2018年高考全国卷3理科数学试题和参考答案
2018全国卷3高考试题及答案-理科数学.doc

绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
(精品)2018高考全国3卷理科数学带答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0 B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷3理科数学精校含答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的.1.已知集合A x|x 1 > 0 , B0 , 1 , 2,则AI BA •0B •1C. 1 , 2D •0 , 1 ,22. 1i 2 iA • 3 iB •3i C. 3 i D • 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A B C4.若sin丄,则cos23877A .- B.-C.999I)5△ ABP 面积的取值范围是A . 2, 6B . 4,8427•函数y x x 2的图像大致为&某群体中的每位成员使用移动支付的概率都为 该群体的10位成员中使用移动支付的人数, A . 0.7B . 0.69. △ ABC 的内角 A , B , C 的对边分别为a ,则C“ n n A .-B.- 23DX2.4 , P X 4 P X6,则pC . 0.4D . 0.32 .2 2b , c,若 △ ABC 的面积为a b c4,C .n D .n465. x 2 - 的展开式中x 4的系数为 x A . 10 B . 206 .直线x y 20分别与x 轴,y 轴交于A , C . 40 D . 80y 22上,则B 两点,点P 在圆xC . 2,3 2D . 2 2,3 210•设A , B , C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积为9.,3,则三棱锥D ABC 体积的最大值为 A • 12 3B • 18.3C . 24 3D . 54.32 2X y11. 设F i , F 2是双曲线C :p — 1 ( a 0 , b 0 )的左、右焦点,O 是坐标原点.过F 2a b作C 的一条渐近线的垂线,垂足为 P .若PFJ -./6 OP ,则C 的离心率为A . 5B . 2C .3D . . 212. 设 a log o.2 0.3 , b log 2 0.3,贝UA . a b ab 0B . ab a b 0C . a b 0 abD . ab0 ab二、填空题:本题共 4小题,每小题5分,共20分.13 .已知向量 a= 1,2 , b= 2, 2 , c= 1,入.若 c // 2a + b ,贝U _________________ . 14.曲线y ax 1 e x 在点0 , 1处的切线的斜率为2,则a __________ .n15 .函数f x cos 3x -在0 , n 的零点个数为 6 21, 1和抛物线C : y 4x ,过C 的焦点且斜率为 k 的直线与C 交于A , B两点.若/ AMB 90,贝V k ____________ .三、解答题:共70分.解答应写出文字说明、 证明过程或演算步骤. 第17~21题为必考题, 每个试题考生都必须作答.第 22、23题为选考题,考生根据要求作答.学科 .网(一)必考题:共 60分.17.(12 分)等比数列 a n 中,a ’ 1, a, 4a 3 .(2)记S n 为a n 的前n 项和.若S m 63,求m .16 .已知点M(1)求a n 的通项公式;18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种 新的生产方式•为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式•根据工人 完成生产任务的工作时间(单位:min )绘制了如下茎叶图:第一种牛.产方戌第二种乍产方式 & 6 5 5 68 Q 7 6 2 7 01223 456689^776543 3 214 4 52 110 0(1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2) 求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超 过m和不超过m 的工人数填入下面的列联表:(3)根据(2)abedaebd'附: K 219.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1) 证明:平面 AMD 丄平面BMC ; (2)当三棱锥 M ABC 体积最大时,求面 MAB 与面MCD 所成二面角的正弦值.2 220.(12分)已知斜率为k 的直线1与椭圆C7诗1交于A ,B 两点,线段AB 的中点为M 1, m m 0成等差数列,并求该数列的公差.(1) 证明:k -;2(2) 设F 为C 的右焦点,uuu uin uun P 为C 上一点,且FP FA FB 0 .证明: nunFAurn FPnu n FB221. (12 分)已知函数f x 2 x ax ln 1 x 2x .(1)若 a 0,证明:当1 x 0 时,f x 0 ;当x 0 时,f x 0;(2)若x 0是fx的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4—4:坐标系与参数方程](10分)x cos在平面直角坐标系xOy中,O O的参数方程为'(为参数),过点y sin(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.0 , 2且倾斜角为的直线l与O O交于A, B两点.23. [选修4—5:不等式选讲](10分)设函数f x 2x 1 x 1 .(1)画出y fx的图像;.(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.参考答案:17. (12 分)故 a n ( 2)n 1 或 a n 2n整数解.综上,m 6. 18. ( 12 分)解:(1)第二种生产方式的效率更高 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有多79分钟•因此第二种生产方式的效率更高(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5分钟.因此第二 种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布 在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所 需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第14. 3 15.3 16.213.2 解:(1 )设{a n }的公比为 ,由题设得 a n由已知得q 4 4q 2,解得 0 (舍去) (2)若 a n ( 2)n1,则 S n1 ( 2)n 3Sm63得(2)m 188,此方程没有正若 a n 2n 1,则 S n2n 1 .由S m 63得2m 64,解得m 6.75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至8上的一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高•学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分(2)由茎叶图知m 79 8180.2(3)由于K2 40(15 15 5 5)10 6.635,所以有99%的把握认为两种生产方20 20 20 20式的效率有差异.19. ( 12 分)解:(1)由题设知,平面CMD丄平面ABCD,交线为CD.因为BC丄CD,BC 平面ABCD , 所以BC丄平面CMD,故BC丄DM .因为M为CD上异于C,D的点,且DC为直径,所以DM丄CM.又BC I CM=C,所以DM丄平面BMC.而DM 平面AMD ,故平面AMD丄平面BMC.uuu(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M- ABC体积最大时,M为CD的中点.由题设得D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), M (0,1,1),UULW UUU UUUAM ( 2,1,1),AB (0,2,0), DA (2,0,0)设n (x, y, z)是平面MAB的法向量,则uuurn AM 0, 2x y z 0, uuu 即n AB 0. 2y 0.可取n (1,0,2).uuuDA是平面MCD的法向量,因此uuu/恕、n DA cos; n, DA utu-' 'In ||DA|,uuu sin[n,DA所以面MAB与面MCD所成二面角的正弦值是2/55 .20.( 12 分)解: ( 1 )设A(x1, y1), B(x2, y2),则2x42y1321,x242里13两式相减,并由勺一y2k得X-i x2为x2y1y2k 0.4 3由题设知彳生1,上迪m,于是2 2k 2.①4m3 1由题设得0 m ,故k .2 2(2)由题意得F(1,0),设P(x3,y3),则(X3 1必)(X1 1,yJ (X2 1,y2)(0,0)由(1)及题设得x3 3 (x1 x2) 1, y3(y1 y2) 2m 0.3 3 uuu 3又点P在C上,所以m ,从而P(1, ),|FP | .4 2 2uu|FA| ..(X1 1)22 (X1 1)23(1 X1uuu同理I FBI X 2uuu 所以I FA IuurI FBI14 2(X1 X2) 3.uuu 故2|FP I uuu|FA|uu uuu uuu设该数列的公差为uuu|FB |,即| FA |,| FP |,| FB | 成等差数列. d,则uuu2|d| || FB| IFAII 2|X1 X2I 舟届X2)24X1X2 .②将m 3代入①得所以I的方程为y 7,代入C的方程,并整理得47X214X0.故为X22,XX2—,代入②解得| d|28 3、,21 28所以该数列的公差为日或日28 2821.(12 分)解:(1 )当a0 时,f(x) (2 X)In(1 X)2X, f (X) ln(1 X)设函数g(x)X r,f (X) ln(1 X) ,则1 Xg(x)X(1 X)2.当1 X 0 时,g (X) 0;当X 0 时, g (X) 0 .故当X 1 时,g(x) g(0),且仅当X 0时,g(x) 0,从而f (x) 0,且仅当X 0时,f (X) 0.所以f(x)在(1,)单调递增学#科网又f(0) 0,故当1 X 0 时,f(x) 0 ;当X 0 时,f(x) 0.(2)( i )若 a 0,由(1 )知,当 x 0 时,f(x) (2 x)l n(1 x) 2x 0 f (0), 这与x 0是f (x)的极大值点矛盾• (ii )若a 0,设函数h(x)f (x)2 x ax 2ln(1x) 2A 2由于当 |x| min{1,1}时,2 x ax 2V|a|0,故h(x)与f(x)符号相同•又h(0) f (0) 0,故x 0是f (x)的极大值点当且仅当 x 0是h(x)的极大值点• i , 、1 2(2 x ax 2)2x(1 2ax) x 2(a 2x 2 4ax 6a 1) h (x)1 x(2ax 2)2 (x 1)(ax 2 x 2)2如果6a 1 0 ,则当06a 1 4a且 |x| min {1, | 时,h (x) 0,故 x不是h(x)的极大值点• 如果6a 10,则a 2 x 2 4ax 6a1 0存在根x 1 0,故当x (x 1,0),如果6a 1x (0,1)时,占八、、| x | min{1,一}时,h(x) 0,所以3(0,则咖& xxh (x)0 •所以 x 1 622.[选修4—4:坐标系与参数方程] 综上,a 【解析】(1)时,2—时, 2& 1:一21.1 kx 0不是h(x)的极大值点•24)1)(x 2 6x 12厂则当 x ( 1,0)时,h(x) 0;0是h(x)的极大值点,从而 x 0是f (x)的极大值(10 分)e O 的直角坐标方程为 x 2 l 与e O 交于两点.记tan k ,则I 的方程为1,解得k 1或k 1,即kx .2 . l 与e O 交于两点当且仅当(2,J ).综上, 的取值范围是(一,).4 4x t cos ,的参数方程为—(t 为参数,y v 2 tsinX t P cos , y .2 t P s in23.[选修4—5:不等式选讲](10分)3x, x -,21【解析】(1) f (x) x 2, 2 x3x, x 1.(2)由(1)知,y f (x)的图像与y 轴交点的纵坐标为 2,且各部分所在直线斜率 的最大值为3,故当且仅当 a 3且 b 2时, f (x) ax b 在 [0, ) 成立,因此 a b 的最小值为 5 .P 对应的参数分别为tA , tB ,t p ,则t pt A t p 且2 ,t A , t B 满足t 2 2.2tsin是 t A t B2、2sint pP 的坐标(x, y)满足(2) | 4).所以点P 的轨迹的参数方程是-sin2 , 2、2 ,2cos22 2为参数,一44).1, y f(X )的图像如图所示.。
2018年高中高考全国3卷理科数学带答案

2018年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.已知会合 A x|x 1≥0,B 0,1,2,则AIBA. 0 B.1 C.1,2 D.0,1,22.1 i 2 iA. 3 i B. 3 i C.3 i D.3 i3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右侧的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是4.若sin1,则cos23A.8778 B.C.D.99995.x225的睁开式中x4的系数为xA.10B.20C.40D.806.直线x y20分别与x轴,y轴交于A,B两点,点P在圆x 222上,则ABP面积的2y取值范围是A.2,6B.4,8C.,D.22,32 2327.函数y x4x22的图像大概为1/108.某集体中的每位成品使用挪动支付的概率都为p ,各成员的支付方式互相独立,设X 为该集体的10位成员中使用挪动支付的人数, DX,PX 4PX6,则pA .0.7B .0.6C .0.4D .0.39.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC 的面积为a 2b 2c 2 ,则C4A .πB .πC .πD .π234610.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为A .123B .183C .243D .543F 1 ,F 2x2y2OF 211.设 是双曲线 C :a 2 b 2 1(a0,b 0)的左,右焦点, 是坐标原点.过作C 的一条渐近线的垂线,垂足为 P .若PF 16OP ,则C 的离心率为A .5B .2C .3D .212.设alog ,blog 2,则A .abab0B .abab0C .ab0abD .ab0ab二、填空题:此题共 4小题,每题 5分,共20分。
2018全国卷3高考试题及答案理科数学.doc

绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA = ,31(),2BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A (B (C )10(D )310(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年数学高考全国卷3答案

参考答案:13.14. 15. 16.2 17.(12分)解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,. 18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二123-3{}n a q 1n n a q -=424q q =0q =2q =-2q =1(2)n n a -=-12n n a -=1(2)n n a -=-1(2)3n n S --=63m S =(2)188m-=-12n n a -=21n n S =-63m S =264m=6m =6m =种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下:(3)由于,所以有99%的把握认为两种生产方式的效率有差异. 19.(12分)解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC体积最大时,M 为的中点.由题设得,设是平面MAB 的法向量,则7981802m +==2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯⊂CD ⊂DA CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==(,,)x y z =n即 可取.是平面MCD 的法向量,因此,, 所以面MAB 与面MCD. 20.(12分)解:(1)设,则. 两式相减,并由得. 由题设知,于是 .① 由题设得,故. (2)由题意得,设,则.由(1)及题设得. 又点P 在C 上,所以,从而,. 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n n n 2sin ,DA =n 1221(,),(,)A y x y x B 222212121,14343y x y x +=+=1221y x y k x -=-1122043y x y k x +++⋅=12121,22x y x ym ++==34k m=-302m <<12k <-(1,0)F 33(,)P x y 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=3321213()1,()20y y x x y x m =-+==-+=-<34m =3(1,)2P -3||2FP =于是.同理. 所以. 故,即成等差数列. 设该数列的公差为d ,则.② 将代入①得. 所以l 的方程为,代入C 的方程,并整理得. 故,代入②解得.所以该数列的公差为或. 21.(12分)解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.学#科网又,故当时,;当时,.1||(22xFA x ===-2||22x FB =-121||||4()32FA FB x x +=-+=2||||||FP FA FB =+||,||,||FA FP FB 1212||||||||||2FB FA x x d =-=-=34m =1k =-74y x =-+2171404x x -+=121212,28x x x x+==||d =2828-0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾.(ii )若,设函数.由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点.. 如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,. 22.[选修4—4:坐标系与参数方程](10分)【解析】(1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为.与交于两点当且仅当,解得或,即或. 0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-O 221x y +=2απ=l O 2απ≠tan k α=l y kx =-lO 1<1k <-1k >(,)42αππ∈(,)24απ3π∈综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足 所以点的轨迹的参数方程是为参数,. 23.[选修4—5:不等式选讲](10分)【解析】(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A t Bt 2sin 10t α-+=A B t t α+=P t α=P (,)xy cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩P 2,2x y αα⎧=⎪⎪⎨⎪=⎪⎩(α44απ3π<<)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x=()y f x =y 23故当且仅当且时,在成立,因此的最小值为.3a ≥2b ≥()f x ax b ≤+[0,)+∞a b +5。
2018全国卷3高考试题及答案-理科数学.doc

绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
(精校版)2018年高考理科数学试题及答案全国卷3

超过 m 不超过 m
( 3)根据( 2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
2
2
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改)
n
a d
b c 附: K
,
a
b
c
d
a
c
b
d
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改) 2018 年普通高等学校招生全国统一考( 全国卷 3)理科数学
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改)
6
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改) 2018 年普通高等学校招生全国统一考试 ( 全国卷 3)理科数学
当三棱锥 M— ABC 体积最大时, M 为 CD 的中点 。 由题设得 D (0,0,0), A(2,0,0), B (2,2,0), C (0,2,0), M (0,1,1) ,
4
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改) 2018 年普通高等学校招生全国统一考( 全国卷 3)理科数学
( 1)画出 y f x 的图像;
( 2)当 x∈ 0 , 的最小值.
, f x ≤ ax b ,求 a b
参考答案:
1
2
3
4
5
6
7
8
9
10
11
12
(直打版)2018年高考理科数学试题及答案-全国卷3(word版可编辑修改)
A . a b ab 0 0
B. ab a b
C. a b 0 ab b
D. ab 0 a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 15
2018年高考全国卷3理科数学试题及参考答案
1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=
A{0} B{1} C{1,2} D{0,1,2}
2.(1+i)(2-i)=
A-3-i B-3+i C3-i D3+i
3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫
卯眼,图中木构件右边的小长方体是棒头。若如图摆放的木构件与某一带卯眼的
木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A.A B.B C.C D. D
4.若,则
2 / 15
A B C D
5.的展开式中的系数为
A.10 B.20 C.40 D.80
6. 直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y²=2上,则
∆ABP面积的取值范围是
A[2,6] B[4,8] C D
7.函数y=-+x²+2的图像大致为
A. B
C. D
3 / 15
A.A B.B C.C D.D
8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独
立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)
则p=< span="">
A.0.7 B.0.6 C.0.4 D.0.3
9.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则
C=
A B C D
10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且
其面积为9,则三棱锥D-ABC体积的最大值为
A12 B18 C24 D54
11.设F1、F2是双曲线的左、右焦点,O是坐标原点,
过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为
A B2 C D
分值: 5分 查看题目解析 >
4 / 15
A.A B.B C.C D.D
13、已知向a=(1,2),b=(2,-2),c=(1,),若c//(2a+b),则λ=__________
14.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a= 。
15.函数在[0,π]的零点个数为 。
16,已知点M(-1,1)和抛物线C:y²=4x,过C的焦点且斜率为k的直线与C
交于A,B两点,若∠AMB=90°,则k= 。
简答题(综合题)
本大题共80分。简答应写出文字说明、证明过程或演算步骤。
17、(12分)等比数列{an}中,an=1,an=4an。
(1)求{an}的递项公式;
(2)记Sn为{an}的前n项和,若Sn=63,求m。
18、(12分
)某工厂为提高生活效率,开展技术创新活动,提出了完成某项生产任务的两
种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每
5 / 15
组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生
产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产力的效率更高?并说明理由。(2)求40名工人完成生产任
务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的
列联表。
(
3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
6 / 15
19.(12分)
如图,边长为2的正方形ABCD所在的平面与半圆弧
所在平面垂直,M是上异于C,D的点。
(1) 证明:平面AMD上平面BMC;
(2) 当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值。
20.(12分)
已知斜率为k的直线l与椭圆交于A,B两点,线段AB的中点为M
(1,m)(m>0)。(1)证明:k<;(2)设F为C的右焦点,P为C上一
7 / 15
点,且++=0,证明:∣∣,∣∣,∣∣成等差数列,并求
该数列的公差。
21.(12分)已知函数f(x)=(2+x+ax²).
(1)若a=0,证明:当-1﹤x﹤0时,f(x)﹤0;当x﹥0时,f(x)﹥0;
(2)若x=0是f(x)的最大值点,求a
22.请考生在第22、23题中任选一题作答。如果多选,则按所做的第一题计分。
8 / 15
[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点
(0,),且倾斜角为α的直线l与⊙O交于A、B两点。
(1)求α的取值范围;
(2)求AB中点P的轨迹的参数方程。
23.请考生在第22、23题中任选一题作答。如果多选,则按所做的第一题计分。
[选修4-5:不等式选讲](10分)
设函数f(x)=∣2x+1∣+∣x-1∣。
9 / 15
(1)画出y= f(x)的图像;
(2)当x∈[0,-∞)时,f(x)≤ax+b,求a+b的最小值。
1-5 C D A B C 6-10 A A B C D 11-12 C B
填空题13-16
-3 3 2
17
10 / 15
11 / 15
12 / 15
13 / 15
14 / 15
15 / 15