中考数学专题复习 折叠题(含解析).doc
中考数学中的折叠问题试卷.doc

专题:漫谈折叠问题(二)一、折叠问题小技巧A 要注意折叠前后线段、角的变化,全等图形的构造;B 通常要设求知数;C 利用勾股定理构造方程。
二、折叠问题常见考察点(一)求角的度数1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°【考点】翻折变换(折叠问题),三角形内角和定理。
2. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于【】A.70°B.40°C.30°D.20°3. 如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是__________.【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。
4. 如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=__________度.5.如图,在△ABC 中,D,、E 分别是边AB 、AC 的中点, ∠B=50°º.现将△ADE 沿DE 折叠,点A 落在三角形所在平面内的点为A 1,则∠BDA 1的度数为__________°.【考点】翻折变换(折叠问题),折叠对称的性质,三角形中位线定理,平行的性质。
(二)求线段长度1.如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别和AE 、AF 折叠,点B 、D 恰好都将在点G 处,已知BE=1,则EF 的长为【 】A .B .C .D .3【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
中考数学复习:专题7-2 中考折叠问题的归类解析

专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
2023年安徽中考数学总复习专题:折叠问题(PDF版,有答案)

2023年安徽中考物理总复习专题:折叠问题1.如图,把矩形OABC 放入平面直角坐标系中,点B 的坐标为(10,8),点D 是OC 上一点,将BCD ∆沿边BD 折叠,点C 恰好落在OA 上的点E 处,则点D 的坐标是( )A .(0,4)B .(0,5)C .(0,3)D .(0,2)2.如图,将一张三角形纸片ABC 沿过点B 的直线折叠,使点C 落在边AB 上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AD =C .ED AD AB += D .AE BC AB +=3.如图,在矩形ABCD 中,5AB =,6AD =,2AE =,将ABE ∆沿BE 翻折,使点A 落在点A '处,作射线EA ',交BC 的延长线于点F ,则CF 的长为( )A .2B .114C .32 D .544.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒,若将四边形EBCF 沿EF 折叠,点B '恰好落在AD 边上,则BE 的长度为( )C D.2A.1B5.如图,在ABC∠=︒,3BD=,点D在边BC上,连C∆中,5AC=,8BC=,60接AD,如果将ABD∆沿AD翻折后,点B的对应点为点E,那么点E到直线DC的距离为( )A B.4C D.526.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,30∠=︒,BAEEC边上的1B处,则BC 3AB=,折叠后,点C落在AD边上的1C处,并且点B落在1的长为( )A.B.2C.3D.7.如图,Rt ABCB∠=︒,M,N分别是边AC,AB上BC=,90∆中,8AB=,6的两个动点.将ABC∆沿直线MN折叠,使得点A的对应点D落在BC边的三等分点处,则线段BN的长为( )A.3B.53C.3或53D.3或1548.如图,在矩形纸片ABCD中,5AB=,3BC=,将BCD∆沿BD折叠到BED∆的位置,DE交AB于点F,则ADDF的值为( )A.817B.715C.1517D.8159.如图,在矩形ABCD中,4AB=,5BC=,点E是AB上一点,沿DE折叠矩形,BC边恰好经过点A,则BE的长是( )A B.32C D.210.如图菱形ABCD中,40B∠=︒,点E是AB边上一点,将BEC∆沿CE翻折,点B恰好落在边DA延长线上的F处,则BCE∠的度数是( )A.20︒B.25︒C.30︒D.35︒11.如图,在ABCD Y 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=︒,4AB =,则ADE ∆的周长为( )A .24B .22C .16D .1212.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C '上,若4AB =,8BC =,则tan BFC ∠'的值为( )A .34 B .815 C .817 D .151713.如图,矩形纸片ABCD ,点E 在边AD 上,连接BE ,点F 在线段BE 上,且12EF BF =,折叠矩形纸片使点C 恰好落在点F 处,折痕为DG ,若AB =,则折痕DG 的长为( )AB .C .D .14.如图,在矩形纸片ABCD 中,3AB =,9AD =,将其折叠,使点D 与点B 重合,折痕为EF ,则CF 的长为( )A .4B .5 CD .3.515.如图,在Rt ABC ∆中,90ABC ∠=︒,BD 是中线,将ABD ∆沿直线AC 对折得到AED ∆,//DE AB .(1)求证:四边形ABDE 是菱形;(2)连接BE 交AD 于点F ,若3BC =,求BE 的长.参考答案1.C 【解析】Q 折痕BD 是四边形DEBC 的对称轴,∴在Rt ABE ∆中,10BE BC ==,8AB =,6AE =,4OE ∴=,在Rt DOE ∆中,222DO OE DE +=,DE CD =Q ,222(8)4CD CD ∴-+=,5CD ∴=,则853OD OC CD =-=-=,(0,3)D ∴.2.D 【解析】BDE ∆Q 是由BDC ∆翻折而成,BE BC ∴=,AE BE AB +=Q ,AE CB AB ∴+=,故D 正确,无法得出AD BD =,AE AD =,AD DE =.3.D 【解析】Q 四边形ABCD 是矩形,6AD BC ∴==,//AD BC ,AEB EBF ∴∠=∠,由折叠的性质得AEB BEF ∠=∠,2EA AE '==,90BA E A ∠'=∠=︒,5A B AB '==,BEF EBF ∴∠=∠,BF EF ∴=,设CF x =,则6BF x EF =+=,4A F x '=+,在Rt △A BF '中,222A B A F BF ''+=,2225(4)(6)x x ∴++=+,解得:54x =,54CF ∴=. 4.D 【解析】Q 四边形ABCD 是正方形,//AB CD ∴,90A ∠=︒,60EFD BEF ∴∠=∠=︒,Q 将四边形EBCF 沿EF 折叠,点B '恰好落在AD 边上,60BEF FEB '∴∠=∠=︒,BE B E '=,18060AEB BEF FEB ''∴∠=︒-∠-∠=︒,2B E AE '∴=,设BE x =,则B E x '=,3AE x =-,2(3)x x ∴-=,解得2x =.5.A 【解析】如图,过点E 作EN BC ⊥于N ,8BC =Q ,3BD =,5CD ∴=,5AC =Q ,AC DC ∴=,又60ACB ∠=︒Q ,ACD ∴∆是等边三角形,60ADC ∴∠=︒,120ADB ∴∠=︒,Q 将ABD ∆沿AD 翻折后,点B 的对应点为点E ,120ADB ADE ∴∠=∠=︒,3BD ED ==,60EDC ∴∠=︒,EN BC ⊥Q ,30DEN ∴∠=︒,1322DN DE ∴==,NE =∴点E 到直线DC .6.A 【解析】连接1CC ,在Rt ABE ∆中,30BAE ∠=︒,3AB =,tan 30BE AB ∴=⋅︒=2AE BE ∴==,160AEB AEB ∠=∠=︒,Q 四边形ABCD 是矩形,//AD BC ∴,160C AE AEB ∴∠=∠=︒,1AEC ∴∆为等边三角形,同理△1CC E 也为等边三角形,1EC EC AE ∴===,BC BE EC ∴=+=.7.D 【解析】D Q 为BC 的三等分点,2BD ∴=或4BD =,由折叠可知AN DN =,8AN BN ∴=-,当2BD =时,在Rt BDN ∆中,222DN BD BN =+,22(8)4BN BN ∴-=+,154BN ∴=;当4BD =时,在Rt BDN ∆中,222DN BD BN =+,22(8)4BN BN ∴-=+, 3BN ∴=;综上所述:BN 的长为3或154. 8.C 【解析】Q 四边形ABCD 是矩形,90A ∴∠=︒,//AB CD ,3AD BC ==,5AB CD ==,BDC DBF ∴∠=∠,由折叠的性质可得BDC BDF ∠=∠,BDF DBF ∴∠=∠,BF DF ∴=,设BF x =,则DF x =,5AF x =-,在Rt ADF ∆中,2223(5)x x +-=,175x ∴=,∴31517175AD DF ==. 9.B 【解析】Q 在矩形ABCD 中,沿DE 折叠矩形,BC 边恰好经过点A ,90C C '∴∠=∠=︒,4C D CD AB '===,5AD BC ==,90B B '∠=∠=︒,Rt △AC D '中,3AC '===,设BE x =,则4AE AB BE x =-=-,532AB B C AC ''''=-=-=,在Rt △AB E '中,222AE AB B E ''=+,即222(4)2x x -=+,解得32x =.10.A 【解析】Q 四边形ABCD 是菱形,40D B ∴∠=∠=︒,BC CD =,//AD BC ,Q 将BEC ∆沿CE 翻折,点B 恰好落在边DA 延长线上的F 处,CF BC ∴=,12BCE FCE BCF ∠=∠=∠,CD CF ∴=,40D CFD ∴∠=∠=︒,//AD BC Q ,40BCF CFD ∴∠=∠=︒,1202BCE BCF ∴∠=∠=︒. 11.A 【解析】Q 四边形ABCD 是平行四边形,60B D ∴∠=∠=︒,4AB CD ==,Q 将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处,AE AD ∴=,4CD CE ==,60D E ∠=∠=︒,AED ∴∆是等边三角形,8AD AE DE CE CD ∴===+=,ADE ∴∆的周长24AD AE DE =++=.12.B 【解析】设BF x =,则8CF BC BF x =-=-,由折叠可得8CF CF x '==-,C 'Q 是AB 的中点,114222BC AB '∴==⨯=,Q 四边形ABCD 是矩形,90B ∴∠=︒,222BC BF C F '∴'+=,2222(8)x x ∴+=-,解得:154x =,154BF ∴=,28tan 15154BC BFC BF '∴∠'==. 13.C 【解析】过点F 作MN BC ⊥于N ,与AD 交于点M ,则得矩形ABNM 和矩形CDMN,AB MN CD ∴===//AD BC Q ,EMF BNF ∴∆∆∽,∴12MF EF NF BF ==,∴MF NF ==由折叠知,DF CD ==CG FG =,∴4CN DM ====,设CG GF x ==,则4NG x =-,222GF NG NF -=Q ,∴222(4)x x --=,解得3x =,∴DG ===.14.A 【解析】Q 四边形ABCD 是矩形,90A ∴∠=︒,//AD BC ,DEF EFB ∴∠=∠,由翻折的性质可知,DE BE =,DEF BEF ∠=∠,BFE BEF ∴∠=∠,BF BE DE ∴==,设BF BE DE x ===,在Rt ABE ∆中,222BE AB AE =+Q ,2223(9)x x ∴=+-,解得5x =,5BF ∴=,954CF BC BF ∴=-=-=.15.(1)证明://DE AB Q ,DEB ABE ∴∠=∠,Q 将ABD ∆沿直线AC 对折得到AED ∆,BD DE ∴=,AB AE =,DBE DEB ∴∠=∠,ABE AEB ∠=∠,AEB DBE ∴∠=∠,//AE BD ∴,∴四边形ABDE 是平行四边形, BD DE =Q ,∴四边形ABDE 是菱形;(2)解:Q 四边形ABDE 是菱形, AB AD ∴=,90ABC ∠=︒Q ,点D 为AC 的中点, AD BD ∴=,AD AB BD ∴==,ABD ∴∆是等边三角形,60BAC ∴∠=︒,30ACB ∴∠=︒,Q 四边形ABDE 是菱形,BF EF ∴=,90BFC ∠=︒, 1322BF BC ∴==,23BE BF ∴==.。
浙教版初中数学中考复习-折叠问题 (共46张PPT)

解析:
• 【例】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不 重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点 E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( C )
• 【点拨】利用折叠的性质,说明△BEP与△CPD相似,得出y与x的关系式.
(2)外角
(3)三角函数
26
考向五:求面积
• 【例】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延 长EF交AB于点G,连结DG,求△BEF的面积.
27
解析:
28
考向六:折叠综合问题
29
解析:
30
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• 【分析】(2)由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角 相
•
等,再由AP=EB,利用AAS即可得证;
34
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• (3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
44
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
解析:
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
45
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
中考复习折叠问题(全国通用)(解析版)

专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。
本专题主要从折叠入手,经过学生的强化训练受到更多的启发。
一、单选题1.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为().A.(2,)B.(,)C.(2,)D.(,)【答案】C【解析】试题分析:过点B′作B′D⊥OC,由折叠可得CB′=OC=OA=4,⊥⊥CPB=60°,⊥⊥B′CD=30°,B′D=2根据勾股定理得DC=2⊥OD=4-2,即B′点的坐标为(2,4-2)故选C.考点:1.正方形的性质;2.图形折叠的性质;3.点的坐标.2.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点处,则点的坐标为()A.(2,2)B.(,3)C.(2,)D.(,)【答案】C【解析】过B′作BD⊥y轴于D,由折叠的性质可得∠B′CP=∠BCP=30°,CB′=BC=4,根据正方形的性质可求出∠OCB′=30°,根据含30°角的直角三角形的性质可得BD′的长,利用勾股定理可求出CD的长,即可求出OD的长,即可得点B′的坐标.【详解】过B′作B′D⊥y轴于D,∵四边形OABC是正方形,∠CPB=60°,∴∠BCP=30°,∵沿CP折叠正方形,折叠后,点B落在平面内点处,∴∠B′CP=∠BCP=30°,B′C=BC =4,∴∠OCB′=30°,∵B′D⊥y轴,∴B′D=B′C=2,∴CD==,∴OD=OC-CD=4-,∴点B′的坐标为(2,4-).故选C.【点拨】本题考查了折叠的性质、正方形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;30°角所对的直角边,等于斜边的一半;熟练掌握折叠的性质是解题关键.3.在平面直角坐标系中,将点P(-2,0)沿直线折叠得到点Q,则点Q的坐标为( ) A.(2,0)B.(0,2)C.(-2,-2)D.(0,-2)【答案】D【解析】设点P(3,2)关于直线y=x的对称点Q(m,n),由P Q的中点在直线y=x上且直线P Q与直线y=x垂直得到关于m、n的方程组,解之可得答案.详解:设点P(-2,0)关于直线y=x的对称点Q(m,n),∴PQ的中点坐标为(, ),则中点(,)在直线y=x上,∴=①,由直线PQ与直线y=x垂直,得②,联立①②,得:,则点P(-2,0)关于直线y=x的对称点P′坐标为(0,-2),故选:D.点拨:本题考查了坐标与图形变化-平移.4.如图,把长方形纸片放入平面直角坐标系中,使,分别落在轴、轴上,连接,将纸片沿折叠,使点落在点的位置,与轴交于点,若,则的长为()A.B.C.D.【答案】B【解析】由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长.【详解】∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(1,2),∴AD=AB=2,设OE=x,则AE=EC=OC-OE=2-x,在Rt△AOE中,AE2=OE2+OA2,即(2-x)2=x2+1,解得:x= ,∴OE= ,故选:B.【点拨】此题考查了折叠的性质,矩形的性质,解题的关键是方程思想与数形结合思想的应用.二、填空题5.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角⊥AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8), ∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt⊥AOF中,OF==6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt⊥CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3. ∴点E的坐标为(10,3).6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为_____.【答案】(3,)或(3,).【解析】本题首先设点E的坐标为(3,m),然后根据△AOF和△EFC相似求出m的值,本题中还需要分OF=OC,OF=OC两种情况来进行讨论,分别求出m的值.7.如图,在平面直角坐标系中,长方形各顶点的坐标分别为,,.将长方形沿折叠,使点落在轴上处,则点的坐标为__________.【答案】【解析】在中,根据勾股定理得出OB',进而得出B'A,再利用翻折的性质和勾股定理解答即可.【详解】∵长方形各顶点的坐标分别为,,,∴,,∴将长方形沿折叠,使点落在轴上处,∴,在中,,∴,设为,则,在中,,即,解得:,所以点的坐标为.故答案为:.【点拨】本题主要考查了图形翻折的性质,结合勾股定理解答问题.8.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E 的坐标是_____.【答案】(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)9.如图,在平面直角坐标系中,矩形的边、分别在轴、轴上,点在边上,将该矩形沿折叠,点恰好落在边上的处.若,,则点的坐标是__________.【答案】【解析】由勾股定理可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.【详解】设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,则OC=b+4,由题意可得,AF=AB=OC= b+4,∵∠AOF=90°,OA=8,∴b2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).【点拨】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(2,4),则点D的横坐标是___________.【答案】【解析】首先过点D作DF⊥OA于F,过D作DG⊥y轴于G.由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt⊥AEO中,利用勾股定理求得AE,OE 的长,从而得到DE、EC的长.在Rt⊥EDC中,利用三角形面积公式求得DG的长,即可得点D的横坐标.【详解】过点D作DF⊥OA于F,过D作DG⊥y轴于G.∵四边形OABC是矩形,⊥OC⊥AB,⊥⊥ECA=⊥CAB,根据题意得:⊥CAB=⊥CAD,⊥CDA =⊥B=90°,⊥⊥ECA=⊥EAC,⊥EC=EA.⊥B(2,4),⊥AD=AB=4,DC=CB=2.设OE=x,则AE=EC=OC﹣OE=4﹣x.在Rt⊥AOE 中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,⊥OE,EC=AE,⊥DE=DA-AE=4-=.在Rt⊥EDC中,∵DE•DC=DG•EC,⊥DG===,∴点D的横坐标为:.【点拨】本题考查了折叠的性质,矩形的性质,等腰三角形的判定与性质等知识.此题综合性较强,解题的关键是方程思想与数形结合思想的应用.11.如图平面直角坐标系中,O(0,0),A(4,4),B(8,0).将⊥OAB沿直线CD 折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【答案】.【解析】如图,过A作AF⊥OB于F,∵A(4,4),B(8,0),∴AF=4,OF=4,OB=8,∴BF=8﹣4=4,∴OF=BF,∴AO=AB,∵tan∠AOB==,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=8﹣a,ED=b,则AD=b,DB=8﹣b,∴,∴32b=88a﹣11ab ①,,∴56a=88b﹣11ab ②,②﹣①得:56a﹣32b=88b﹣88a,∴,即CE:DE=.故答案为:.12.把一张两边长分别为、的矩形纸片放入平面直角坐标系中,使、分别落在轴、轴正半轴上,将纸片沿对角线折叠,使点落在的位置上,则点的坐标为_______.【答案】或【解析】分两种情况讨论:当时,如图1,设交OC于点M,作于,由折叠的性质、平行线的性质和等腰三角形的判定可得MB=MO,设,则在中,根据勾股定理即可构建方程求出x,然后根据三角形的面积和勾股定理即可求出和OP的长,从而可得点的坐标;第二种情况:当时,如图2,同情况1的方法解答即可.【详解】分两种情况讨论:当时,如图1,设交OC于点M,作于,由题意得,,,,∵OC⊥AB,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,所以的坐标为;第二种情况:当时,如图2,设交BC于点M,作于,由题意得,,,,∵BC⊥AO,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,∴,所以的坐标为;故答案为:或.【点拨】本题考查了矩形的性质、折叠的性质、平行线的性质、等腰三角形的判定、勾股定理以及三角形的面积等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题的关键.13.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点处,若,,则点C的坐标为______.【答案】【解析】依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,列方程求解即可得到,进而得出点C的坐标.【详解】矩形纸片ABCD中,,,,中,设,则中,,解得,,又点C在x轴上,点C的坐标为,故答案为.【点拨】本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长解题时注意方程思想的运用.14.如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC =10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为_______。
苏教版数学中考复习—折叠.docx

3.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2) 所示的正五边形AB C D E,其中ZB AC= 度.♦折叠后求面积4.如图,有一矩形纸片ABCD, AB=10, AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE,再将AAED 以 DE 为折痕向右折叠,AE 与BC 交于点F,贝IJACEF 的面积为( )5.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成 如下右图的一座“小别墅”,则图中阴影部分的面积是6.如图a, ABCD 是一矩形纸片,AB = 6cm, AD=8cm, E 是AD 上一点, (1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF,如图b ; (2)将AAFR 以BF 为折痕向右折过A. 4B. 6 且AE = 6cm 。
操作:去,得图Co 则Z\GFC 的面积是( )C. 3 cm2 C. 8D. 10A DB D B AEC E C第4题图C. 8D. 10拼10.小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀乙),再延长交AD 于F,所得到的AEAF 是()14.如图,已知BC 为等腰三角形纸片ABC 的底边,ADXBC, AD=BC.将此三角形纸片沿AD 剪开,得到两 个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是()A. 1B. 2C. 3D. 4 ♦折叠后得结论15.如图,把AABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则Z4与Z1 + Z2之间有一种数7.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED 丄BC,则CE 的长是((A )10 希—15紆)10-5^3 (C )5"\/3 —5(口)20 —10-\/3 ♦折叠后得图形9.下图中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形 的是( )M -------------------------- NAD 图甲 A.等腰三角形B.等边三角形 C.等腰直角三角形 D.直角三角形A. D.沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()11.如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B'处。
2024年中考数学考点必备方法必备09几何综合题的三类折叠问题(解析版)
方法必备09几何综合题的三类折叠问题题型一:翻折与几何基本图形题型二:翻折与隐形圆题型三:翻折与二次函数题型一:翻折与几何基本图形1.(2024·山东泰安·一模)如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在点C 处,BC 与AD 相交于点E .求证:EB ED 【答案】见详解【分析】本题主要考查利用平行四边形的性质和折叠得性质证明ABE C DE ≌ ,即可证明结论成立.【详解】证明:∵四边形ABCD 为平行四边形,∴A C ,AB CD ,∵沿BD 折叠,点C 落在点C 处,∴C C A ,C D CD AB ,在ABE 和C DE 中AEB C ED A C AB C D∴ ABE C DE AAS ≌,∴EB ED .2.(2023·江苏泰州·二模)如图1,将 Rt 90ABC A 纸片按照下列图示方式折叠:①将ABD △沿BD 折叠,使得点A 落在BC 边上的点M 处,折痕为BD ;②将BEF △沿EF 折叠,使得点B 与点D 重合,折痕为EF ;③将DEF 沿DF 折叠,点E 落在点'E 处,展开后如图2,BD 、PF 、DF 、DP 为图1折叠过程中产生的折痕.(1)求证:DP BC ∥;(2)若'DE 落在DM 的右侧,求C 的范围;(3)是否存在C 使得DE 与MDC 的角平分线重合,如存在,请求C 的大小;若不存在,请说明理由.【答案】(1)见解析;(2)030C ;(3)不存在,理由见解析.【分析】本题考查了直角三角形的性质,折叠的性质,菱形的判定与性质,角平分线的性质,熟练掌握折叠的性质是解题的关键.(1)由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,证出四边形PBFD 是菱形,则可得出结论;(2)设ABD ,求出BDF ,902ADP FDM C ,当DE 落在DM 的右侧时,902 ,求出30a ,则可得出答案;(3)设ABD ,902ADP FDM C ,2MDC ,得出902 ,求出45 ,0C ,则可得出结论.【详解】(1)证明:由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,PF 与BD 垂直且互相平分,四边形PBFD 是菱形,DP BC ∥;(2)解:设ABD ,∵四边形PBFD 是菱形,PB DF ∥,BDF ,902ADP FDM C ,当'DE 落在DM 的右侧时,902 ,30a ,90230 ,030C ;(3)解:不存在.若存在C 使得DE 与MDC 的角平分线重合,设ABD ,902ADP FDM C ,2MDC ,902 ,45 ,0C ,不存在C 使得DE 与MDC 的角平分线重合.3.(2023·吉林松原·三模)如图①,在Rt ABC △中,90ACB ,60A ,CD 是斜边AB 上的中线,点E 为射线CA 上一点,将ADE V 沿DE 折叠,点A 的对应点为点F .(1)若AB a =,直接写出CD 的长(用含a 的代数式表示);(2)若点E 与点C 重合,连接BF ,如图②,判断四边形DBFC 的形状,并说明理由;(3)若DF AB ,直接写出CDE 的度数.【点睛】本题主要考查了折叠问题,菱形的判定,直角三角形的性质,等边三角形的判定与性质,灵活运用相关知识是解答本题的关键.4.(2023·广东茂名·二模)如图,正方形ABCD中,E是边BC的中点,将ABE沿AE折叠,得到AFE,延长EF 交边CD于点P.(1)求证:DP FP;AB ,求CP的长.(2)若6连接AP,∵四边形ABCD是正方形,∴AD AB,B D5.(2023·广西贵港·二模)综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD ,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF ,然后展开,沿过点A 与点E 所在的直线折叠,点B 落在点B 处,连接 B C ,如图1,请直接写出AEB 与ECB 的数量关系.【能力提升】把正方形对折,折痕为EF ,然后展开,沿过点A 与BE 上的点G 所在的直线折叠,使点B 落在EF 上的点P 处,连接PD ,如图2,猜想APD 的度数,并说明理由.【拓展延伸】在图2的条件下,作点A 关于直线CP 的对称点A ,连接PA ,BA ,AC ,如图3,求PA B 的度数.【答案】初步尝试:AEB ECB ;能力提升:猜想:60APD ,理由见解析;拓展延伸:15PA B【分析】初步尝试:连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,根据等边对等角的性质和三角形内角和定理,得出90BB C ,推出AE CB ∥,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证 SAS AFP DFP ≌,从而证明APD △是等边三角形,即可得到答案;拓展延伸:连接A C 、AA ,由(2)得APD △是等边三角形,进而得出30PDC ,再结合等边对等角的性质和三角形内角和定理,求得15PAC ,30ACP ,由对称性质得:AC A C ,30ACP A CP ,证明 SSS AA B CA B ≌,得到30CA B ,再由15CA P CAP ,即可求出PA B 的度数.【详解】解:初步尝试:AEB ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,∴BE CE BE ,∴EBB EB B ,ECB EB C ,∵ 2180EBB EB B EB C ECB EB B EB C ,∴90BB C ,即BB CB ,∴AE CB ∥,∴AEB ECB ,∴AEB ECB ;解:能力提升:猜想:60APD ,理由如下:理由:∵四边形ABCD 是正方形,∴AB AD ,90ADC ,由折叠性质可得:AF DF ,EF AD ,AB AP ,在AFP 和DFP △中,90AF DF AFP DFP FP FP,∴ SAS AFP DFP ≌,∴AP PD ,∴AP AD PD ,由(2)得APD △是等边三角形,∴PAD PDA APD ∵90ADC ,∴30PDC ,又∵PD AD DC ,∴12DPC DCP ∴PAC PAD DAC 由对称性质得:AC 6.(2023·吉林长春·模拟预测)如图1,平面上,四边形ABCD 中,4AB ,6CD ,BC 3DA ,90A ,点M 在AD 边上,且1DM .点P 沿折线AB BC 以1个单位速度向终点C 运动,点A 是点A 关于直线MP 的对称点,连接A P ,设点P 在该折线上运动的时间为 0t t .(1)直接写出线段BP的长;(2)如图2,连接BD.的度数,并直接写出当A 、M、A共线时t的值;①求CBD②若点P到BD的距离为1,求tan A MP 的值;t 时,请直接写出点A 到直线AD的距离(用含t的式子表示).(3)当04∵PM 平分A MA ,90PMA ,∴PM AB ∥,DNM DBA △∽△,DN DM MN ,3sin 5AD DBA BD,153sin 5PQ BP DBA ,90PQB CBD DAB ∵,90QPB PBQ DBA ,PQB BAD △∽△,,PQ QB PB 即,PQ QB PB 由A PE MA F ∽,7.(2023·河南周口·模拟预测)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠ABE到△,如图(2)所示;AFE操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,4BC ,按照(1)中的方式操作,得到图(6)或图(7).请AB ,6完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;8.(2023·山东枣庄·中考真题)问题情境:如图1,在ABC 中,1730AB AC BC ,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.∵1122CHG S CH HG ∴154302CG HE,9.(2023·内蒙古通辽·中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ 与CBQ 的数量关系,并说明理由.10.(2023·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A ,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB .”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE △由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ;(2)如图2,若点E 为AC 中点,43AC CD ,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A 的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD .若1CD ,则求BC 的长.∵AB BD,∴AM MD,ABM ,∵2BDC ABD,∴BDC DBM∥,∴BM CD,∴CD AD又CG BM,∴四边形CGMD是矩形,则CD GM,在Rt ACD△中,1CD ,11.(2023·江苏无锡·中考真题)如图,四边形ABCD 是边长为4的菱形,60A ,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当45QPB 时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.12.(2023·重庆·中考真题)在Rt ABC 中,90ACB ,=60B ,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC,BD ,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ,求证:GF BF BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.∵F 是DE 的中点则DF FE ,FH FG , ∴ SAS GFD HFE ≌,∴H G ,∴EH GC ∥,在CD 取得最小值的条件下,即CD 设4AB a ,则2BC a ,23AC a∵S 是AB 的中点,60ABC∴SC SB BC ,∴BCS △是等边三角形,则60PCB ,∴30PCA ACB BCP ,∵2BC a ,4AB a ,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA即PU 是ANR 的中位线,同理可得PT 是ANR ∴54NU UR PT a,12PU AR AT ∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至∴2120QCP BCP【点睛】本题考查了解直角三角形,全等三角形的性质与判定,等腰三角形的性质,三角形中位线的性质,折叠的性质,圆外一点到圆上距离的最值问题,垂线段最短,矩形的性质,等边三角形的性质与判定,熟练掌握以上知识是解题的关键.题型二:翻折与隐形圆一、单选题1.(湖北鄂州·中考真题)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为()A.5B.7C.8D.13 22.如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A .B C .2D .3【点睛】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,突破点是正确寻找点3.(22-23九年级上·浙江金华·期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且EAB EBC .连结AE ,BE ,PD ,PE ,则PD PE 的最小值为()A.2 B.2C.2D.2作正方形ABCD关于直线BC对称的正方形则点D的对应点是F,连接FO交BC于P,交半圆O于根据对称性有:PD PF,则有:PE PD PE PF,二、填空题4.(2022·广东汕头·一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC 边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题5.△ABC 中,AB =AC =5,BC =6,D 是BC 的中点,E 为AB 上一动点,点B 关于DE 的对称点B 在△ABC 内(不含△ABC 的边上),则BE 长的范围为.②如图所示,当点B 恰好落在由题意,BD DB DC ,∴DBB DB B ,DB ∴DBB DCB DB22综上,BE长的范围为9 5故答案为:95 52BE.【点睛】本题考查等腰三角形的性质和判定,以及勾股定理解直角三角形等,能够根据题意准确分析出动点的运动6.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB'F,连接B'D,则B'D的最小值是.故答案为210 2.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、B 'D 的值最小是解决问题的关键.7.(22-23九年级下·江苏宿迁·阶段练习)如图,矩形ABCD ,4AB ,8BC ,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足12APB AGB ,则DP 的最小值.【答案】21022【分析】由题意可知,90AGB 上,(要使DP 最小,则点P 要靠近蒂点∴90AGB ,∵12APB AGB ,即1452APB AGB ,8.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.9.(2022·天津河东·二模)已知,平面直角坐标系中有一个边长为6的正方形OABC,M为线段OC上的动点,将AOM沿直线AM对折,使O点落在O 处.(1)如图①,当30OAM 时,求点O 的坐标;(2)如图②,连接 CO ,当CO AM ∥时.①求点M 的坐标;②连接OB ,求AO M △与AOB 重叠部分的面积;(3)当点M 在线段OC (不包括端点)上运动时,请直接写出线段O C 的取值范围.由①得:tan AO AMO OM 设,CE x 则3,ME x O ¢=-()()222332,x x \=-+解得:6,5x =(不符合题意的根舍去)当,Q O ¢重合时, CO 取得最小值,此时226662,6,AC AQ AO =+===626,CO ¢\=-所以 CO 的取值范围为:626CO ¢-£【点睛】本题考查的是正方形的性质,等边三角形的判定与性质,轴对称的性质,一次函数的几何应用,圆的基本性质,锐角三角函数的应用,熟练的利用一次函数的性质解决几何图形面积问题,利用圆的基本性质求解线段长度的最小值是解本题的关键.10.(2022·重庆·三模)在ABC 中,90ACB ,CA =2CB .将线段CA 绕点C 旋转得到线段CD .(1)如图1,当点D 落在AB 的延长线上时,过点D 作DE AD 交AC 的延长线于点E ,若BC =2,求DE 的长;(2)如图2,当点D 落在CB 的延长线上时,连接AD ,过点C 作CF ⊥AB 于点F ,延长CF 交AD 于点E ,连接BE ,求证:AB CE BE ;(3)如图3,在(2)的条件下,将ACF △沿AC 翻折得到ACF △,M 为直线AD 上一个动点.连接BM ,将BDM 沿BM 翻折得到BMD △.当D F 最小时,直接写出F D FF 的值.由题意得,D ¢在以B 为圆心,BC 长为半径的圆上运动,当设1CB ,∵2CA CB ,∴2CA .∵90ACB ,1CB ,2CA ,∴225AB CA CB ,sin CAB ∵CF ⊥AB ,90ACB ,题型三:翻折与二次函数1.(21-22九年级下·湖南株洲·开学考试)如图,在平面直角坐标系中,抛物线22y ax ax c 经过 2,0A , 0,4C 两点.(1)求抛物线的解析式;(2)点P 是第一象限抛物线上一动点,连接CP ,CP 的延长线与x 轴交于点Q ,过点P 作PE y 轴于点E ,以PE 为轴,翻折直线CP ,与抛物线相交于另一点R .设P 点横坐标为t ,R 点横坐标为s ,求出s 与t 的函数关系式;(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接RC ,点G 在RP 上,且RG RC ,连接CG ,若45OCG ,求点Q 坐标.根据题意得:212EF CE t ∴2142OF OE EF t t ∵点R 的横坐标为s ,∴点R 的坐标为21,42s s s∵45OCG ,PE CE ,∴45EIC .∵45EIC GCP CPE ∴4545RCH GPE .∴RCH GPE .2.(2023·天津河西·三模)如图,在平面直角坐标系中,抛物线214y x bx c 与x 轴交于 30A ,, 4,0B 两点,在y 轴正半轴上有一点C ,OC OB .点D ,E 分别是线段AC ,AB 上的动点,且均不与端点重合.(1)求此抛物线的解析式;(2)如图①,连接BD ,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标;(3)如图②,连接CE ,当CD AE 时,求BD CE 的最小值.∵BCD △与BFG 关于x 轴对称,∴DG AB ,DM GM ,∵3OA ,4OB OC ,∴4tan 3OC CAO OA ,设 0OM a a ,则3AM a ,DM GM AM 4连接EQ 、CQ ,∵AE CD ,∴AEQ CDB ≌,∴EQ BD ,当C ,E ,Q 三点共线时,过点C 作CH AQ ,垂足为H ∵OC OB ^,4OC OB ,∴45CBA ,42BC .∵180CAH CAB EAQ 2523.(2023·广西贵港·三模)抛物线222y x x c 与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,点 32D ,为抛物线上一点,且直线CD x ∥轴,点M 是抛物线上的一动点.(1)求抛物线的解析式与A、B两点的坐标.,,,为顶点的四边形是平行四边形,求此时点M的坐标.(2)若点E的纵坐标为0,且以A E D M沿CM翻折,点N的对应点为N ,则是否存在点M,使点N (3)过点M作直线CD的垂线,垂足为N,若将CMN则恰好落在x轴上?若存在,求出此时点M的坐标;若不存在,说明段理由.当AD 为边时,11AE M D Y ,此时1M 和点C 重合,23AM E D Y 时,点2M 的纵坐标和点D 的纵坐标互为相反数,即21322,22x x 341,2x 32341341,2,,2,22M M 由折叠知,CNM CN M ∵90NCN ,∴四边形CNMN 是矩形,∵CN CN 时,∴矩形CNMN 是正方形,∴CM 平分NCN ,。
2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)
2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。
中考数学复习---矩形中的折叠变换专题训练(含答案)
中考数学复习---矩形中的折叠变换专题训练1.如图,将矩形ABCD折叠,使点A与点C重合,折痕交BC、AD分别于点E、F.若AB=4,BC=8,则菱形AECF的面积为______,OE的长为_______。
2.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于_______3.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________4.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.若△OCP与△PDA的面积比为1:4,则边AB的长为_____.5.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.连接DE,交AF与O点,则线段EG、GF、AF之间的数量关系是__________。
6.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕的长为AE________.7.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为______8.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE 折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为________.9.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为________.10.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C 的对应点为C′.(1)若点C′刚好落在对角线BD上时,BC′=________;(2)若点C′刚好落在线段AB的垂直平分线上时,则CE的长为_______;(3)若点C′刚好落在线段AD的垂直平分线上时,则CE的长为_______.11.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AB与CD重合,折痕为MN,展平后再过点B折叠矩形纸片,使点A落在MN上的点G处,折痕BE与MN相交于点H;再次展平,连接BG,EG,延长EG交BC于点F.有如下结论:①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等边三角形。
中考数学复习《折叠问题》
EF 6 72 ∴S△BEF=EG· S△BEG=10×24= 5
14.如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形 沿着过点 E 的直线翻折后,点 C,D 分别落在边 BC 下方的点 C′,D′处,且 点 C′,D′,B 在同一条直线上,折痕与边 AD 交于点 F,D′F 与 BE 交于点 G.设 AB=t,那么△EFG 的周长为 2 3t .(用含 t 的代数式表示)
13.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE
折叠到DF,延长EF交AB于点G,连结DG,求△BEF的面积. 【解析】由折叠和正方形的性质,在Rt△BEG中,由勾股定理求出AG后再 求△BGE的面积,最后由△BEF与△BGE的面积关系求△BEF的面积.
解:DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°. 又∵DG=DG,∴△ADG≌△FDG(HL).∵正方形 ABCD 的边长为 12, BE=EC,∴BE=EC=EF=6.设 AG=FG=x,则 EG=x+6, BG=12-x,在 Rt△BEG 中,由勾股定理,得 EG2=BE2+BG2, 1 1 即(x+6) =6 +(12-x) ,解得 x=4.∵S△BEG=2· BE· BG=2×6×8=24,
(1)求证:△DEC≌△EDA;
(2)求DF的值; (3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶
点Q落在线段AE上,顶点M,N落在线段AC上,当线段PE的长为何值时,
矩形PQMN的面积最大?并求出其最大值.
解:(1)由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA, ∠ACD=∠CAE.在△DEC 与△EDA 中, CE=AD, ∵DE=ED, ∴△DEC≌△EDA(SSS) DC=EA,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年中考数学专题复习:折叠题 1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是( )
A.①②③ B. ①②④ C. ②③④ D. ①②③④ 解答: 解:∵四边形ABCD是矩形, ∴∠D=∠BCD=90°,DF=MF, 由折叠的性质可得:∠EMF=∠D=90°, 即FM⊥BE,CF⊥BC, ∵BF平分∠EBC, ∴CF=MF, ∴DF=CF;故①正确; ∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF, ∴∠BFM=∠BFC, ∵∠MFE=∠DFE=∠CFN, ∴∠BFE=∠BFN, ∵∠BFE+∠BFN=180°, ∴∠BFE=90°, 即BF⊥EN,故②正确; ∵在△DEF和△CNF中,
, ∴△DEF≌△CNF(ASA), ∴EF=FN, ∴BE=BN, 但无法求得△BEN各角的度数, ∴△BEN不一定是等边三角形;故③错误; ∵∠BFM=∠BFC,BM⊥FM,BC⊥CF, ∴BM=BC=AD=2DE=2EM, ∴BE=3EM, ∴S△BEF=3S△EMF=3S△DEF; 故④正确. 故选B. 点评: 此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中: ①∠BEF=90°;②DE=CH;③BE=EF; ④△BEG和△HEG的面积相等;
⑤若,则. 以上命题,正确的有( )
A.2个 B. 3个 C. 4个 D. 5个 解答: 解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确; ②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误; ③只可证△EDF∽△BAE,无法证明BE=EF,故错误; ④可证△GEB,△GEH是等腰三角形,则G是BH边的中线,∴△BEG和△HEG的面积相等,故正确; ⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,则有y2+(2y﹣2x)2=(2y﹣x)2,解得x1=y
(不合题意舍去),x2=y.则,故正确. 故正确的有3个. 故选B.
点评: 本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断. 3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )
A.3 B. 2 C. 2 D. 2 解答: 解:过点E作EM⊥BC于M,交BF于N, ∵四边形ABCD是矩形, ∴∠A=∠ABC=90°,AD=BC, ∵∠EMB=90°, ∴四边形ABME是矩形, ∴AE=BM, 由折叠的性质得:AE=GE,∠EGN=∠A=90°, ∴EG=BM, ∵∠ENG=∠BNM, ∴△ENG≌△BNM(AAS), ∴NG=NM, ∴CM=DE, ∵E是AD的中点, ∴AE=ED=BM=CM, ∵EM∥CD, ∴BN:NF=BM:CM, ∴BN=NF, ∴NM=CF=, ∴NG=, ∵BG=AB=CD=CF+DF=3, ∴BN=BG﹣NG=3﹣=, ∴BF=2BN=5,
∴BC===2. 故选B.
点评: 此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用. 4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是( )
A.③④ B. ①②③ C. ①②④ D. ①②③④ 解答: 解:由两个正方形的性质易证△AED≌△AGB, ∴BG=DE,∠ADE=∠ABG, ∴可得BG与DE相交的角为90°, ∴BG⊥DE.①正确; 如图,延长AK,使AK=KQ,连接DQ、QG, ∴四边形ADQG是平行四边形; 作CW⊥BE于点W,FJ⊥BE于点J, ∴四边形CWJF是直角梯形; ∵AB=DA,AE=DQ,∠BAE=∠ADQ, ∴△ABE≌△DAQ, ∴∠ABE=∠DAQ, ∴∠ABE+∠BAH=∠DAQ+∠BAH=90°. ∴△ABH是直角三角形. 易证:△CWB≌△BHA,△EJF≌△AHE; ∴WB=AH,AH=EJ, ∴WB=EJ, 又WN=NJ, ∴WN﹣WB=NJ﹣EJ, ∴BN=NE,③正确; ∵MN是梯形WGFC的中位线,WB=BE=BH+HE, ∴MN=(CW+FJ)=WC=(BH+HE)=BE; 易证:△ABE≌△DAQ(SAS),∴AK=AQ=BE, ∴MN∥AK且MN=AK; 四边形AKMN为平行四边形,④正确. S△ABE=S△ADQ=S△ADG=S▱ADQG,②正确. 所以,①②③④都正确; 故选D. 点评: 当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.
5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D. 解答: 解:连接CD,交MN于E, ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处, ∴MN⊥CD,且CE=DE, ∴CD=2CE, ∵MN∥AB, ∴CD⊥AB, ∴△CMN∽△CAB,
∴, ∵在△CMN中,∠C=90°,MC=6,NC=, ∴S△CMN=CM•CN=×6×2=6, ∴S△CAB=4S△CMN=4×6=24, ∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18. 故选C.
点评: 此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用. 6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,则∠A′的大小是( )
A.40° B. 36° C. 32° D. 30° 解答: 解:连接C'D, ∵AB=AC,BD=BC, ∴∠ABC=∠ACB=∠BDC, ∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处, ∴∠BCD=∠BC'D, ∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D, ∵四边形BCDC'的内角和为360°,
∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°, ∴∠A=180°﹣∠ABC﹣∠ACB=36°. 故选B.
点评: 本题考查了折叠的性质,解答本题的关键是掌握翻折前后的对应角相等,注意本题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.
7.如图,已知△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为( ) A. B. C. 3﹣ D. 解答: 解:过点D作DE⊥AB′于点E,过点C作CF⊥AB, ∵△ABC中,∠CAB=∠B=30°,AB=2, ∴AC=BC, ∴AF=AB=,
∴AC===2,
由折叠的性质得:AB′=AB=2,∠B′=∠B=30°, ∵∠B′CD=∠CAB+∠B=60°, ∴∠CDB′=90°, ∵B′C=AB′﹣AC=2﹣2,
∴CD=B′C=﹣1,B′D=B′C•cos∠B′=(2﹣2)×=3﹣,
∴DE===, ∴S阴影=AC•DE=×2×=. 故选A.
点评: 此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.
8.如图,已知△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,则BD的长度为( )
A. B. C. D. 解答: 解:作CF⊥AB于点F. ∵∠CAB=∠B ∴AC=BC, ∴BF=AB=,