严重程度。

若光纤中传输的某一信号的中心频率为0ω,带宽为ω?,对应的波长间隔为0λ?(指

真空中的波长),也相当于光源的带宽,光纤能同时传输很多信号,这些信号带宽很大,

但就某一信号来说,带宽则不大,因此,在这一带宽内,时延差(相当最大时延差)为:

00

λτλτd d ?=? (2.1.8)

利用(2.1.7)式可以得到: )()2(2022002020020020λβπλλτλβλβπλλλλ

τd d c d d d d c -?=+?-=? (2.1.9) 光纤的色散通常用色散系数D 来表示,它定义为单位长度光纤上单位波长间隔内的平

均群时延: 0

λτd d D = (2.1.10) D 的单位为ps/(nm ·km)。可见,只要知道了光纤的色散系数,就可以计算出一定长度

的光纤时延。τ?与D 的关系为:

0λτ?=?D (2.1.11)

其中,0λ?为信号带宽。

例如,对于1310nm 的光,通常光纤的色散接近为0,但用于传输1550nm 的光时,就

会有一个大约D=17 ps/(nm ·km)色散。

2.2 光纤光栅的色散

通过前面对光及光纤色散和时延的分析,我们了解了时延和色散的基本概念,但不能用前面的公式直接来分析光纤布拉格光栅的时延和色散。光通过光纤布拉格光栅后,反射光和透射光也存在时延和色散,可以用类比的方法来分析光栅的时延和色散。下面讨论布拉格光纤光栅的反射时延。 光纤的折射率在某些波长的光的照射下,将发生永久性的变化,这就是光纤的光敏特性。依照这个特性,将单模光纤的纤芯暴露于光强周期性变化的紫外光源下,就可以得到折射率受调制的光纤光栅。布拉格光纤光栅的折射率受到周期性调制,其原理图2.2.1、

2.2.2如下:

图2.2.1 光纤光栅的结构,内部的为纤芯,外部为包层

图2.2.2 纤芯中的折射率受周期性调制

折射率方程可以表示为:

)2cos(),,(),,(),,(z z y x n z y x n z y x n Λ

+=πδ (2.2.1) 其中),,(z y x n 为纤芯中的平均折射率系数,),,(z y x n δ为折射率的调制系数,Λ是布拉格光栅的周期。

在每个周期的折射率变化处都会有一小部分入射光发生反射。当强耦合模式发生时,某特定波长的反射光就会汇聚成一强反射光,这就是布拉格条件,这个发生发射的特定波长为布拉格波长。只有满足布拉格条件的波长才会产生强反射,入射光的反射率将在布拉格波长处达到峰值。事实上,除了相位匹配的布拉格波长处会发生反射以外,布拉格光栅对其他波长的入射光相当于是透明的。

光经过光纤光栅时,光在光栅的不同位置被反射,所以,光经过光纤光栅反射或透射

时,无法用前面的时延来表示光栅的时延。可以将一段光纤光栅看作一个黑匣子,只考虑入射光和反射光,而不必研究光在光栅中的传播,如图2.2.3所示。考虑两个频率很接近的单色光,平率分别为1ω和2ω,两者均沿z 方向传播,振幅均为0A ,它们在光栅的始端P 截面处的光振动可表示为:

)cos(),cos(2020210101?ω?ω+=+=t A A t A A (2.2.2)

图 2.2.3 光栅原理

这两个频率的光经光纤光栅反射后,由于两个频率很接近,因此,可以认为反射光的两个振幅也相同,均为0B ,则反射光在P 截面处的光振动可表示为:

)cos(),cos(202202101101??ω??ω+-=+-=t B B t B B (2.2.3)

1?和2?为因光栅的存在引起的相应延迟)0,(21>??,其合振动可表示为:

)cos(]cos[22

2020102010?????ω?ω+++-+?-?=t t B B (2.2.4) 其中,2/)(;2/)(;2/)(;2/)(21212121??????ωωωωωω+=-=?+=-=?。可见,在P 处的反射波振动也是由慢变和快变两部分组成,慢变部分形成反射波的包络,快变部分形成反射波的高频载波。上式可变为:

)cos(])(cos[22

2020102010????ω??ωω++??+-+-?=t t B B (2.2.5) 可见,由于光栅的存在而引起的反射光波包的时延为:

当0→?ω时,ω?

τ??= (2.2.6)

光纤光栅的时延不同于光纤的时延,光纤的时延是指单位长度的光纤产生的时延,而光纤光栅的时延则是指某一段光纤光栅产生的时延,而不是单位长度的光纤光栅产生的时延,是指一段光纤光栅整体产生的时延。

时延可进一步表示为:

0202λ?

πλω?τd d c -==?? (2.2.7)

利用(2.2.6)式或(2.2.7)式可以计算出光纤光栅的时延,计算出0λ和相邻的某一波长的相位差,然后利用这两式计算出它们的时延。

在波长间隔0λ?范围内的平均时延差为:

τλλτλ00

0d d D ?=?=?

(2.2.8) 其中,D 为色散系数,即: 20220020220000222λ?πλλτλ?πλλ?πλλτd d c d d c d d c d d D -=--== (2.2.9)

色散系数单位为ps/nm ,这和光纤的色散系数单位不同,光纤的色散系数单位是ps/(nm ·km),它和光纤的长度相联系。而光纤光栅的色散系数为ps/nm ,是指光栅整体,而不是其中的某一段光栅。

2.3 光纤光栅的色散特性及其应用

光纤光栅从功能上可分为滤波型光栅和色散补偿型光栅两类,色散补偿型光栅又称为啁啾光纤光栅。啁啾可以是线性的也可以是非线性的,周期沿长度方向线性变化的光栅称为线性啁啾光栅(Linearly Chirped Fiber Grating .LCFG)。由于LCFG 在色散补偿方面有重要应用价值,因此对LCFG 谱特性的研究更具现实意义。本文只研究线性啁瞅光栅的特性,后文所有的分析都是基于线性啁啾的。通过数值计算可以直观看出各参数是如何影响光栅的谱宽、反射率、中心波长以及时延等特性。

在光纤通信中,由于光源的光是非单色光,而调制信号有一定的宽度,或者说光是以一定的光脉冲形式传播,所以,光纤中传输的光具有一定的波形。光在光纤中传输,受光纤折射率分布、光纤材料色散特性、光纤模式分布等因素影响,会发生波形畸变,使通过光纤的光的波形出现展宽现象。光纤的色散特性主要描述光纤对所传输的光信号波形的影响。

光纤色散的存在使传输的信号脉冲发生畸变。显然,如果光脉冲在光纤中传输时,其波形不变,则只要脉冲能量足够大,输出端总可以被探测并被分辨出来,但在实际中,由于色散的存在,光脉冲会随着传播距离的增大而展宽,致使输出的光脉冲不可分辨,因此,色散会影响光通信的传输速率(带宽)及传输距离。所以,消除色散或对色散加以补偿可以大大提高光通信的容量和传输距离。目前,利用啁啾光纤布拉格光栅对光纤色散加以补偿是一种有效的方法。

对正常的单模光纤,色散主要有两种:一是材料色散,是由纤芯材料的折射率随波长变化而引起的;二是波导色散,是由于光纤有效折射率的波长关系与结构参数有关而产生的,它取决于波导尺寸、折射率分布和纤芯与包层的相对折射差。一般情况下,单模光纤

的色散主要来源于材料色散。

对光纤的色散进行补偿,可以用多种方法,但目前主要有两种方法:一种是利用色散补偿光纤;另一种是啁啾光纤布拉格光栅。前者通常需要较长的补偿光纤才能抵消掉,而且存在较大损耗和非线性,并且成本较高。而用啁啾光纤布拉格光栅,只需用厘米级长度的光栅就可以完成,而且光纤布拉格光栅的损耗小,制作技术已很成熟,成本可以达到很低。

通常的单模光纤约在nm D 1310=λ处色散为零,当D λλ>时,色散系数为正值,处于反常色散区;当D λλ<时,色散系数为负值,处于正常色散区。于是,在反常色散区,一定带宽的光信号脉冲通过光纤时,红移分量(长波长成分2λ)比蓝移分量(短波长成分1λ)传的慢,因而经历的时延大。相反,在正常色散区,红移分量比蓝移分量传得快,因而经历的时延小。

常用的光通信波长1550nm 处于反常色散区。根据光栅方程可以给出Λ-λ曲线,可以看出,光栅的周期较大时,对应的谐振波长较大,如图2.3.1所示。利用下式也可以看出这一点:

)1(20cz n eff +Λ=λ (2.3.1)

图 2.3.1 光栅Λ-λ曲线

因此,若使信号光从光栅周期大的一端入射,由于光栅工作在反射状态,因耦合而引起谐振反射,使得红移分量经过较近的距离就能被反射,而蓝移分量要经历较远的

距离才能被反射,即红移分量比蓝移分量经历的时延小,即不同频率的入射光在不同地点反射,并有不同的延迟。可见,光纤光栅以这种方式放置时的色散特性正好与常规单模光纤的色散特性相反,能够起到色散补偿作用,如下图所示。显然,当处于正常色散区时,光信号应该从光栅周期小的一端入射。

光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解 第1章 1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm 2、光纤通信系统的基本组成:P5 图1-3 目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。 各部件功能: 电发射机:对来自信源的信号进行模/数转换和多路复用处理; 光发送设备:实现电/光转换; 光接收机:实现光/电转换; 光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。 3、光纤通信的特点:(可参照P1、2) 优点:(1),传输容量大。(2)传输损耗小,中继距离长。 (3)保密性能好:光波仅在光纤芯区传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。(5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。 4、适用光纤:P11 G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。常见的结构有阶跃型和下凹型单模光纤。 G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。难 以克服FWM混频等非线性效应带来的影响。 G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm 处。可以尽量克服FWM混频等非线性效应带来的影响。 补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。 2、数字光纤通信系统有准同步数字体系(PDH)和同步数字体系(SDH)两种传输体制。

外调制光纤通信系统设计

课程设计题目:外调制光纤通信系统设计 学院:信息科学与工程学院 年级专业:09级光电子1班 学号:xxxxxxxx 学生姓名:xxxxx 指导教师:xxx

一、设计要求 设计10Gpb速率的外调制光纤链路,保证链路能正常通信,误码率BER小于10-12,对应的品质因数Q大于7 二、设计技术参数 1)DFB-LD(SLM),光源中心波长λ0=1552.5nm(193.1Thz),谱线宽度Δλ=0.1 nm(12.5GHz) 2)光纤传输距离120km 3)光发射机发射光功率范围:10dBm~13dBm,可取10dBm 4)APD光接收机灵敏度范围:-25dBm~-9dBm ,可取-18dBm 5) G.652标准单模光纤,光纤的衰减系数α=0.2dB/km,色散系数D=17ps/nm/km 6) 色散补偿光纤衰减系数α=0.5dB/km, 色散系数D=-100ps/(nm.km) 7) 线路编码为NRZ 8) 连接器损耗α=1dB/个 二、设计要点 链路采用外调制的模式,系统通过电信号(NRZ码)控制光调制器产生光信号。产生的光信号通过光纤传输至信号接收端,经光电探测器转换为电信号,完成链路的传输。 衰减:在实际工作中,光纤有一个衰减系数,光信号会随着传输而衰减。为了使光信号传输到探测器时,信号的功率在光电探测器的灵敏度范围之内,链路设计放大模块将信号放大。 色散:不同频率的光波在光纤中传播的速度不同,频率较小的光传播速度快,频率较大的光传播速度慢。由于链路采用的光源激光器存在一定的带宽,因而光信号在传输过程中会产生色散,传输距离越长,色散现象越严重。针对色散问题,链路设计了色散补偿光纤来消除色散。 因此,设计链路所需要解决的主要问题是色散和衰减。通过改变色散光纤的长度和放大器的放大方法来消除传输中带来的色散问题和衰减问题。另外,在设计时,系统的噪声因素也应考虑在内。 三、链路设计 1.根据要求设计链路 通信链路由信号源、线路编码器、光源、连接器、光纤、必要补偿单元、连接器、光接收机组成。设计时,使用伪随机码发生器充当信号源,用连续波激光器和M-Z调制器组成外调制型光源,用1dB衰减器充当连接器,使用不同参数的光纤分别充当传输光纤和色散补偿光纤,使用7dB衰减器充当系统衰减富余量,使用眼图分析仪来观察链路传输的眼图、分析链路的误码率和品质因数。设计链路,初始时不添加色散光纤(色散光纤长度为0)和增益,检测系统的眼图和品质因数。如下图所示:

光纤通信网络风险评估

光纤通信网络风险评估 光纤具有抗干扰、数据传输快、损耗小等优点,成为当前网络的主要 通信介质,在很多领域得到了广泛应用[1,2]。不过光纤通信网络 与其它类型的网络一样,也存有安全隐患问题[3],如果出现数据被 窃取、网络入侵等行为,那么会给人们带来巨大的经济损失,为此, 如何提升光纤通信网络的安全,一直是网络安全管理领域中的研究热 点[4]。近几年来,学者们对光纤通信网络的风险评估进行广泛研究,最原始风险评估模型是引用其它类型的网络评估模型,如双绞线网络等,但是光纤通信网络具有其自身的特殊性,这些模型的风险评估结 果不可靠[5]。近些年,一些研究机构提出了基于层次分析法、德尔 斐法、决策树、神经网络、支持向量机等光纤通信网络的风险评估模 型[6-10]。层次分析法、德尔斐法属于定性分析或简单定量方法, 评估结果的好坏与专家经验和知识直接相关,评估精度不太稳定,时 高时低,而且评估结果含有一定的主观性[11]。决策树、神经网络、支持向量机等属于定量分析方法,根据光纤通信网络风险的评估指标,采用神经网络等建立相对应的评估模型,评估精度比较高,在光纤通 信网络风险评估中应用最为广泛[12]。在实际应用中,这些方法均 没有考虑评估指标选择问题,导致评估指标过多,评估结果和效率均 有待进一步改善[13]。为了提升光纤通信网络风险评估精度,有效 保证光纤网络的数据传输可靠性,提出一种因子分析法的光纤通信网 络风险评估模型,采用并通过具体实例对其有效性和优越性进行分析。 1建立光纤通信网络风险的数学模型 在光纤通信网络风险评估过程中,有两个步骤对评估结果的影响十分 关键,其中一个是评估指标的选择,另一个是光纤通信网络风险值的 预测算法。假设选择第i个样本的评估指标为{xi1,xi2,…,xin}, 相对应的光纤通信网络值为yi,那么光纤通信网络风险评估的数学模 型可以描述。 2因子分析法选择光纤网络风险评估指标

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

光纤通信课后答案

第一章基本理论 1、阶跃型折射率光纤的单模传输原理是什么?答:当归一化频率V小于二阶模LP11归一化截止频率,即0<V<2.40483时,此时管线中只有一种传输模式,即单模传输。 2、管线的损耗和色散对光纤通信系统有哪些影响?答:在光纤通信系统中,光纤损耗是限制无中继通信距离的重要因素之一,在很大程度上决定着传输系统的中继距离;光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。 3、光纤中有哪几种色散?解释其含义。答:(1)模式色散:在多模光纤中存在许多传输模式,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。(2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此引起的色散称为材料色散。(3)波导色散:统一模式的相位常数随波长而变化,即群速度随波长而变化,由此引起的色散称为波导色散。 5、光纤非线性效应对光纤通信系统有什么影响?答:光纤中的非线性效应对于光纤通信系统有正反两方面的作用,一方面可引起传输信号的附加损耗,波分复用系统中信道之间的串话以及信号载波的移动等,另一方面又可以被利用来开发如放大器、调制器等新型器件。 6、单模光纤有哪几类?答:单模光纤分为四类:非色散位移单模光纤、色散位移单模光纤、截止波长位移单模光纤、非零色散位移单模光纤。 12、光缆由哪几部分组成?答:加强件、缆芯、外护层。 *、光纤优点:巨大带宽(200THz)、传输损耗小、体积小重量轻、抗电磁干扰、节约金属。*、光纤损耗:光纤对光波产生的衰减作用。 引起光纤损耗的因素:本征损耗、制造损耗、附加损耗。 *、光纤色散:由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,导致信号的畸变。 引起光纤色散的因素:光信号不是单色光、光纤对于光信号的色散作用。 色散种类:模式色散(同波长不同模式)、材料色散(折射率)、波导色散(同模式,相位常数)。 *、单模光纤:指在给定的工作波长上只传输单一基模的光纤。

光纤通信系统与网络

本实验指导书为《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》等课程教材使用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和SDH网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。

实验一光纤接续和监测 1 实验二光纤衰减测试 3 实验三光接口参数测试 5 实验四电接口传输性能测试10 实验五SDH设备认识17 实验六SDH网络管理系统及操作19

实验一 光纤的接续和监测 一. 试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗A s 的定义为 t r s p p A lg 10?= (dB ) 式中 p t 为发射光纤发出的光功率,W p r 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测试等,目前都采用光时域反射计监测法,其测试系统原理土如图1.1所示。 测试时OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图1.2所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三. 试验仪器和设备 1.TYPE35SE 光纤熔接机, 1台 2.光时域反射计, 1台 3.光纤, 2盘,2Km/盘 四. 测试步骤

光纤通信系统设计实例

光纤通信系统设计 1 概述 图 1.1 标准光纤通信系统架构 2 模拟系统设计 光纤系统中,各组件的累加损耗应足够低以符合探测器的阈值要求。模拟系统中,充足的功率意味着高SNR,另外,组件的组合应该提供足够的带宽以通过较高的调制频率,因此,应对单个器件的损耗和带宽进行分析,并计算整个系统的功率分配和带宽预算。 2.1 系统规格 2.1.1 初始方案 以设计简单的点对点视频系统为例,电视广播信号的带宽为6MHz,要求SNR为50dB。 表2.1 系统方案一:窄带宽和低功率 Carrier Source LED0.8-0.9um Information Channel MMF (SI or GRIN) Detector PIN-PD 表2.2 系统方案二:高带宽和高功率 Carrier Source LD 1.3um Information Channel SMF Detector APD 2.1.2 负载电阻计算 已知PIN-PD的电容和传输带宽,根据方程 求得负载电阻

取近似值,计算得为6.24MHz。 2.2 功率预算 2.2.1 平均光功率计算 标准的SNR方程是 由于使用PIN-PD作为光电探测器,假设系统是热噪声限系统,调制系数m为100%,SNR方程简化为 由于放大器噪声的存在,将实际温度T替换为等效噪声温度,假设环境温度T为300K,放大器噪声系数F为2,则,又已知PD响应率为,计算平均光功率P为 取P近似值为。 2.2.2 平均光电流计算 根据平均光功率P为,计算得PIN-PD的平均光电流,远大于暗电流(几个纳安),因此系统中暗电流的影响可以忽略,计算热噪声电流均方值 散粒噪声电流均方值 可以得到,热噪声功率是散粒噪声功率的近7倍,符合最开始采用热噪声限模型的假设。 预测平均光电流为时,并没有驱动探测器进入非线性区,最大饱和电流等于偏置电压与负载电阻的比值,使用5V偏压时,最大允许电流为(或),远远大于,系统不存在饱和问题。 2.2.3 详细方案 光源SE LED SI MMF

光纤通信的基本概念

摘要 光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。 关键词:通信系统光导纤维 Abstract Optical fiber communication system is based on the carrier, the use of high purity glass drawn into very fine optical fiber as a transmission medium by photoelectric conversion, light to transmit information in communication systems. With the Internet business and communications industry, the rapid development of information technology to the world's productive forces and the development of human society has brought great promotion. Optical fiber communication technology as the main pillars of information, one will become the 21st century's most important strategic industry. Keywords: optical fiber communication system

我国光纤通信的现状分析及发展前景

我国光纤通信的现状分析及发展前景 1、光纤通信技术当前发展现状 近些年来,最为流行与最受关注的通信技术可以说是光纤通信技术、卫星通信应用技术以及无线通讯技术。而光纤通信技术在这三种支柱性通信技术中,所涉及到的领域技术最为广泛,这是由于光纤通信技术有着非常多的显著优势与实用特性。 1.1 实用性强、频带宽、容量大 一般光纤能够利用的频宽数量大概可达50000GHz,并且其传输损耗低、实用性强。自1987年我国投入使用时,其就能以1.7Gb/s的一对光纤就能同时对两万多路电话进行传输;2.4Gb/s时,同样也能对三万多组电话进行传输。其频宽能力强大,不仅仅是数据承载通信容量大,而且还能够满足宽带营运实施的综合性业务流转,协调于综合业务宽带的利用效率与开发,如其能够满足数字网B-ISDN发展的需求。 1.2 信号光功率损失小,中继距离长,成本低 由于光纤本身的损耗程度一般低于0.2dB/km,这和其他传输媒介的损耗程度比较而言,光纤传导的信号功率损失程度非常小,也就是说其满足一定的比特率要求的光接收机灵敏度很高,即满足系统误比特率要求的最低接收光功率越小,中继距离就越长。其中其存在的最大中继距离可能高达上千米甚至是上万米,这对光纤通信传输系统所投成本的稳定性,以及实现传输可靠性的现实意义来说,非常重要。 1.3 抗电磁干扰 光纤自身是绝缘体材料,本身不受高空电离层的强度环境变化与雷电或是太阳表面黑子变化活动的干扰,也不受电路系统高压馈电线与相关设施、设备的诸多方面干扰。总的来说,光纤传导受电磁干扰的特性以及受其他方面干扰自身传导通信功能的可能性很小。 1.4 光波传输良好,即保密性好 光波当在光缆中运行传输时,由于自身材料的传导性能,使其光波在传输过程当中也就很难外泄出来,即使存在外漏现象,也很微弱,是在正常损益范畴之内。所以有时对于光纤表面上会上一层消除光谱色散损耗的消光剂。从而使波形因为客观性其他原因引起的失真外泄现象大幅度降低,也使系统传输信息的保密性程度提升了。 2、光纤通信技术的发展趋势

光纤通信系统总体设计的一些考虑

光纤通信系统总体设计的一些考虑 内蒙古铁通通信工程公司 师林 摘 要:当设计一个光纤通信系统(例如一个数字段)时,首先要弄清所设计系统的整体情况,它所处的地理位置,当前和未来3~5年内对容量的要求,ITU—T的各项建议及系统的各项性能指标,以及当前设备和技术的成熟程度等。在弄清楚情况的基础上,对下述问题进行具体的考虑和设计。 关键词:光纤通信系统,总体设计。 一、选择路由,设置局站 对于一个需要设计的系统,首先要在两个终端站之间选择最合理的路由、设置中继站(或转接站和分路站)。选择路由一般以直、近为依据,同时应考虑不同级别线路(例如一级干线和二级干线)的配合,以达到最高的线路利用效率和覆盖面积。 中间站的设置(中继站、转接站和分路站)既要考虑上下话路的需要,又要考虑信号放大再生的需要。由于光纤通道的衰减和色散使传输距离受限,需要在适当的距离上设置光再生器以恢复信号的幅度和波形,从而实现长距离传输的目的。 传统的O/E/O实再生器具有所谓的3R功能,即再整形(Reshaping)、再定时(Retiming)和再生(Regenerating)功能。这种再生器相当于光接收机和光发射机的组合,设备较复杂,成本很高,耗电也大。目前,在1.55μm波段运行的系统,已普遍采用掺铒光纤放大器(EDFA)代替传统的O/E/O再生器。虽然国际上也在研究具备3R功能的EDFA,但目前实用的EDFA只具备光放大的功能。因此,对高速率、长距离光纤通信系统,当使用级联EDFA时,须考虑对色散的补偿和对放大的自发辐射(ASE)噪声的抑制。 二、确定系统的制式、速率 20世纪90年代中期,SDH设备已经成熟并在通信网中大量使用,考虑到SDH设备良好的兼容性和组网的灵活性,新建设的长途干线和大城市的市话通信一般都应选择SDH设备,长途干线已采用STM-16、多路波分复用的2.5Gbit/s系统、甚至10Gbit/s系统。 对于农话线路,为了节省投资,也可采用速率为34Mbit/s,140 Mbit/s的PDH系统。 三、光纤选型 目前可选择的光纤类型有G.652光纤、G.653光纤、G.654光纤、G.655光纤及大有效面积光纤。G.652光纤是目前已大量敷设。在1.3μm波段性能最佳的单模光纤,该光纤设计简单、工艺成熟、成本底。但这种光纤工作在1.55μm波段时,有+17ps/km﹒nm左右的色散, 109

光纤通信系统中色散补偿技术

光纤通信系统中色散补偿技术 蒋玉兰 (浙江华达集团富阳,31 1400) 【摘要】本文叙述了光通信系统中一个重要的参数—色散,以及G65光纤通信系统的色散补偿技术。文章还详细说明了各种补偿技术原理,并比较其优缺点。最后强调说明色散补偿就是用来补偿光纤线路色散和非线性失真的技术。 1概述 光纤通信的发展方向是高速率、大容量。它从PDH 8 Mb/s, 34Mb/s,140Mb/s, 565Mb/s 发展到SDH 155Mb/s,622Mb/s,2.5Gb/s,10Gb/s。现在又进展为波分复用WDM、密集型波分复用DWDM。同时,光纤的结构从G652、G653、G654,发展到G655,以及G652C 类。光纤的技术指标很多,其中色散是其主要的技术指标之一。 色散就是指不同颜色(不同频率)的光在光纤中传输时,由于具有不同的传播速度而相互分离。单模光纤主要色散是群时延色散,即波导色散和材料色散。这些色散都会导致光 脉冲展宽,导致信号传输时的畸变和接收误码率的增大。 对于新建工程新敷设高速率或WDM光缆线路,可以采用非零色散位移光纤(NZ-DCF),ITU一T将这种光纤定名为G655。G655光纤在1 550 nm处有非零色散,但数值很小(0.1~10.0pb/nm·km)。其色散值可以是正,也可以是负。若采用色散管理技术,可以在很长距离上消除色散的积累。同时,对WDM系统的四波混频现象也可压得很低,有利于抑制非线性效应的影响。 自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的 光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。所以,对高速率长距离的系统必须要考虑色散补偿问题。 光纤色散产生的因素有:材料色散、波导色散、模式色散等等。但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。解决光信号色散引起群时延差的方法就是色散补偿技术。 2光纤色散述语 色散: 光源光谱组成中的不同波长的不同群速度在一根光纤中传输所引起的光脉冲展宽。 材料色散: 因折射率随光的波长不同呈非线性,所以产生材料色散。由单模光纤的纤芯和包层材料所引起的色散,考虑到光纤的弱导条件(△<

光纤通信 期末考试试卷(含答案)

、光在光纤中传输是利用光的( 折射 )原理。 、光纤通信系统中最常用的光检测器有:( ???光电二极管 )、( 雪崩光电二极管 )。 、要使物质能对光进行放大,必须使物质中的? 受激辐射 ?强于? 受激吸收 ?,即高能级上的粒子数多于低能级上的粒子数。物质的这一种反常态的粒子数分布,称为粒子数的反转分布。 、在多模光纤中,纤芯的半径越? 大 ?,可传输的导波模数量就越多。 、( 波导色散 )是指由光纤的光谱宽度和光纤的几何结构所引起的色散。 ?、 ??的缺陷之一:在复用信号的帧结构中,由于? 开销比特 ?的数量很少,不能提供足够的运行、管理和维护功能,因而不能满足现代通信网对监控和网管的要求。 、光接收机的主要指标有光接收机的动态范围和( 灵敏度 )。 ?、激光器能产生激光振荡的最低限度称为激光器的( 阈值条件 )。 ?、光纤的( 色散 )是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。 、误码性能是光纤数字通信系统质量的重要指标之一,产生误码的主要

原因是传输系统的脉冲抖动和( 噪声 )。 二、选择题:(每小题 分,共 ?分。 单选题, :多选题) 、 ????于()年接受了 ????概念,并重新命名为 ??。?、 ?? 、 ?? 、 ??? 、 ?? 、掺铒光纤放大器(????)的工作波长为( )??波段。?、 ?? 、 ?? ?、 ? ?、 ? 、发光二极管发出的光是非相干光,它的基本原理是( )。?、受激吸收 、自发辐射 ?、受激辐射 ?、自发吸收 、要精确控制激光器的输出功率,应从两方面着手:一是控制( ? );二是控制( ? )。 ?、微型半导体制冷器 ?、调制脉冲电流的幅度 、热敏电阻 ?、激光器的偏置电流 、光纤传输特性主要有( ?? ) ?、色散 ?、损耗 ?、模场直径 ? 、截止波长 三、简答题( 、 题各 分, 题 分,共 ?分。) 、什么是光纤色散?光纤色散主要有几种类型?其对光纤通信系统有何影响? 由于光纤中传输的信号包含不同的频率成分或各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真、脉冲展宽的物理现象称为色散。??分? 光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量

光纤通信系统与网络试卷及答案教学提纲

光纤通信系统与网络试卷及答案

浙江师范大学《光纤通信》考试卷 (2013----2014 学年第一学期) 考试形式闭卷使用学生 sample 考试时间120分钟出卷时间2013年12月27日 说明:考生应将全部答案都写在答题纸上,否则作无效处理。 一、选择题(10%) 1 半导体光源中,由以下哪个电路模块解决其对温度变化敏感的问题(B) A.APC B.ATC C.过流保护 D.时钟控制 2 ECL激光器是利用以下哪个器件对工作波长进行选择。(A) A.光栅 B.棱镜 C.透镜 D.波导 3 STM-16的标准速率为(C) A.155Mb/s B.622Mb/s C. 2.5Gb/s D.10Gb/s

4.下列哪些指标是系统可靠性指标(D) A.HRDL B.HRDS C.BER D.MTTR 5如果原始码序列为100010001,采用3B1P奇校验进行编码,则变换后的码序列为(C) A.100101010010 B.100101000010 C.100001000010 D.1000100010 二、是非判断题(28%) 1.由于LED具有阈值电流,所以不适合模拟调制 2.光纤通信系统的带宽主要由其色散所限制 3.光纤通信系统所采用的波长的发展趋势是向短波方向转移的 4.激光是光纤通信系统所采用的主要光源 5.在通信中,我们通常使用弱导光纤 6.本征半导体中掺入施主杂质,称为N型半导体 7.光纤的数值孔径越大,集光能力越强,所以在通信中我们采用大数值孔 径光纤 8.在光纤中,比光波长大的多的粒子引起的散射称为瑞利散射 9.光电效应产生的条件是入射波长大于截止波长 10.SRS现象总是由于光信号和介质中的声子相作用产生 11.OXC节点和OADM节点是全光网中的核心节点

数字光纤通信系统课程设计

~~~~~~学院课程设计报告 课程名称:通信系统课程设计 院部:电气与信息工程学院 专业班级: 学生姓名: 指导教师: 完成时间:2010 年12 月31日 报告成绩:

高速数字光纤通信系统的设计

目录 (3) 摘要 (4) 关键词 (4) Abstract (5) 第一章数字光纤通信系统的整体设计 (6) 1.1数字光纤通信系统的简介 (6) 1.2 数字光纤通信系统的基本设计思想 (7) 1.3 数字光纤通信系统设计的方案分析 (7) 第二章数字光纤通信系统的具体设计 (8) 2.1 A—E的工程分站设计 (8) 2.2 系统部件的选择 (8) 2.2.1光源的选择 (8) 2.2.2光纤的选择 (8) 2.2.3光电检测器的选择 (9) 2.2.4光接口规范的选择 (9) 2.3 应用代码的选择 (9) 2.4 衰耗预算 (10) 2.4.1无光放大器系统的衰耗预算 (10) 2.4.2带光放大器系统的衰耗预算 (10) 2.5色散预算 (11) 2.5.1码间干扰与频率啁啾的功率代价 (11) 2.5.2色散相关参数的确定 (12) 2.5.3色散的具体计算 (12) 第三章数字光纤通信系统设计结果 (14) 总结 (16) 参考文献 (17)

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和广波的变革极大的提高着信息的传输。进入1993年以后,我国光纤通信已处于持续大反战时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(solition)、掺铒光纤放大器(EDFA)、SDH产品等开发实用实用化开展大量、深入研究工作。同时,各种专用光纤系统组成及其系统参数测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 20世纪70年代末,光纤通信开始进入实用化阶段,各种各样的光纤通信系统如雨后春笋在世界各地建立起来,逐渐成为电信传送网的主要传送手段。近几年来,光纤通信中的各种新技术,新系统也日新月异地发展着,在全球信息高速公路建设中扮演重要角色。 光纤通信是以光波为载波,光纤为传输媒介的通信方式。本次课程设计论文主要介绍光纤系统的基本组成,性能指标,还要对损耗和色散进行预算,用最坏值设计方法来设计高速数字光纤系统。 关键词:光纤通信系统、光纤、损耗、色散、光缆

光纤通信发展与现状解析

公选课课程论文 (2010 -2011 学年第二学期光纤通信发展与现状 学生:周丹丹 提交日期:2011 年 4 月 18 日学生签名:周丹丹 光纤通信发展与现状 周丹丹 摘要:

本文通过介绍及时、准确全面地获取信息在当今这个竞争时代的重要性,指出光纤通信与我们的生活息息相关对我们的生产和生活中起到了相当关键的作用。并简单介绍了了国际光纤通信四十多年来的发展历程,并进一步描述了自 1960年光纤之父高锟等人首先提出了用低吸收的光纤做光通信至今,光纤通信的发展。并具体针对在我国出现不久的 3G 手机上网和手机网上银行做了一些介绍,并提出自己的一些观点和看法。最后结合现状和相关文献对光纤通信未来的发展趋势和方向做一些介绍。 关键字:光纤通信、发展、手机、 3G 、光联网 一、信息的重要性 回顾历史,古人烽火狼烟、快马加鞭、鸿雁传书……这些历史典故都告诉我们一个道理——只有具备及时获取全面、准确的信息,把握动态、解决问题的能力,才能抓住机遇、才能充分展示和发挥自己的才华、扬长避短,取得成功。 一直到信息大爆炸的今天,竞争日益激烈。各个国家、企业甚至个人想要在竞争中掌握主动权,就一定要及时、详细了解当今世界的各个行业的发展的现状和趋势,结合自身条件及时调整自己的战略,使之与时代环境相符合。只有这样才可能在竞争中取得最后的胜利,使人类文明不断前进、不断进步。 如何才能满足人们的需求,有效、及时地传递大量信息呢?人们迫切需要一种新的传输媒介。 二、关于光纤通信 【 1】 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。光纤通信系统可分为三个基本单元:光发射机、光纤和光接收机。它首先要在发射端将需传送的信号进行光电转换,再经光纤传输到接收端,接收端将接收到的光信号转变成电信号, 最后还原成原信号。光纤通信系统的构成具体如下:

光纤非线性效应及对光纤通信的影响

光线非线性效应及其对光纤通信系统的影响摘要:随着科技的飞速发展、信息时代的到来,信息的传输变得越来越重要。光纤作为众多传输介质中的一种有着其它介质不可替代的优越性。它传输容量大、传输带宽宽、抗干扰能力强。然而,由于光纤中的损耗和色散的限制,使得光纤通信的发展受到了制约。如果要获得更长的传输距离,则要加大入纤光功率,这样就引起了光纤非线性效应的产生。本文详细地讨论了几种重要的光纤非线性效应,如受激布里渊散射(SBS)、受激喇曼散射(S RS)、自相位调制(SPM)、交叉相位调制(XPM)、克尔效应(Kerr)、超短脉冲孤立子(S oliton)等现象。并对其在光纤通信中的应用进行了展望 。 关键字:光纤非线性效应、散射、阈值、光功率 光纤的非线性效应 尽管用于光纤的玻璃材料的非线性很弱,但由于纤芯小,纤芯内场强非常高,且作用距离长,使得光纤中的非线性效应会积累到足够的强度,导致对信号的严重干扰和对系统传输性能的限制。 光纤传输的衰耗和色散与光纤长度呈线性变化的,呈线性效应,而带宽系数与光纤长度呈非线性效应。非线性效应一般在WDM系统上反映较多,在SDH 系统反映较少,因为在WDM 设备系统中,由于和波器、分波器的插入损耗较大,对16 波系统一般相加在10dB 左右,对32 波系统,相加在15dB 左右,因此需采用EDF A进行放大补偿,在放大光功率的同时,也使光纤中的非线性效应大大增加,成为影响系统性能,限制中继距离的主要因数之一,同时,也增加了ASE 等噪声。

光纤中的非线性效应包括:①散射效应(受激布里渊散射SBS 和受激拉曼散射SRS 等)、②与克尔效应相关的影响,即与折射率密切相关(自相位调制SPM 、交叉相位调制XPM 、四波混频效应FWM ),其中四波混频、交叉相位调制对系统影响严重。 折射率非线性变化 SBS、SRS及FWM过程所引起的波长信道的增益或损耗与光信号的强度有关。这些非线性过程对某些信道提供增益而对另一些信道则产生功率损耗,从而使各个波长间产生串扰。 从本质上说,任何物质都是由分子、原子等基本组成单元组成。在常温下,这些基本组成单元在不断地作自发热运动和振动。光纤中的受激布里渊散射SBS和受激拉曼散射SRS 都是激光光波通过光纤介质时,被其分子振动所调制的结果,而且SB S 和SRS都具有增益特性,在一定条件下,这种增益可沿光纤积累。SBS 与SRS 的区别在于,SBS 激发的是声频支声子,SRS激发的是光频支声子。受激布里渊散射SBS 产生原理:SBS是光纤中泵浦光与声子间相互作用的结果,在使用窄谱线宽度光源的强度调制系统中,一旦信号光功率超过受激布里渊散射SBS 的门限时(SB S的门限较低,对于1550nm 的激光器,一般为7~8dBm ),将有很强的前向传输信号光转化为后向传输,随着前向传输功率的逐渐饱和,使后向散射功率急剧增加。 在WDM+EDFA 的系统中,注入到光纤中的功率大于SBS 的门限值,会产生S BS 散射。SBS 对WDM系统的影响主要是引起系统通道间的串扰及信道能量的损失。布里渊频移量在1550nm 处约为10~11GHz ,当WDM系统的信道间隔(即波长间隔)与布里渊频移量相等时,就会引起信道间的串扰,但目前的WDM 系统,

第6章 光纤通信系统的设计

第6章光纤通信系统的设计 在前面几章中,我们已经学习了光纤通信系统中基本元器件的功能,从光源、光检测器、光放大器等有源器件到连接器、隔离器等无源器件。在这章里我们将讨论如何将这些器件通过光纤组合形成具有完整通信功能的系统。光纤通信系统就其拓扑而言是多种多样的,有星形结构、环形结构、总线结构和树形结构等,其中最简单是点到点传输结构。从应用的技术来看,分光同步传输网、光纤用户网、复用技术、高速光纤通信系统、光孤子通信和光纤通信在计算机网络中的应用等等。从其地位来分,又有骨干网、城域网、局域网等。不同的应用环境和传输体系,对光纤通信系统设计的要求是不一样的,这里我们只研究简单系统的设计,即点到点传输的光纤通信系统。内容包括设计原则、数字和模拟通信系统的设计,最后给出了设计实例,以期读者对光纤通信方面的知识有一全面了解。 6.1 设计原则 6.1.1 工程设计与系统设计 光纤通信系统的设计包括两方面的内容:工程设计和系统设计。 工程设计的主要任务是工程建设中的详细经费概预算,设备、线路的具体工程安装细节。主要内容包括对近期及远期通信业务量的预测;光缆线路路由的选择及确定;光缆线路敷设方式的选择;光缆接续及接头保护措施;光缆线路的防护要求;中继站站址的选择以及建筑方式;光缆线路施工中的注意事项。设计过程大致可分为:项目的提出和可行性研究;设计任务书的下达;工程技术人员的现场勘察;初步设计;施工图设计;设计文件的会审;对施工现场的技术指导及对客户的回访等。 系统设计的任务遵循建议规范,采用较为先进成熟的技术,综合考虑系统经济成本,合理选用器件和设备,明确系统的全部技术参数,完成实用系统的合成。 6.1.2系统设计的内容 光纤通信系统的设计涉及到许多相互关联的变量,如光纤、光源和光检测器的工作特性、系统结构和传输体制等。 例如,目前在骨干网和城域网中普遍选择同步数字序列SDH(Synchronous Digital Hierarchy)作为系统制式,在设计SDH体制的光纤通信系统时,首先要掌握其标准和规范,SDH的传输速率分为STM-1(155.52Mb/s)、STM-4(622.08Mb/s)、STM-16(2.5Gb/s)和STM-64(10Gb/s)等四个级别。ITU-T对每个级别(STM-64正在研究中)所使用的工作波长范围、光纤通道特性、光发射机和接收机的特性都作了规定,并对其应用给出了分类代码,表6.1给出了STM-1标准光接口的主要指标,其中应用分类代码中的符号I表示距离不超过2km的局内应用,S表示距离在15km的局间短距离应用,L表示距离在40~80km的局间长距离应用,符号后的数字表示STM的速率等级和工作波长(1310nm)。 又例,对于局域网(LAN)的设计,IEEE、TIA/EIA等组织也有相关的标准,见表6.2,对数据速率、波长作了规定。表6.3表示了波长范围以及相应技术的要求。对于数据速率为10Mbit/s或100Mbit/s的LAN系统,其光缆的长度可以查阅IEEE802.3u和TIA/EIA568A标准。表6.4为其建议的最大光缆长度。 虽然光纤通信系统的形式多样,但在设计时,不管是否有有成熟的标准可循,以下几点是必须考虑的:①传输距离。②数据速率或信道带宽。③误码率(数字系统)或载噪比和非线性失真(模拟系统)。在作过相关的分析后,我们要决定:是采用多模光纤还是单模光纤,并涉及到纤芯尺寸、折射率剖面、带宽或色散、损耗、数值孔径或模场直径等参数的选取;是采用LED还是LD光源,涉及到波长、谱线宽度、输出功率、有效辐射区、发射方向图、发射模式数量等指标的确定;是采用PIN还是APD接收器,它涉及到响应度、工作波长、

通信工程毕业论文光纤通信技术的现状及发展趋势

光纤通信技术的现状及发展趋势 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它

在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过 的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限, 在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径 和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C 低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。 并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全 介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设 的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生 产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如 大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是

相关文档
最新文档