2018年中考数学专题复习第七讲几何最值问题解题策略

2018年中考数学专题复习第七讲几何最值问题解题策略
2018年中考数学专题复习第七讲几何最值问题解题策略

中考数学专题复习第七讲几何最值问题解题策略

【专题分析】

最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.

【知识归纳】

1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要

求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可.

2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可.

【题型解析】

题型1: 三角形中最值问题

例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0)

【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.

【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.

(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.

【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

令y=x+4中x=0,则y=4,

∴点B的坐标为(0,4);

令y=x+4中y=0,则x+4=0,解得:x=﹣6,

∴点A的坐标为(﹣6,0).

∵点C、D分别为线段AB、OB的中点,

∴点C(﹣3,2),点D(0,2).

∵点D′和点D关于x轴对称,

∴点D′的坐标为(0,﹣2).

设直线CD′的解析式为y=kx+b,

∵直线CD′过点C(﹣3,2),D′(0,﹣2),

∴有,解得:,

∴直线CD′的解析式为y=﹣x﹣2.

令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,

∴点P的坐标为(﹣,0).

故选C.

(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

令y=x+4中x=0,则y=4,

∴点B的坐标为(0,4);

令y=x+4中y=0,则x+4=0,解得:x=﹣6,

∴点A的坐标为(﹣6,0).

∵点C、D分别为线段AB、OB的中点,

∴点C(﹣3,2),点D(0,2),CD∥x轴,

∵点D′和点D关于x轴对称,

∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.

又∵OP∥CD,

∴点P为线段CD′的中点,

∴点P的坐标为(﹣,0).

故选C.

方法指导:出现最值问题,可转化为轴对称知识所涉及的最短路径问题是我们解

答此类问题的常见方法.

题型2: 四边形中最值问题

例题:(2017贵州安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 6 .

【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质;LE:正方形的性质.

【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.

【解答】解:设BE与AC交于点P,连接BD,

∵点B与D关于AC对称,

∴PD=PB,

最小.

∴PD+PE=PB+PE=BE

即P在AC与BE的交点上时,PD+PE最小,为BE的长度;

∵正方形ABCD的边长为6,

∴AB=6.

又∵△ABE是等边三角形,

∴BE=AB=6.

故所求最小值为6.

故答案为:6.

方法指导:本题借助不等式“a2+b2≥2ab”通过代换转化来求平行四边形面积的

最值,体现了转化思想和整体思想的运用.

题型3:圆中最值问题

例题:(2017浙江衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.

【考点】MC:切线的性质;F5:一次函数的性质.

【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.

【解答】解:连接AP,PQ,

当AP最小时,PQ最小,

∴当AP⊥直线y=﹣x+3时,PQ最小,

∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,

∴AP==3,

∴PQ==2.

方法指导: 此题综合性强,解题方法很多,考查范围较广,与初中数学很多内容有关,如勾股定理、圆周角定理及推论、垂径定理、相似、三角函数、二次函数、

垂线段的性质、二次根式的计算与化简等.考查了多种数学思想,如建模思想、化归思想等.此题难度中等,有一定的灵活性,考生不易拿满分.

【提升训练】

1. (2017江苏盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.

【考点】O4:轨迹;R2:旋转的性质.

【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短

【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,

观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB=

=,

∴B运动的最短路径长为==π,

故答案为π.

2. (2017?新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E 到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 3 s时,四边形EFGH的面积最小,其最小值是18 cm2.

【考点】H7:二次函数的最值;LE:正方形的性质.

【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.

【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,

根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t ﹣3)2+18,

∴当t=3时,四边形EFGH的面积取最小值,最小值为18.

故答案为:3;18

【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形EFGH关于t的函数关系式是解题的关键.

3. (2017湖北宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.

(1)当OM经过点A时,

①请直接填空:ON 不可能(可能,不可能)过D点;(图1仅供分析)

②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH ⊥CD于H,求证:四边形EFCH为正方形.

(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P 点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG 的最大面积.

【考点】LO:四边形综合题.

【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D 点;

②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.

【解答】解:

(1)①若ON过点D,则OA>AB,OD>CD,

∴OA2>AD2,OD2>AD2,

∴OA2+OD2>2AD2≠AD2,

∴∠AOD≠90°,这与∠MON=90°矛盾,

∴ON不可能过D点,

故答案为:不可能;

②∵EH⊥CD,EF⊥BC,

∴∠EHC=∠EFC=90°,且∠HCF=90°,

∴四边形EFCH为矩形,

∵∠MON=90°,

∴∠EOF=90°﹣∠AOB,

在正方形ABCD中,∠BAO=90°﹣∠AOB,

∴∠EOF=∠BAO,

在△OFE和△ABO中

∴△OFE≌△ABO(AAS),

∴EF=OB,OF=AB,

又OF=CF+OC=AB=BC=BO+OC=EF+OC

∴CF=EF,

∴四边形EFCH为正方形;

(2)∵∠POK=∠OGB,∠PKO=∠OBG,

∴△PKO∽△OBG,

∵S△PKO=4S△OBG,

∴=()2=4,

∴OP=2,

∴S△POG=OG?OP=×1×2=1,

设OB=a,BG=b,则a2+b2=OG2=1,

∴b=,

∴S△OBG=ab=a==,∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,

∴四边形PKBG的最大面积为1+1+=.

4. (2017甘肃张掖)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM ∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

【考点】HF:二次函数综合题.

【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;

(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;

(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.

【解答】解:

(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,

∴二次函数的表达式为y=﹣x2+x+4;

(2)设点N的坐标为(n,0)(﹣2<n<8),

则BN=n+2,CN=8﹣n.

∵B(﹣2,0),C(8,0),

∴BC=10,

在y=﹣x2+x+4中令x=0,可解得y=4,

∴点A(0,4),OA=4,

∴S△ABN=BN?OA=(n+2)×4=2(n+2),

∵MN∥AC,

∴,

∴==,

∴,

∵﹣<0,

∴当n=3时,即N(3,0)时,△AMN的面积最大;

(3)当N(3,0)时,N为BC边中点,

∵MN∥AC,

∴M为AB边中点,

∴OM=AB,

∵AB===2,AC===4,

∴AB=AC,

∴OM=AC.

5. (2017江苏盐城)【探索发现】

如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积

与原三角形面积的比值为.

【拓展应用】

如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)

【灵活应用】

如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中

剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.

【实际应用】

如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最

大的矩形PQMN,求该矩形的面积.

【考点】LO:四边形综合题.

【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;

【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形

2+,据此可得;

PQMN=PQ?PN═﹣(x﹣)

【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.

【解答】解:【探索发现】

∵EF、ED为△ABC中位线,

∴ED∥AB,EF∥BC,EF=BC,ED=AB,

又∠B=90°,

∴四边形FEDB是矩形,

则===,

故答案为:;

【拓展应用】

∵PN∥BC,

∴△APN∽△ABC,

∴=,即=,

∴PN=a﹣PQ,

设PQ=x,

则S矩形PQMN=PQ?PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,

∴当PQ=时,S矩形PQMN最大值为,

故答案为:;

【灵活应用】

如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,

由题意知四边形ABCH是矩形,

∵AB=32,BC=40,AE=20,CD=16,

∴EH=20、DH=16,

∴AE=EH、CD=DH,

在△AEF和△HED中,

∵,

∴△AEF≌△HED(ASA),

∴AF=DH=16,

同理△CDG≌△HDE,

∴CG=HE=20,

∴BI==24,

∵BI=24<32,

∴中位线IK的两端点在线段AB和DE上,

过点K作KL⊥BC于点L,

由【探索发现】知矩形的最大面积为×BG?BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;

【实际应用】

如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,

∵tanB=tanC=,

∴∠B=∠C,

∴EB=EC,

∵BC=108cm,且EH⊥BC,

∴BH=CH=BC=54cm,

∵tanB==,

∴EH=BH=×54=72cm,

在Rt△BHE中,BE==90cm,

∵AB=50cm,

∴AE=40cm,

∴BE的中点Q在线段AB上,

∵CD=60cm,

∴ED=30cm,

∴CE的中点P在线段CD上,

∴中位线PQ的两端点在线段AB、CD上,

由【拓展应用】知,矩形PQMN的最大面积为BC?EH=1944cm2,答:该矩形的面积为1944cm2.

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

2018中考数学模拟试题

东营市2017年三轮复习模拟试题演练(第一套) 一、选择题(本大题共20小题,每小题3分,满分60分) 1.﹣的相反数是() A.﹣B.C.﹣5 D.5 2.下列运算正确的是() A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3 3.下列图形中,是中心对称图形但不是轴对称图形的是() A.B.C.D. 4.第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示正确的是() A.556.82×104B.5.5682×102C.5.5682×106D.5.5682×105 5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是() A.①②B.②③C.②④D.③④ 6.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是() A.45°B.54°C.40°D.50° 7.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)

为()

A.4km B.2km C.2km D.(+1)km 8.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为() A.4,30°B.2,60°C.1,30°D.3,60° 9.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表: 年龄14 15 16 17 18 人数 5 6 6 7 2 则这些学生年龄的众数和中位数分别是() A.17,15.5 B.17,16 C.15,15.5 D.16,16 10.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是() A.B.C.1 D. 11.函数y=mx+n与y=,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是()

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

2018年中考数学模拟试题

2018年中考数学模拟试题 一、选择题 1. -2的绝对值是 ( ) A .±2 B .2 C .一2 D . 12 2.如图所示的立体图形的主视图是( ) A . B . C . D . 3.下列运算正确的是 ( ) A .222()x y x y +=+ B .235()x x = C x = D .623x x x ÷= 4.如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( ) A ,101.10710? B .111.10710? C .120.110710? D .12 1.10710? 5.如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°, 则∠E 的度数为( ) A .56° B .36° C .26° D .28° 6.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( ) A .5,5,6 B .9,5,5 C .5,5,5 D .2,6,5 7.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 ( ) A . 1312π B .34π C .43π D .2512 π 8.若一次函数y=mx+n (m ≠0)中的m ,n 是使等式12m n =+成立的整数,则一次函数y=mx+n (m ≠0)的图象一定经过的象限是 ( ) A .一、三 B .三、四 C .一、二 D .二、四 9.如图,在矩形ABCD 中,AB=2,AD=E 是CD 的中点,连接AE , 将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是 ( ) A .1 B C .23 D

解析几何解答题专练

解析几何解答题专练

19.(本小题14分) 已知椭圆G 的中心在坐标原点,焦点在x 轴上,且经过点)20 P ,和点 212Q ?-- ?? ,. (Ⅰ)求椭圆G 的标准方程; (Ⅱ)如图,以椭圆G 的长轴为直径作圆O ,过直线2-=x 上的动点T 作圆O 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆G 交于不同的两点C ,D ,求CD AB 的取值范围. 解:(Ⅰ)设椭圆G 的标准方程为22 221x y a b +=(0a b >>), 将点)20 P ,和点21Q ? - ? ? , 代入,得 22 2 2 11 12a a b ?=??+=??,解得 2221 a b ?=??=??. 故椭圆G 的标准方程为2 212 x y +=. (Ⅱ)圆2 C 的标准方程为2 22 x y +=, 设()1 1 ,A x y ,()2 2 ,B x y , 则直线AT 的方程为1 1 2x x y y +=,直线BT 的方程为2 2 2x x y y +=, 再设直线2-=x 上的动点()2,T t -(t R ∈),由点()2,T t -在直线AT 和BT 上,得

设1s m =(1 04s <≤) ,则AB CD = 设()3 1632f s s s =+-,则()()2 269661160 f s s s '=-=-≥, 故()f s 在10,4 ?? ?? ? 上为增函数, 于是()f s 的值域为(]1,2,CD AB 的取值范围是(. 19.(本小题满分14分) 已知椭圆C : 22 22 1(0)x y a b a b +=>> 离心率2 e = ,短轴长为. (Ⅰ)求椭圆C 的标准方程; (Ⅱ) 如图,椭圆左顶点为A , 过原 点O 的直线(与坐标 轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别 与y 轴 交于M ,N 两点.试问以MN 为直径的圆是否经过 定点(与直线PQ 的斜率无关)?请证明你的结论.

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

2018年河北中考数学模拟试卷

A C D B 图2 2018年河北中考模拟 数 学 试 卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟. 卷Ⅰ(选择题,共42分) 注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1 C .-2 D .3 2.如图1所示的几何体的俯视图是( ) A . B . C . D . 3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C . D . 4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°, 那么∠ACD 的度数为( ) A .40° B .35° C .50° D .45° 5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从 中随机摸出一个小球,恰好是黄球的概率为( ) A . 3 1 B . 2 1 -1 0 -1 0 1 正面 图1 0 1

C . 3 2 D . 6 1 6.下列计算正确的是( ) A .|-a |=a B .a 2·a 3=a 6 C .()2 1 21 - =-- D .(3)0=0 7.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的: 分别以A 和B 为圆心,大于 AB 2 1 的长为半径画弧,两弧相交 于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边 形ADBC 一定是( ) A .矩形 B .菱形 C .正方形 D .无法确定 8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2 B .3 C .4 D .5 9.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°, 则∠BCD 的度数是( ) A .88° B .92° C .106° D .136° 10.下列因式分解正确的是( ) A .m 2+n 2=(m +n )(m -n ) B .x 2+2x -1=(x -1)2 C .a 2-a =a (a -1) D .a 2+2a +1=a (a +2)+1 11.下列命题中逆命题是真命题的是( ) A .对顶角相等 B .若两个角都是45°,那么这两个角相等 C .全等三角形的对应角相等 D .两直线平行,同位角相等 12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( ) A .m <﹣4 B .m >﹣4 C .m <4 D .m >4 13.如图5所示,正方形ABCD 的面积为12,△ABE 是等边 三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点, 若PD +PE 的和最小,则这个最小值为( ) A .32 B .62 C .3 D .6 14.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛 图3 C B A D 图4 A B 图

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C.D. 4.下列二次根式中,最简二次根式是() A.B.C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85°

10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2; 的最小值是,其中正确结论的个数是() ⑤若AB=2,则S △OMN A.2 B.3 C.4 D.5 二、填空题(每题3分,满分18分,将答案填在答题纸上) 13.计算:﹣3﹣5= . 14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为. 16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C 顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为. 17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)

高中数学解析几何解答题)

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点, 问E 、F 两点能否关于过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分,故椭圆中心即为该四 点外接圆的圆心 …………………1分 故该椭圆中,22c b a == 即椭圆方程可为22222b y x =+ ………3分 设H (x,y )为椭圆上一点,则 b y b b y y x HN ≤≤-+++-=-+=其中,182)3()3(||22222…………… 4分 若30<

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

2018年中考数学模拟试卷

机密★启用前 2018年初中毕业生学业(升学)统一考试模拟试卷 数学 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。 2.答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚。 3.所有题目必须在答题卡上作答,在试卷上答题无效。 4.本试题共6页,满分150分,考试用时120分钟。 5.考试结束后,将试卷和答题卡一并交回。 卷Ⅰ 一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上) 1.下列各数中,无理数为() A. 0.2 B. C. D. 2 2.2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为() A.6 5. 11? D. 5 15 .1? 10 10 .0? B.4 10 15 .1? B. 6 115 10 3. 下列计算正确的是()

A. 933a a a =? B. 2 22)(b a b a +=+ C. 022=÷a a D.6 32)(a a = 4.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图 如图所示,则组成这个几何体的小立方块最少有( ) A. 3个 B. 4个 C. 5个 D. 6个 (第4题图) 5.对一组数据:-2,1,2,1,下列说法不正确的是( ) A. 平均数是1 B. 众数是1 C. 中位数是1 D. 极差是4 6.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( ) A. 55° B. 125° C. 135° D. 140° 7.关于x 的一元一次不等式的解集为想4,则m 的值为( ) A. 14 B. 7 C. -2 D. 2 8.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的的数量约为( ) A. 1250条 B. 1750条 C. 2500条 D.5000条 9.关于x 的分式方程721511 x m x x -+=--有增根,则m 的值为( ) A. 1 B. 3 C. 4 D. 5

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

2018年初三中考数学模拟试题试卷三

2018年全新中考数学模拟试题三 (120分钟) 一、选择题(本题共8个小题,每小题4分,共32分) 在下列各题的四个备选答案中,只有一个是正确的. 1.-3的相反数是 A .3 B .-3 C .3± D .3 1 - 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,2010年,再解决60 000 000农村人口的安全饮水问题。将60 000 000 A .6 106? B .7 106? C .8 106? D .6 1060? 3.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o , 那么∠2的度数是 A.32o B.58o C.68o D.60o 4.一个几何体的三视图如右图所示,这个几何体是 A .圆锥 B .圆柱 C .三棱锥 D .三棱柱 5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是 A . 121 B .6 1 C . 4 1 D . 3 1 6.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30, 32,31,这组数据的中位数、众数分别是 A.32,31 B.31,32 C.31,31 D.32,35 7.若反比例函数k y x = 的图象经过点(3)m m , ,其中0m ≠,则此反比例函数的图象在 俯视图 左 视 图 主视图第4题图

2 1 F B A C D E A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限 8.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆, 45AOB ∠=?,点P 在数轴上运动,若过点P 且与OA 平行的直 线与⊙O 有公共点, 设x OP =,则x 的取值范围是 A .-1≤x ≤1 B .2-≤x ≤2 C .0≤x ≤2 D .x >2 二、填空题(本题共16分,每小题4分) 9.在函数2 3 -= x y 中,自变量x 的取值范围是 . 10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠= 度. 11.分解因式:=+-a 8a 8a 22 3 . 12.如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,. 则第一个黑色梯形的面积=1S ;观察图中的规律, 第n(n 为正整数)个黑色梯形的面积=n S . 三、解答题(本题共25分,每小题5分) 14. 解分式方程:221 25=---x x 15. 已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE=FC. P A O B 第8题 第12题 第10题

相关文档
最新文档