2020中考数学专题汇编 几何最值 含解析

2020中考数学专题汇编   几何最值  含解析
2020中考数学专题汇编   几何最值  含解析

几何最值

一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1

B . 2 +1

2

C .2 2 +1

D .2 2 —1

2

{答案} B

{解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1

2

,因此本题选B .

2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1

2,

有下列结论:

①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37

2.

其中,正确结论的序号为( )

A .①④

B .②④

C .①③

D .②③

{答案} D

{解析}设AQ =x ,则BP =5

2

—x

①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53

4,∴DE =

34,∴此时QD =212,即0≤QD ≤212;而33

2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3

2

,∴都存在,∴②正确;

D

Q P

C

B A

N

M

H

G A

B C

D E

F

F E D

Q P

C B A

F

E A

B

C P Q

D

D Q C B(P)A

E

③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC =

34×32-12?x ?34-1

2

×3×34(52-x )=34 x +21316,∵52—x ≥0,即x ≤52,∴当x =52时面积最大为313

16

;③正确; ④如图,将D 沿AB 方向平移1

2个单位得到E ,连接PE ,即四边形PQDE 为平行四边形,∴QD =PE ,四边形周长

为PQ +QD +CD +CP =3+PE +PC ,即求PE +PC 的最小值,作点E 关于AB 的对称点F ,连接CF ,线段CF 的长即为PE +PC 的最小值;过点D 作DG ⊥AB ,∴AG =14,EN =FN =HM =34,∴CH =332+34=734,FH =MN =3

2-

14-12=34,∴FC =392,∴四边形PCDQ 周长的最小值为3+39

2,④错误.

3.(2020·荆门)如图6,在平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动,A (0,2),B (0,4),连接AC 、BD ,则AC +BD 的最小值为( ) A .25 B .210 C .62 D .35

{答案}B

{解析}如图#,过点B 作BB′∥x 轴(点B′在点B 的左侧),且使BB′=2,则B′(-2,4);作A 关于x 轴的对称点A′,则A′(0,-2);连结A′B′交x 轴于点C ;在x 轴上向右截取CD =2,则此时AC +BD 的值最小,且最小值=A′B′=2226+=210.故选B .

4.(2020·南通)△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 为BC 的中点,直线l 经过点D ,过B 作BF ⊥l 于F ,过A 作AE ⊥l 于E .求AE +BF 的最大值为

A .6

B .22

C .23

D .32

{答案}A

x

O y 图6

D C B A x O y 图#

D

C B

A B′ A′

{解析}过点A 作AH ⊥BC 于点H ,在Rt △AHB 中,∠ABC =60°,得BH =1,AH

,在Rt △AHC 中,∠ACB =45°,得AC

当直线l 与AB 相交时,延长BF ,过点A 作AM ⊥BF 于点M ,可得AE +BF =AE +FM =BM ,在Rt △AMB 中,BM <AB ,当直线l ⊥AB 时,最大值为2; 当直线l 与AC 相交时,过点C 作CH ⊥l 于点H ,由点D 为BC 中点可证明△BFD ≌△CHD ,BF =CH ,延长AE ,过点C 作CN ⊥AE 于点N ,可得AE +BF =AE +CK =AE +EN =AN ,在Rt △ACN 中,AN <AC, 当直线l ⊥AC 时

;所以AE +BF

5.(2020·恩施)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE △周长的最小值为( )

A. 5

B. 6

C. 7

D. 8

{答案}B

{解析}连接ED 交AC 于一点F ,连接BF , ∵四边形ABCD 是正方形, ∵点B 与点D 关于AC 对称, ∵BF =DF ,

∵BFE △的周长=BF +EF +BE =DE +BE ,此时周长最小, ∵正方形ABCD 的边长为4, ∵AD =AB =4,∵DAB =90°, ∵点E 在AB 上且1BE =, ∵AE =3, ∵DE

5=,

∵BFE △的周长=5+1=6,

故选:B.

6.(2020·永州)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d

可用公式

d =

C 的圆心C 的坐标为()1,1,半径为1,直线l

的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是( )

A.

5

B.

15

-

C.

15

- D. 2

【答案】B

【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,

∵点C 到直线l

的距离

5d =

=

=

C 半径为1,

∴PQ

1

,故选:B.

二、填空题

7.(2020·绵阳)如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .

{答案}

2

{解析}延长AD 、BC 交于点P , 作MH ⊥PB 于H . ∵AB ∥CD ,∴

PD AD =PC

BC

,∠ABC =∠DCP =60°.∵AD =BC =CD =4,∴PD =PC ,∴△PDC 为等边三角形,∴PD =PC =CD =4,∠P =60°. 由∠AMD =90°,可知点M 在以AD 为直径的⊙E 上,且在四边形ABCD 内的一个动点,根据垂线段最短可知E 、M 、H 三点共线时MH 最小.在Rt △PEH 中,EP =6,∠P =60°,∴EH =EP ·sin60°=

∴MH 的最小值=EH -EM =

2.

8.(2020·扬州)如图,在?ABCD 中,∠B =60° ,AB =10,BC =8,点E 为边AB 上的一个动点,连接ED 并延长至点F ,使得DF =1

4

DE ,以EC 、EF 为邻边构造?EFGC ,连接EG ,则EG 的最小值为 .

(第18题图) {答案

}{解析}本题考查了解直角三角形、三角形相似的判定与性质三角形、平行四边形面积公式、垂线段

M

D

C

B A

最短等知识,解题的关键是将问题转化为垂线段最短来解决.过A 作AM ⊥BC 于M ,设EG 、DC 交于

H .∵在Rt △AMB 中,∠B =60° ,AB =10,s i n ∠B =

2AM AB =,∴AM =,?EFGC 中,∵DF =1

4

DE ,∴ED =45DF ,又EF =GC ,∴45ED GC =,∵EF ∥CG ,∴△EHD △GHC ,∴4

5

DH ED EH HC CG HG ===,∵CD=AB=10是定长,故不管动点E 在AB 上如何运动,H 始终是定点,H 又在EG 上,它到AB 的最短距离就是HN ,S ?ABCD =

AM BC HN AB ?=?,∴AM BC NH AB ?=

==E 运动到与N 重合(见答图2),EG 最

短,此时,HG =

5

4

NH =EG 的最小值= HG +NH =.因此本题答案为.

(第18题答图1) (第18题答图2)

9.(2020·鄂州)如图,已知直线4y =+与x 、y 轴交于A 、B 两点,O 的半径为1,P 为AB 上一动

点,PQ 切

O 于Q 点.当线段PQ 长取最小值时,直线PQ 交y 轴于M 点,a 为过点M 的一条直线,则点P

到直线a 的距离的最大值为______________.

{答案}{解析}本题考查了圆和函数的综合问题,题解题中含义找到P点的位置是解题的关键.先找到PQ 长取最小值时P 的位置即为OP ⊥AB 时,然后画出图形,由于PM 即为P 到直线a 的距离的最大值,求出PM 长即可. 解:如图,

在直线4y =+上,x =0时,y =4,y =0时,x ,

∴OB =4,OA

∴tan OA OBA OB =

=

∠, ∴∠OBA =30°,

由PQ 切

O 于Q 点,可知OQ ⊥PQ ,

∴PQ

由于OQ =1,因此当OP 最小时PQ 长取最小值,此时OP ⊥AB ,

∴1

22OP OB =

=,此时PQ BP , ∴1

2

OQ OP =,即∠OPQ =30°,

若使P 到直线a 的距离最大,则最大值为PM ,且M 位于x 轴下方, 过P 作PE ⊥y 轴于E ,

1

2

EP BP =

=3BE ==,

∴431OE =-=,

∵1

2

OE OP =,∴∠OPE =30°,

∴∠EPM =30°+30°=60°,即∠EMP =30°,

∴2PM EP ==

故答案为:

10.(2020·宜宾)如图,四边形ABCD 中,DA ⊥AB ,CB ⊥AB ,AD =3,AB =5,BC =2,P 是边AB 上的动点,则PC +PD 的最小值是 5

【解答】解:延长CB到C′,使C′B=CB=2,连接DC′交AB于P.则DC′就是PC+PD的和的最小值.

∵AD∥BC,

∴∠A=∠PBC′,∠ADP=∠C′,

∴△ADP∽△BC′P,

∴AP:BP=AD:BC′=3:2,′

∴PB=AP,

∵AP+BP=AB=5,

∴AP=5,BP=2,

∴PD===3,PC′===2,

∴DC′=PD+PC′=3+2=5,

∴PC+PD的最小值是5,

故答案为5.

11.(2020·东营)如图,在Rt△AOB中,OB=A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.

{答案}{解析}本题考查了切线的性质、直角三角形的性质及勾股定理.难度适中,注意掌握辅助线的作法,注意得到当OP ⊥AB 时,线段PQ 最短是关键.

连接OP 、OQ ,

∵PQ 是⊙O 的切线,∴OQ ⊥PQ ,根据勾股定理知2

22

PQ OP OQ ,∴当OP ⊥AB 时,线段PQ 最短.∵在Rt △AOB

中,OB=A=30°,∴43AB

,6AO ,

21OA ×OB=2

1

OP ×AB ,即23

343

OP ,∴22

3122PQ

12.(2020·毕节)如图,已知正方形ABCD 的边长为4,点E 是边AB 的中点,点P 是对角线BD 上的动点,则AP +PE 的最小值是_________.

{答案},

{解析}本题考查正方形的性质,线段最短问题.

解:∵正方形ABCD 的边长为4,点E 是边AB 的中点, ∴BE =2.

∵点P 是对角线BD 上的动点,连接PC ,则PC =PA .

连接EC 交BD 于点P ,此时AP +PE =AC +PE =EC 有最小值,最小值EC . 故答案为

13.(2020·永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=?,在AOB ∠内有一点

A

()4,3P ,M ,N 分别是,OA OB 边上的动点,连接,,PM PN MN ,则PMN 周长的最小值是_________.

【答案】【详解】分别作出点P 关于OA 和OB 的对称点1P 和2P ,则2P (4,-3),连接1P 2P ,分别与OA 和OB 交于点

M 和N ,此时,1

P 2P 的长即为PMN 周长的最小值.

由60AOB ∠=?可得直线OA 的表达式为y=2x ,设1P (x,y),由1P 2P 与直线OA 垂直及1P 2P 中点坐标在直线

OA 上可得方程组:3

·214

342?

2

2y x y x -?=-??-?++?=??解得:05x y =??=?则1P (0,5),

由两点距离公式可得:12PP ==即PMN

周长的最小值

三、解答题

14.(2020·扬州)如图1.已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F . (1)求证:OC ∥AD ;

(2)如图2,若DE =DF ,求AE

AF

的值;

(3)当四边形ABCD 的周长取最大值时,求DE 的值.

(第27题图1) (第27题图2)

{解析}本题考查了平行线的判定与性质、圆周角定理、三角形相似的判定与性质、三角形全等的判定与性质、二次函数最值、勾股定理、等腰三角形的判定与性质等知识的综合运用,解题的关键是作出适当的辅助线,找到解

题的思路与途径. (1(2)以O 为圆心,OA 为半径作辅助圆,先利用直径所对圆周角是直角证∠ADB =90°,再利用互余关系得出∠AOF =90°,从而求得AD 的长,最后由△ADE ∽△AOF 求得

AE

AF

的值; (3) 如答图2,以O 为圆心,OA 为半径作圆,延长BC 与AD 交于点H . 过E 作EQ ⊥CD 于Q . 先证△ACB ≌△ACH 得AB =AH =4,BC =HC ,于是DC =CB =CH ,再由△HCD ∽△HAB 得到HD 与BC 的关系式,最后,设BC =x ,四边形ABCD 的周长为y ,通过二次函数的最值求得BC 的长,从而可借助余弦函数求得DE 的长.

∴∠AOF =90°,AD =AOF =∠ADB =90°,∠DAC =∠OAC ,∴△ADE ∽△AOF ,

∴2

AE AD AF AO ===

(第27题答图1)(第27题答图2)(第27题答图3)

(3)如答图2,以O为圆心,OA为半径作圆,延长BC与AD交于点H. 过E作EQ⊥CD于Q.∵OA=OB=OC=OD=2,∴点A、D、C、B共圆,∴AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠ACH=90°=∠ACB,∵OA=OC,

∴∠OAC=∠OCA,∵OC∥AD,∴∠DAC=∠OCA,∴∠DAC=∠OAC,在△ACB和△ACH中,∠ACB =∠ACH,AC=AC,∠BAC=∠HAC,∴△ACB≌△ACH,AB= AH=4,BC=HC,

又∠BDH=180°-∠ADB=90°,∴DC=1

2

HB=CB=CH,∵点A、D、C、B共圆,∴∠HCD=∠HAB,又∠H=

∠H,∴△HCD∽△HAB,∴HC HD

HA HB

=,即

42

BC HD

BC

=,∴HD=

1

2

BC2,设BC=x,四边形ABCD的周长为y,

则y=AB+AD+CD+BC=4+4-1

2

BC2+BC+BC=-

1

2

x2+2x+8=()2

1

26

2

x

--+,∴当x=2时,y有最大值,当BC=x=2

时(答图3),AD=CD=BC,∴AD CD BC

==,且它们所对圆心角都为60°,∴∠DCA=∠CDB=30°,∴ED=EC,

∴DQ=1

2

CD=1,在Rt△DQE中,

DQ

DE

=COS∠CDE,

1

DE

=

3

2

,∴DE=

2

3

3

.

15.(2019?济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一)猜测探究

在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.

(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是∠NAB=∠MAC,NB与MC的数量关系是NB=CM;

(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.

(二)拓展应用

如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.

【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.

理由:如图1中,

∵∠MAN=∠CAB,

∴∠NAB+∠BAM=∠BAM+∠MAC,

∴∠NAB=∠MAC,

∵AB=AC,AN=AM,

∴△NAB≌△MAC(SAS),

∴BN=CM.

故答案为∠NAB=∠MAC,BN=CM.

(2)如图2中,①中结论仍然成立.

理由:∵∠MAN=∠CAB,

∴∠NAB+∠BAM=∠BAM+∠MAC,

∴∠NAB=∠MAC,

∵AB=AC,AN=AM,

∴△NAB≌△MAC(SAS),

∴BN=CM.

(二)如图3中,在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.

∵∠C1A1B1=∠P A1Q,

∴∠QA1B1=∠P A1N,

∵A1Q=A1P,A1B1=AN,

∴△QA1B1≌△P A1N(SAS),

∴B1Q=PN,

∴当PN的值最小时,QB1的值最小,

在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,

∴A1M=A1B1?sin60°=4,

∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,

∴A1C1=4,

∴NC1=A1C1﹣A1N=4﹣8,

在Rt△NHC1,∵∠C1=45°,

∴NH=4﹣4,

根据垂线段最短可知,当点P与H重合时,PN的值最小,

∴QB1的最小值为4﹣4.

16.(2019?淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如

下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.

请你帮助小明继续探究,并解答下列问题:

(1)当点E在直线AD上时,如图②所示.

①∠BEP=50°;

②连接CE,直线CE与直线AB的位置关系是EC∥AB.

(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.

(3)当点P在线段AD上运动时,求AE的最小值.

【解答】解:(1)①如图②中,

∵∠BPE=80°,PB=PE,

∴∠PEB=∠PBE=50°,

②结论:AB∥EC.

理由:∵AB=AC,BD=DC,

∴AD⊥BC,

∴∠BDE=90°,

∴∠EBD=90°﹣50°=40°,

∵AE垂直平分线段BC,

∴EB=EC,

∴∠ECB=∠EBC=40°,

∵AB=AC,∠BAC=100°,

∴∠ABC=∠ACB=40°,

∴∠ABC=∠ECB,

∴AB∥EC.

故答案为50,AB∥EC.

(2)如图③中,以P为圆心,PB为半径作⊙P.

∵AD垂直平分线段BC,

∴PB=PC,

∴∠BCE=∠BPE=40°,

∵∠ABC=40°,

∴AB∥EC.

(3)如图④中,作AH⊥CE于H,

∵点E在射线CE上运动,点P在线段AD上运动,

∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.

17.(2020?东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=

AE,连接BE,点M、N、P分别为DE、BE、BC的中点.

(1)观察猜想.

图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.

(2)探究证明

把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;

(3)拓展延伸

把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.

【解答】解:(1)∵AB=AC,AD=AE,

∴BD=CE,

∵点M、N、P分别为DE、BE、BC的中点,

∴MN=BD,PN=CE,MN∥AB,PN∥AC,

∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,

∴∠MNE+∠ENP=∠ABE+∠AEB,

∵∠ABE+∠AEB=180°﹣∠BAE=60°,

∴∠MNP=60°,

故答案为:NM=NP;60°;

(2)△MNP是等边三角形.

理由如下:由旋转可得,∠BAD=∠CAE,

又∵AB=AC,AD=AE,

∴△ABD≌△ACE(SAS),

∴BD=CE,∠ABD=∠ACE,

∵点M、N、P分别为DE、BE、BC的中点.

∴MN=BD,PN=CE,MN∥BD,PN∥CE,

∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,

∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,

∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,

∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,

∴△MNP是等边三角形;

(3)根据题意得,BD≤AB+AD,即BD≤4,

∴MN≤2,

∴△MNP的面积==,

∴△MNP的面积的最大值为.

18.(2020?重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕

点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.

(1)求证:CF=AD;

(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC 存在的数量关系,并证明你猜想的结论;

(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.

【解答】证明:(1)∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∵把AD绕点A逆时针旋转90°,得到AE,

∴AD=AE,∠DAE=90°=∠BAC,

∴∠BAD=∠CAE,DE=AD,

又∵AB=AC,

∴△BAD≌△CAE(SAS),

∴∠ABD=∠ACE=45°,

∴∠BCE=∠BCA+∠ACE=90°,

∵点F是DE的中点,

∴CF=DE=AD;

(2)AG=BC,

理由如下:如图2,过点G作GH⊥BC于H,

∵BD=2CD,

∴设CD=a,则BD=2a,BC=3a,

∵∠BAC=90°,AB=AC,

∴AB=AC==a,

由(1)可知:△BAD≌△CAE,

∴BD=CE=2a,

∵CF=DF,

∴∠FDC=∠FCD,

∴tan∠FDC=tan∠FCD,

∴=2,

∴GH=2CH,

∵GH⊥BC,∠ABC=45°,

∴∠ABC=∠BGH=45°,

∴BH=GH,

∴BG=BH

∵BH+CH=BC=3a,

∴CH=a,BH=GH=2a,

∴BG=2a,

∴AG=BG﹣AB=a=CD=BC;

(3)如图3﹣1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,

∴BP=BN,PC=NM,∠PBN=60°,

∴△BPN是等边三角形,

∴BP=PN,

∴P A+PB+PC=AP+PN+MN,

∴当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时,如图3﹣2,连接MC,

∵将△BPC绕点B顺时针旋转60°得到△BNM,

∴BP=BN,BC=BM,∠PBN=60°=∠CBM,

∴△BPN是等边三角形,△CBM是等边三角形,

∴∠BPN=∠BNP=60°,BM=CM,

∵BM=CM,AB=AC,

∴AM垂直平分BC,

∵AD⊥BC,∠BPD=60°,

∴BD=PD,

∵AB=AC,∠BAC=90°,AD⊥BC,

2020年版北京市初三数学分类汇编-上学期期末几何

2020年初三上学期期末几何综合 1西城. △ABC是等边三角形,点P在BC的延长线上,以P为中心,将线段PC逆时针旋转n°(0 <n<180)得线段PQ,连接AP,BQ. (1)如图1,若PC=AC,画出当BQ∥AP时的图形,并写出此时n的值; (2)M为线段BQ的中点,连接PM. 写出一个n的值,使得对于BC延长线上任意一点P,总有1 MP AP, = 2并说明理由. 图1 备用图

2东城区.在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,连接DE. (1)如图1,当△ABC为锐角三角形时, ①依题意补全图形,猜想∠BAE与∠BCD之间的数量关系并证明; ②用等式表示线段AE,CE,DE的数量关系,并证明; (2)如图2,当∠ABC为钝角时,依题意补全图形并直接写出线段AE,CE,DE的数量关系. 图1图2 3朝阳.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA. 将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D. (1)根据题意补全图1; (2)求证:①∠OAC=∠DCB;

②CD =CA (提示:可以在OA 上截取OE =OC ,连接CE ); (3)点H 在线段AO 的延长线上,当线段OH ,OC ,OA 满足什么等量关系时,对于任意的点C 都有∠DCH =2∠DAH ,写出你的猜想并证明. 4大兴区.已知:如图,B,C,D 三点在?A 上,?=∠45BCD ,PA 是钝角 △ABC 的高线,PA 的延长线与线段CD 交于点E. (1) 请在图中找出一个与∠CAP 相等的角, 这个角是 ; (2) 用等式表示线段AC ,EC ,ED 之间的数量关系, 并证明. 备用图 图1

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

2018年中考数学一模分类汇编 几何综合

几何综合 2018西城一模 27.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α?<

2018石景山一模 图1 备用图

2018平谷一模 27.在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF . (1)补全图1; (2)如图1,当∠BAC =90°时, ①求证:BE=DE ; ②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系. 图1 B B 图2

2018怀柔一模 27.如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC. (1)依题意补全图形; (2)求∠ECD的度数; (3)若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.

2018海淀一模 27.如图,已知60AOB ∠=?,点P 为射线OA 上的一个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满足DPA OPE ∠=∠, (1)当DP PE =时,求DE 的长; (2)在点P 的运动过程中,请判断是否存在一个定点M 的判断.

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

2019年全国各地中考数学压轴题分类汇编几何综合(浙江专版)含答案

2019年全国各地中考数学压轴题分类汇编(浙江专版) 几何综合打印版答案在最后 1.(2019?杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2. (1)求线段CE的长; (2)若点H为BC边的中点,连接HD,求证:HD=HG. 2.(2019?杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°, ①求证:OD=OA. ②当OA=1时,求△ABC面积的最大值. (2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.

3.(2019?宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上. (1)求证:BG=DE; (2)若E为AD中点,FH=2,求菱形ABCD的周长. 4.(2019?宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形. (2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上. (3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长. 5.(2019?宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

35、2020年北京初三数学二模分类汇编:几何综合(教师版)

2020年北京初三数学二模分类汇编: 几何综合 【题1】(2020·东城27二模) 27.在△ABC中AB=AC,BACα ∠=,D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,E不共线,连接AD,BD,CD. (1)如图1,当60 α=?,∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系; (2)当90 α=?,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明; (提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中) (3)当 1 2 ADBα ∠=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之 间的关系.

【题2】(2020·西城27二模) 27. 在正方形ABCD中,E是CD边上一点(CE >DE),AE,BD交于点F. (1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H. 求证:∠EAB =∠GHC; (2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN. ①依题意补全图形; ②用等式表示线段AE与CN之间的数量关系,并证明. 图1 备用图27.(1)证明:在正方形ABCD中,AD∥BC,∠BAD = 90°, ∴∠AGH =∠GHC. ∵GH⊥AE, ∴∠EAB =∠AGH. ∴∠EAB =∠GHC. (2)①补全图形,如图所示. ② AE . 证明:连接AN,连接EN并延长,交AB边于点Q. ∵四边形ABCD是正方形, ∴点A,点C关于BD对称. ∴NA =NC,∠1=∠2. ∵PN垂直平分AE, ∴NA =NE. ∴NC =NE. ∴∠3=∠4. 在正方形ABCD中,BA∥CE,∠BCD = 90°, ∴∠AQE =∠4. ∴∠1+∠AQE =∠2+∠3=90°. ∴∠ANE =∠ANQ =90°. 在Rt△ANE中, A F D C E B G H A F D C E B G H A F D C E B E C

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

初三数学分类汇编-几何综合

数学分类汇编——几何综合题 1. 已知:Rt △ABC 中,∠ACB =90°,AC =BC . (1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ; (2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2; ②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明. 图1 图2 B A A

2.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ; (2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系. 图1 图2 P P E E C C B B O O A A

3. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE . (1)依题意补全图1并判断AD 与BE 的数量关系. (2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明. 图2D C B A 图1 A B C D

2020年北京初三数学一模分类汇编:几何综合 27题 (学生版);

2020中考一模汇编---27题几何综合教师版 (2020海淀一模)27.已知∠MON=α为射线OM上一定点,OA=5为射线ON上一动点,连接AB,满足∠OAB,∠OBA均为锐角.点C在线段OB上(与点O,B不重合),满足AC=AB,点C关于直线OM的对称点为D,连接AD,OD. (1)依题意补全图1; (2)求∠BAD的度数(用含α的代数式表示); (3)若tanα=3 4 ,点P在OA的延长线上,满足AP=OC,连接BP,写出一个AB的值,使得 BP∥OD,并证明.

(2020西城一模)27.如图,在等腰直角△ABC 中,∠ACB =90 点P 在线段BC 上,延长BC 至点Q ,使得CQ =CP ,连接AP ,AQ .过点B 作BD ⊥AQ 于点D ,交AP 于点E ,交AC 于点F .K 是线段AD 上的一个动点(与点A ,D 不重合),过点K 作GN ⊥AP 于点H ,交AB 于点G ,交AC 于点M ,交FD 的延长线于点N . (1)依题意补全图1; (2)求证:NM =NF ; (3)若AM =CP ,用等式表示线段AE ,GN 与BN 之间的数量关系,并证明. 图1 备用图 C B A P D F E C B A P D F E

(2020东城一模)27.如图,在正方形ABCD 中,AB =3,M 是CD 边上一动点(不与D 点重合),点D 与点E 关于AM 所在的直线对称,连接AE ,ME ,延长CB 到点F ,使得BF =DM ,连接EF ,AF . ⑴依题意补全图1; ⑵若DM =1,求线段EF 的长; ⑶当点M 在CD 边上运动时,能使△AEF 为等腰三角形,直接写出此时tan ∠DAM 的值. 图1 D M 备用图 D C B A

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学专题复习及练习:最值(二)

2020中考数学复习微专题:最值(“胡不归”问题) 突破与提升策略 【故事介绍】 从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”) 而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家? 【模型建立】 如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1

即求BC +kAC 的最小值. 【问题解决】 构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC . 将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小. 【模型总结】 在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型. 而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段. M M

1.如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一 个动点,则CD + 的最小值是_______. 【分析】本题关键在于处理 ”,考虑tan A =2,△ABE 三边之比为1:2 sin ∠,故作DH ⊥AB 交AB 于H 点,则DH =. 问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此 时 CD DH CH BE +===. 【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下: 则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在. A B C D E H E D C B A A B C D E H E D C B

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 1.重庆,11,4分)据报道,重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________ 【解析】科学记数法的正确写法是:a×。 【答案】×105 【点评】通常易犯的错误是a的整数位数不对。 2.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 ×105 ×106 ×105 ×107

【解析】3120000是一个7位整数,所以3120000用科学记数法可表示为×1000000=×106,故选B. 【答案】B 【点评】科学记数法是将一个数写成a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值1时,n是正数;当原数的绝对值<1时,n是负数.学生在学习科学记数法时最不容易掌握的就是n的确定,查准是10的几次方。还有的学生容易把“×10n”忘记而丢失,要明确记清. 其方法是确定a,a是只有一位整数的数;确定n;当原数的绝对值≥10时,n 为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数. 16. 2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________. 【解析】科学记数法形式:a×10n 中n的值是易错点,由于378 000有6

位,所以可以确定n=6﹣1=5,所以378 000=×105 【答案】×105 【点评】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.表示时关键要正确确定a 的值以及n的值. 17.从权威部门获悉,中国海洋面积是万平方公里,约为陆地面积的三分之一, 万平方公里用科学计数法表示为平方公里 A. B. C. D. 【解析】∵万平方公里=×106平方公里,且结果保留两位有效数字 ∴×106平方公里≈ 【答案】C. 【点评】此题考查对科学计数法和有效数字的理解,把一个绝对值大于10

相关文档
最新文档