8年级数学知识点讲解与专题训练10---因式分解(含答案解析)
人教版初中数学因式分解专项训练及答案

人教版初中数学因式分解专项训练及答案一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.5.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2+b2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a2+4a+1=(2a+1)2,正确;B. a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C. a2﹣2a+1=(a﹣1)2,故此选项错误;D. (a﹣b)(a+b)=a2﹣b2,故此选项错误;故选A6.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】 把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.7.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.8.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11-【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a2-a+b2-b+2ab-5=(a2+2ab+b2)-(a+b)-5=(a+b)2-(a+b)-5=32-3-5=9-3-5=1,故选:A.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.9.若a2-b2=14,a-b=12,则a+b的值为()A.-12B.1 C.12D.2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a2-b2=(a+b)(a-b)=12(a+b)=14∴a+b=1 2故选C.点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.11.将2x2a-6xab+2x分解因式,下面是四位同学分解的结果:①2x(xa-3ab),②2xa(x-3b+1),③2x(xa-3ab+1),④2x(-xa+3ab-1).其中,正确的是()A.①B.②C.③D.④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x2a-6xab+2x=2x(xa-3ab+1).故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.13.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】 A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.14.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.16.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.17.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.18.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .19.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。
八年级因式分解难题(附答案与解析)

2017 年 05 月 21 日数学(因式分解难题) 2一.填空题(共 10 小题)1.已知 x+y=10, xy=16,则 x 2y+xy 2 的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2(x ﹣1)(x ﹣9);另一位同学因看错了常数项分解成 2(x ﹣2)( x ﹣ 4),请你将原多项式因式分解正确的结果写出来:..若多项式x 2+mx+4 能用完全平方公式分解因式,则 m 的值是 .34.分解因式: 4x 2﹣4x ﹣ 3=.5.利用因式分解计算: 2022+202× 196+982= ..△ 三边 a ,b ,c 满足 a 2+b 2+c 2,则△ ABC 的形状是 .6 ABC =ab+bc+ca 7.计算: 12﹣22+32﹣42+52﹣62+⋯﹣1002+1012=.8.定义运算 a ★b=( 1﹣ a ) b ,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a ★b=b ★a③若 a+b=0,则( a ★ a ) +( b ★ b ) =2ab④若 a ★ b=0,则 a=1 或 b=0.其中正确结论的序号是 (填上你认为正确的所有结论的序号) .9 .如果 1+a+a 2+a 3 ,代数式 2+a 3+a 4+a 5+a 6+a 7+a 8 = .=0 a+a.若多项式2﹣6x ﹣ b 可化为( x+a )2﹣1,则 b 的值是.10x二.解答题(共 20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n ﹣3)2的值一定能被 20 整除. 12.因式分解: 4x 2y ﹣4xy+y .13.因式分解(1)a3﹣ab2(2)( x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若 m2 +2mn+2n2﹣ 6n+9=0,求 m 和 n 的值.解:∵ m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴( m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a,b,c 都是正整数,且满足a2+b2﹣ 6a﹣6b+18+| 3﹣c| =0,请问△ ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣02,12=42﹣22, 20=62﹣42,因此 4,12,20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?(3)介于 1 到 200 之间的所有“和谐数”之和为.16.如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片.(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.( 1)有若干块长方形和正方形硬纸片如图1 所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知 a+b=1,ab=﹣1,设 s1=a+b, s2=a2+b2,s3=a3+b3,⋯,s n=a n+b n(1)计算 s2;(2)请阅读下面计算s3的过程:因为 a+b=1,ab=﹣1,所以 s3=a3+b3=(a+b)(a2+b2)﹣ ab(a+b)=1×s2﹣(﹣ 1)=s2+1=你读懂了吗?请你先填空完成(2)中 s3的计算结果,再用你学到的方法计算s4.(3)试写出 s n﹣2, s n﹣1,s n三者之间的关系式;(4)根据( 3)得出的结论,计算s6.19.(1)利用因式分解简算: 9.82+0.4×9.8+0.04(2)分解因式: 4a(a﹣1)2﹣( 1﹣a)20.阅读材料:若 m 2﹣2mn+2n2﹣8n+16=0,求 m、n 的值.解:∵ m2﹣2mn+2n2﹣ 8n+16=0,∴( m2﹣2mn+n2)+(n2﹣8n+16)=0∴( m﹣ n)2+(n﹣4)2=0,∴( m﹣n)2=0,( n﹣ 4)2=0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ ABC的三边长 a、b、c 都是正整数,且满足a2+b2﹣ 6a﹣8b+25=0,求△ ABC的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c=.21.仔细阅读下面例题,解答问题:例题:已知二次三项式 x2﹣4x+m 有一个因式是( x+3),求另一个因式以及 m 的值.解:设另一个因式为(x+n),得 x2﹣4x+m=(x+3)(x+n),则 x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n解得: n=﹣7,m=﹣21∴另一个因式为( x﹣7), m 的值为﹣ 21.问题:(1)若二次三项式 x2﹣5x+6 可分解为( x﹣ 2)(x+a),则 a=;(2)若二次三项式 2x2+bx﹣5 可分解为( 2x﹣1)( x+5),则 b=;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣3),求另一个因式以及k 的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y3;(4)4+12(x﹣ y) +9(x﹣y)2.23.已知 a,b,c 是三角形的三边,且满足( a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣ n)2、 mn 之间的等量关系是.(3)若 x+y=7,xy=10,则( x﹣y)2=.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知 a、b、c 满足 a﹣b=8,ab+c2+16=0,求 2a+b+c 的值.27 .已知:一个长方体的长、宽、高分别为正整数a、 b 、 c ,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x( x+1)2=( 1+x) [ 1+x+x(x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解 1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式: 1+x+x(x+1)+x( x+1)2+⋯+x(x+1)n(n 为正整数).30.对于多项式 x3﹣5x2+x+10,如果我们把 x=2 代入此多项式,发现多项式 x3﹣5x2 +x+10=0,这时可以断定多项式中有因式( x﹣ 2)(注:把 x=a 代入多项式能使多项式的值为0,则多项式含有因式( x﹣a)),于是我们可以把多项式写成: x3﹣5x2+x+10=(x﹣ 2)(x2+mx+n),(1)求式子中 m 、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣ 2x2﹣ 13x ﹣10 的因式.2017 年 05 月 21 日数学(因式分解难题)2参考答案与试题解析一.填空题(共10 小题)1.(2016 秋 ?望谟县期末)已知x+y=10,xy=16,则 x2y+xy2的值为160.【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵ x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为: 160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016 秋?新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2( x﹣1)(x﹣9);另一位同学因看错了常数项分解成 2( x﹣2)(x﹣ 4),请你将原多项式因式分解正确的结果写出来:2(x ﹣3)2.【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2( x﹣ 2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式 2 后利用完全平方公式分解因式.【解答】解:∵ 2(x﹣ 1)(x﹣9)=2x2﹣20x+18;2( x﹣2)(x﹣4)=2x2﹣ 12x+16;∴原多项式为 2x2﹣12x+18.2x2﹣ 12x+18=2(x2﹣6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3.(2015 春?昌邑市期末)若多项式x2+mx+4 能用完全平方公式分解因式,则m 的值是± 4.【分析】利用完全平方公式( a+b)2=(a﹣b)2+4ab、( a﹣ b)2=( a+b)2﹣ 4ab 计算即可.【解答】解:∵ x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:± 4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(2015 秋 ?利川市期末)分解因式: 4x2﹣ 4x﹣3= (2x﹣ 3)(2x+1).【分析】 ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数 a 分解成两个因数 a1, a2的积 a1?a2,把常数项 c 分解成两个因数 c1, c2的积 c1?c2,并使 a1c2+a2c1正好是一次项 b,那么可以直接写成结果: ax2+bx+c=(a1x+c1)(a2x+c2),进而得出答案.【解答】解: 4x2﹣ 4x﹣3=( 2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(2015 春?东阳市期末)利用因式分解计算: 2022+202×196+982=90000.【分析】通过观察,显然符合完全平方公式.第 9页(共 31页)=( 202+98)2=3002=90000.【点评】运用公式法可以简便计算一些式子的值.6.(2015 秋 ?浮梁县校级期末)△ ABC三边 a,b,c 满足 a2+b2+c2=ab+bc+ca,则△ ABC的形状是等边三角形.【分析】分析题目所给的式子,将等号两边均乘以2,再化简得( a﹣ b)2+(a ﹣c)2+(b﹣c)2=0,得出: a=b=c,即选出答案.【解答】解:等式 a2+b2+c2=ab+bc+ac 等号两边均乘以 2 得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣ 2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,即( a﹣b)2+( a﹣ c)2+(b﹣c)2=0,解得: a=b=c,所以,△ ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ ABC是等边三角形.7.(2015 秋?鄂托克旗校级期末)计算:12﹣22+32﹣42+52﹣62+⋯﹣1002+1012= 5151.【分析】通过观察,原式变为 1+(32﹣22)+(52﹣ 42)+(1012﹣ 1002),进一步运用高斯求和公式即可解决.【解答】解: 12﹣22+32﹣42+52﹣62+⋯﹣1002+1012=1+(32﹣22) +( 52﹣42) +( 1012﹣1002)=1+(3+2)+(5+4)+(7+6)+⋯+(101+100)=( 1+101)× 101÷2=5151.故答案为: 5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(2015 秋?乐至县期末)定义运算 a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a★b=b★a③若 a+b=0,则( a★ a) +( b★ b) =2ab④若 a★ b=0,则 a=1 或 b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:① 2★(﹣ 2)=(1﹣2)×(﹣ 2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故 a★ b 不一定等于 b★ a,本选项错误;③若a+b=0,则( a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣ a2+b﹣b2=﹣ a2﹣b2=﹣2a2=2ab,本选项正确;④若 a★ b=0,即( 1﹣a)b=0,则 a=1 或 b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.( 2015 春?张掖校级期末)如果 1+a+a2+a3=0,代数式 a+a2+a3+a4+a5 +a6+a7+a8=0.【分析】 4 项为一组,分成 2 组,再进一步分解因式求得答案即可.【解答】解:∵ 1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7 +a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是: 0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(2015 春?昆山市期末)若多项式 x2﹣ 6x﹣b 可化为( x+a)2﹣ 1,则 b 的值是﹣8.【分析】利用配方法进而将原式变形得出即可.【解答】解:∵ x2﹣6x﹣ b=(x﹣3)2﹣9﹣b=( x+a)2﹣ 1,解得: a=﹣3,b=﹣8.故答案为:﹣ 8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n﹣3)2的值一定能被 20 整除.【分析】用平方差公式展开( n+7)2﹣( n﹣3)2,看因式中有没有20 即可.【解答】解:(n+7)2﹣( n﹣ 3)2=(n+7+n﹣ 3)(n+7﹣ n+3)=20(n+2),∴( n+7)2﹣( n﹣ 3)2的值一定能被 20 整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(2016 秋?农安县校级期末)因式分解:4x2y﹣ 4xy+y.【分析】先提取公因式 y,再对余下的多项式利用完全平方公式继续分解.【解答】解: 4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣ 1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015 秋?成都校级期末)因式分解32(1)a ﹣ab(2)( x﹣y)2+4xy.【分析】( 1)原式提取 a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式 =a(a2﹣ b2)=a( a+b)( a﹣ b);(2)原式 =x2﹣ 2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015 春?甘肃校级期末)先阅读下面的内容,再解决问题,例题:若 m2 +2mn+2n2﹣ 6n+9=0,求 m 和 n 的值.解:∵ m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴( m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a,b,c 都是正整数,且满足a2+b2﹣ 6a﹣6b+18+| 3﹣c| =0,请问△ ABC是怎样形状的三角形?【分析】( 1)首先把x2+2y2﹣2xy+4y+4=0,配方得到( x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把 a2+b2﹣6a﹣ 6b+18+| 3﹣c| =0,配方得到( a﹣ 3)2+(b﹣3)2+| 3﹣c| =0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵ x2 +2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴( x﹣y)2+(y+2)2=0∴x=y=﹣ 2∴;22(2)∵ a +b ﹣6a﹣6b+18+| 3﹣ c| =0,22∴a ﹣6a+9+b ﹣6b+9+| 3﹣c| =0,22∴( a﹣3) +( b﹣ 3) +| 3﹣c| =0∴a=b=c=3∴三角形 ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015 秋?太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣02, 12=42﹣22,20=62﹣42,因此 4,12,20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?(3)介于 1 到 200 之间的所有“和谐数”之和为2500.【分析】( 1)利用 36=102﹣82;2016=5052﹣5032说明 36 是“和谐数”,2016不是“和谐数”;(2)设两个连续偶数为 2n,2n+2(n 为自然数),则“和谐数”=(2n+2)2﹣( 2n)2,利用平方差公式展开得到( 2n+2+2n)(2n+2﹣2n)=4( 2n+1),然后利用整除性可说明“和谐数”一定是 4 的倍数;(3)介于 1 到 200 之间的所有“和谐数”中,最小的为: 22﹣02=4,最大的为:2250 ﹣ 48 =196,将它们全部列出不难求出他们的和.【解答】解:(1)36 是“和谐数”,2016 不是“和谐数”.理由如下:36=102﹣ 82;2016=5052﹣5032;(2)设两个连续偶数为2k+2 和 2k(n 为自然数),∵( 2k+2)2﹣( 2k)2=(2k+2+2k)( 2k+2﹣ 2k)=( 4k+2)× 2=4(2k+1),∵4(2k+1)能被 4 整除,∴“和谐数”一定是 4 的倍数;(3)介于 1 到 200 之间的所有“和谐数”之和,S=(22﹣ 02)+(42﹣ 22)+(62﹣42) +⋯+(502﹣482)=502 =2500.故答案是: 2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015 春?兴化市校级期末)如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片.(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为 169,长方形②的周长为 34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】( 1)根据小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为 34,得出 a+b=17,由题意可知:小正方形①与大正方形③的面积之和为 a2+b2=169,将 a+b=17 两边同时平方,可求得 ab 的值,从而可求得长方形②的面积;(3)设正方形的边长为( na+mb),其中( n、m 为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2≤8,m2≤8,2mn≤ 8( n、 m 为正整数)从而可知n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为( a+2b)和( a+b)的长方形∴a2+3ab+2b2=(a+2b)( a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为 169,∴a2+b2=169.将 a+b=17 两边同时平方得:( a+b)2=172,整理得: a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为( na+mb),其中( n、m 为正整数)∴正方形的面积 =( na+mb)2=n2a2+2nmab+m2b2.∵现有三种纸片各8 张,∴n2≤8,m2≤8,2mn≤8(n、m 为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17.(2014 秋 ?莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为: a2+2a+1 = (a+1)2.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】( 1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1)①长方形的面积 =a2+2a+1;长方形的面积 =(a+1)2;②a2+2a+1=(a+1)2;(2)①如图,可推导出( a+b)2=a2+2ab+b2;②2a2+5ab+2b2=( 2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18.(2013 秋?海淀区校级期末)已知a+b=1,ab=﹣1,设 s1=a+b,s2=a2+b2,s3=a3+b3,⋯, s n =a n+b n(1)计算 s2;(2)请阅读下面计算s3的过程:因为 a+b=1,ab=﹣1,所以 s33+b3(a+b )(2+b2)﹣ ab(a+b)=1×s2﹣(﹣ 1)=s2+1= 4=a=a你读懂了吗?请你先填空完成( 2)中 s3的计算结果,再用你学到的方法计算s4.(3)试写出 s n﹣2, s n﹣1,s n三者之间的关系式;(4)根据( 3)得出的结论,计算s6.【分析】(1)(2)利用完全平方公式进行化简,然后代入a+b,ab 的值,即可推出结论;(3)根据( 1)所推出的结论,即可推出 S n﹣2+S n﹣1=S n;(4)根据( 3)的结论,即可推出 a6+b6=S6=S4+S5 =2S4+S3.【解答】解:(1)S2=a2+b2=( a+b)2﹣ 2ab=3;(2)∵( a2+b2)(a+b) =a3+ab2+a2 b+b3=a3+b3+ab( a+b),∴a3+b3=4,即 S3=4;2222∵S4=(a +b )﹣2(ab) =7,(3)∵ S2=3,S3=4, S4=7,∴S2+S3=S4,∴S n﹣2+S n﹣1=S n;(3)∵ S n﹣2+S n﹣1=S n,S2=3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出 S2=3,S3=4, S4=7,分析归纳出规律: S n﹣2+S n﹣1=S n.219.(2013 春?重庆校级期末)( 1)利用因式分解简算:9.8 +0.4×9.8+0.04【分析】( 1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式 =9.82+2×0.2×9.8+0.22=( 9.8+0.2)2=100;(2)4a( a﹣1)2﹣( 1﹣a)=( a﹣ 1)(4a2﹣4a+1)=( a﹣ 1)(2a﹣ 1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.( 2013 春?惠山区校级期末)阅读材料:若 m2﹣2mn+2n2﹣ 8n+16=0,求 m、n的值.解:∵ m2﹣2mn+2n2﹣ 8n+16=0,∴( m2﹣2mn+n2)+(n2﹣8n+16)=0 ∴( m﹣ n)2+(n﹣4)2=0,∴( m﹣n)2=0,( n﹣ 4)2=0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ABC的三边长a、b、c 都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ ABC的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c= 7.【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 x 与 y 的值,即可求出 x﹣y 的值;(2)将已知等式 25 分为 9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 a 与 b 的值,根据边长为正整数且三角形三边关系即可求出 c 的长;(3)由 a﹣ b=4,得到 a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 b 与 c 的值,进而求出 a 的值,即可求出 a﹣b+c 的值.【解答】解:(1)∵ x2 +2xy+2y2+2y+1=0 222∴( x +2xy+y ) +( y +2y+1)=0∴( x+y)2+( y+1)2=0∴x+y=0 y+1=0解得 x=1, y=﹣1∴x﹣y=2;(2)∵ a2+b2﹣6a﹣8b+25=0∴( a2﹣ 6a+9) +( b2﹣8b+16)=0∴a﹣3=0,b﹣4=0解得 a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又 c 是正整数,∴c最大为 6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且 c﹣3=0,即 b=﹣ 2, c=3,a=2,则a﹣b+c=2﹣(﹣ 2)+3=7.故答案为: 7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012 秋?温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m 有一个因式是( x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得 x2﹣4x+m=(x+3)(x+n),则 x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n解得: n=﹣7,m=﹣21∴另一个因式为( x﹣7), m 的值为﹣ 21.问题:(1)若二次三项式 x2﹣5x+6 可分解为( x﹣ 2)(x+a),则 a= ﹣ 3 ;(2)若二次三项式 2x2+bx﹣5 可分解为( 2x﹣1)( x+5),则 b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣3),求另一个因式以及 k 的值.【分析】( 1)将( x﹣2)(x+a)展开,根据所给出的二次三项式即可求出 a 的值;(2)( 2x﹣1)( x+5)展开,可得出一次项的系数,继而即可求出 b 的值;(3)设另一个因式为( x+n),得 2x2 +5x﹣ k=(2x﹣3)( x+n) =2x2+(2n﹣ 3)x﹣ 3n,可知 2n﹣ 3=5,k=3n,继而求出 n 和 k 的值及另一个因式.【解答】解:(1)∵( x﹣ 2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣ 5,解得: a=﹣3;(2)∵( 2x﹣1)( x+5)=2x2+9x﹣5=2x2+bx﹣ 5,(3)设另一个因式为( x+n),得 2x2 +5x﹣ k=(2x﹣3)( x+n) =2x2+(2n ﹣ 3)x﹣ 3n,则2n﹣3=5,k=3n,解得: n=4,k=12,故另一个因式为( x+4),k 的值为 12.故答案为:(1)﹣ 3;( 2 分)(2)9;( 2 分)( 3)另一个因式是 x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012 春?郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y3;(4)4+12(x﹣ y) +9(x﹣y)2.【分析】( 1)直接提取公因式x 即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣ y,再对余下的多项式利用完全平方公式继续分解;(4)把( x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣ 1);(2)16x2﹣ 1=(4x+1)( 4x﹣1);223(3)6xy ﹣ 9x y﹣y ,22=﹣ y( 9x ﹣ 6xy+y ),2=﹣ y( 3x﹣y);(4)4+12(x﹣ y) +9(x﹣y)2,=( 3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y 后,需要继续利用完全平方公式进行二次因式分解.23.( 2012 春?碑林区校级期末)已知 a,b,c 是三角形的三边,且满足( a+b+c)2=3( a2 +b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵( a+b+c)2=3( a2+b2+c2),∴a2+b2+c2 +2ab+2bc+2ac,=3a2+3b2+3c2,a2+b2﹣2ab+b2+c2﹣ 2bc+a2+c2﹣2ac=0,即( a﹣b)2+( b﹣ c)2+(c﹣ a)2=0,∴a=b=c,故△ ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011 秋?北辰区校级期末)分解因式4 2 24(1)2x ﹣4x y +2y(2)2a3﹣4a2b+2ab2.【分析】( 1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.【解答】解:(1)2x4﹣4x2y2+2y4=2(x2﹣ y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(2011 秋?苏州期末)图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②请你写出三个代数式( m+n)2、(m﹣ n)2、 mn 之间的等量关系是(m+n)2﹣( m﹣n)2=4mn .(3)若 x+y=7,xy=10,则( x﹣y)2= 9.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了( m+n)(2m+n)=2m2+3mn+n2.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【分析】( 1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第( 2)题.(4)可利用各部分面积和 =长方形面积列出恒等式.(5)可参照第( 4)题画图.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;(2)( m+n)2﹣( m﹣ n)2=4mn;222(3)( x﹣y) =( x+y)﹣ 4xy=7 ﹣ 40=9;22(4)( m+n)(2m+n)=2m +3mn+n ;(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.26.( 2009 秋?海淀区期末)已知 a、b、c 满足 a﹣ b=8,ab+c2 +16=0,求2a+b+c 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由 a﹣b=8 可得 a=b+8;将其代入 ab+c2+16=0 得:b2+8b+c2+16=0;此时可发现 b2+8b+16 正好符合完全平方公式,因此可用非负数的性质求出 b、 c 的值,进而可求得 a 的值;然后代值运算即可.【解答】解:因为 a﹣b=8,所以 a=b+8.(1 分)又ab+c2+16=0,所以( b+8)b+c2+16=0.( 2 分)又( b+4)2≥0,c2≥ 0,则b=﹣4,c=0.(4 分)所以 a=4,( 5 分)所以 2a+b+c=4.( 6 分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010 春?北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足 a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将 a+b+c+ab+bc+ac+abc 分解因式可变为( a+1)(b+1)(c+1)﹣1,就得( 1+b)(c+1)(a+1)=2007,由于 a、b、c 均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而 2007 只可分解为 3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为 3、3、223,所以 a、b、c 值为 2、 2、222.就可求出长方体体积 abc 了.【解答】解:原式可化为: a+ab+c+ac+ab+abc+b+1﹣ 1=2006,a( 1+b)+c(1+b) +ac(1+b)+(1+b)﹣ 1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)( a+1)=2007,2007 只能分解为 3×3×223∴( a+1)、(b+1)、(c+1)也只能分别为 3、 3、223 ∴a、b、c 也只能分别为 2、2、222 ∴长方体的体积 abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(2007 秋?普陀区校级期末)(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15.【分析】把(x2﹣ 4x)看作一个整体,先把﹣ 15 写成 3×(﹣ 5),利用十字相乘法分解因式,再把 3 写成(﹣ 1)×(﹣ 3),﹣5 写成 1×(﹣ 5),分别利用十字相乘法分解因式即可.【解答】解:(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15,=( x2﹣4x+3)(x2﹣ 4x﹣5),=( x﹣1)(x﹣3)( x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007 春?镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:2=( 1+x) [ 1+x+x(x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是提公因式法,共应用了2次.(2)若分解 1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2004,则需应用上述方法2004第 29 页(共 31 页)次,结果是( 1+x)2005.(3)分解因式: 1+x+x(x+1)+x( x+1)2+⋯+x(x+1)n(n 为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了 2 次.(2)需应用上述方法2004 次,结果是( 1+x)2005.(3)解:原式 =(1+x)[ 1+x+x(x+1) ]+ x( x+1)3+⋯+x( x+1)n,=( 1+x)2( 1+x) +x(x+1)3+⋯+x(x+1)n,=( 1+x)3+x( x+1)3+⋯+x( x+1)n,=( x+1)n+x( x+1)n,=( x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(2007 春 ?射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式 x3﹣ 5x2+x+10=0,这时可以断定多项式中有因式(x ﹣2)(注:把 x=a 代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣ 2)(x2+mx+n),(1)求式子中 m 、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣ 2x2﹣ 13x ﹣10 的因式.【分析】( 1)根据( x﹣2)(x2+mx+n)=x3+(m﹣ 2)x2+( n﹣ 2m) x﹣ 2n,得出有关 m,n 的方程组求出即可;(2)由把 x=﹣1 代入 x3﹣2x2﹣13x﹣10,得其值为 0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因( x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣ 2n,=x3﹣ 5x2+x+10,(2 分)所以,解得: m=﹣ 3, n=﹣5(5 分),方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令 x=0,x=1,即可求出: m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把 x=﹣1 代入 x3﹣2x2﹣13x﹣ 10,得其值为 0,则多项式可分解为( x+1)(x2+ax+b)的形式,( 7 分)所以 x3﹣2x2﹣13x﹣10=(x+1)(x2﹣ 3x﹣10),(9 分)=( x+1)(x+2)(x﹣5).(10 分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
八年级数学经典练习题附答案(因式分解)

八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+3..6.提示:a=-18.∴a=-18.。
八年级数学因式分解典型题训练

八年级数学因式分解典型题训练一、提取公因式法。
1. 分解因式:6ab + 8b解析:首先观察多项式各项,发现公因式为2b。
提取公因式2b后得到2b(3a + 4)。
2. 分解因式:9x^2y 18xy^2解析:公因式为9xy。
提取公因式后得到9xy(x 2y)。
3. 分解因式:3a(x y)-6b(y x)解析:先将(y x)变形为-(x y),则原式变为3a(x y)+6b(x y)。
公因式为3(x y),提取后得到3(x y)(a + 2b)。
二、公式法(平方差公式a^2-b^2=(a + b)(a b))4. 分解因式:x^2-9解析:可写成x^2-3^2,根据平方差公式,分解为(x + 3)(x 3)。
5. 分解因式:16y^2-25即(4y)^2-5^2,根据平方差公式分解为(4y + 5)(4y 5)。
6. 分解因式:(x + 2)^2-(y 3)^2解析:根据平方差公式a=(x + 2),b=(y 3),分解为(x+2 + y 3)(x + 2-(y 3))=(x+y 1)(x y+5)。
三、公式法(完全平方公式a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9解析:其中a = x,b = 3,2ab=2× x×3 = 6x,符合完全平方公式a^2+2ab + b^2的形式,分解为(x + 3)^2。
8. 分解因式:4y^2-20y+25解析:这里a = 2y,b = 5,2ab = 2×2y×5=20y,符合完全平方公式a^2-2ab + b^2的形式,分解为(2y 5)^2。
9. 分解因式:x^2-4xy+4y^2解析:其中a = x,b = 2y,2ab=2× x×2y = 4xy,符合完全平方公式a^2-2ab + b^2的形式,分解为(x 2y)^2。
四、综合运用。
2021-2022学年人教版八年级上册分解因式专项训练 (含解析)

分解因式专项训练一、填空题1.(2021八上·吉林月考)分解因式:-16x2+9y2=2.(2021八上·朝阳期中)分解因式:.3.(2021八上·普陀期中)在实数范围内因式分解:.4.(2021八上·杨浦期中)在实数范围内分解因式:x2﹣3xy﹣y2=.5.(2021八上·静安月考)在实数范围内因式分解:x2﹣3=,3x2﹣5x+2=.6.(2021八上·宝山月考)实数范围内分解因式:x4+3x2﹣10=.7.(2021九上·哈尔滨月考)把多项式分解因式的结果为.8.(2021九上·平阳期中)分解因式:x= .9.(2021八上·浦东期中)在实数范围内因式分解:.10.(2021八上·泰安期中)4x2-(k-1)x+1能用完全平方公式因式分解,则k的值为11.(2021九上·长沙月考)分解因式的结果是 .12.(2021九上·武功月考)因式分解: .13.(2021九上·顺义月考)分解因式:3m2﹣75=.14.(2021九上·温州月考)因式分解:2a2+4a= .15.(2021九上·吉林月考)分解因式:.16.(2021九上·吉林月考)分解因式:.17.(2021八上·东平月考)因式分解: .18.(2021八上·济宁月考)将多项式提出公因式后,另一个因式为.19.(2021·内江)分解因式: .20.(2021·黄石)分解因式: .21.(2021·常州)分解因式: .22.(2021九上·北京开学考)分解因式:.23.(2021·贵州)分解因式: .24.(2021·荆门)把多项式因式分解,结果为 .25.(2021·徐州)因式分解:x2-36= .26.(2021九上·陕西开学考)因式分解:m3n﹣4m2n2+4mn3= .27.(2021九上·成都开学考)分解因式: .28.(2021七下·诸暨期末)分解因式: .29.(2021七下·西湖期末)因式分解:16x2﹣1= .30.(2021七下·淮阴期末)分解因式: .31.(2021七下·北仑期末)分解因式: .32.(2021·仙桃)分解因式: .33.(2021·绥化)在实数范围内分解因式:.34.(2021·威海)分解因式:.35.(2021·朝阳)因式分解:﹣3am2+12an2=.36.(2021·盘锦)分解因式:=37.(2021八上·江油期末)在实数范围内因式分解:2x2+3x﹣4=.38.(2021八下·保山期末)分解因式:5x2y﹣20y=.39.(2021八下·修水期末)分解因式:7a2﹣63=40.(2021八下·南岸期末)若,则 .41.(2021八下·皇姑期末)分解因式:.42.(2021八下·大埔期末)分解因式:.43.(2021八下·青岛期末)因式分解:.44.(2021八下·薛城期末)把分解因式,结果为.答案解析部分一、填空题1.【答案】(3y+4x)(3y-4x)【解析】【解答】解:原式=9y2-16x2=(3y+4x)(3y-4x)。
专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
人教版八年级上册数学专题练习:因式分解(含答案) (2)
专题练习:等腰三角形基础训练1.若一个等腰三角形的两边长分别为2和5,则它的周长为(A ) A. 12 B. 9 C. 12或9 D. 9或72.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(D )A. 1,2,3B. 1,1, 2C. 1,1,3D. 1,2, 33.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为(D ) A. 60° B. 120°C. 60°或150°D. 60°或120° 4.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有(B )A. 4个B. 3个C. 2个D. 1个(第5题图)5.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则S △AEF =mn . 其中正确的结论是( A )A. ①②③B. ①②④C. ②③④D. ①③④(第6题图)6.如图,在△ABC 中,D ,E 分别是AC ,AB 上的点,BD 与CE 交于点O .给出下列三个条件:①∠EBO =∠DCO ;②∠BEO =∠CDO ;③BE =CD .上述三个条件中,哪两个条件组合可判定△ABC 是等腰三角形(用序号写出一种情形):①③或②③.7.在△ABC 中,AB =22,BC =1,∠ ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90°,连结CD ,则线段CD 的长为__5或13__.(第8题图)8.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F .请找出一组相等的线段(AB =AC 除外)并加以证明.解:AD =AF .证明如下: ∵AB =AC ,∴∠B =∠C . ∵DE ⊥BC ,∴∠B +∠BFE =∠C +∠D =90°, ∴∠BFE =∠D . ∵∠BFE =∠DF A , ∴∠DF A =∠D , ∴AF =AD .拓展提高(第9题图)9.如图,△ABC 是等边三角形,点P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为Q .若BF =2,则PE 的长为(B )A. 2B. 3C. 23D. 310.已知等腰△ABC 中,AD ⊥BC 于点D ,且AD =12BC ,则△ABC 底角的度数为(D )A. 45°B. 75°C. 60°D. 45°或75°11.在平面直角坐标系中,点A (2,2),B (32,32),动点C 在x 轴上,若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数为(B )A. 2B. 3C. 4D. 512.如图,等腰△ABC 纸片(AB =AC )可按图中所示方法折成一个四边形,点A 与点B 重合,点C 与点D 重合,则在原等腰△ABC 中,∠B =72度.(第12题图)(第13题图)13.如图,在四边形ABCD中,AD∥BC,∠ABC与∠DCB的平分线相交于点H,过H 作AD的平分线交AB于E,交CD于F.若BE=3,CF=2,则EF=__5__.14.如图,已知∠AOB=α,在射线OA,OB上分别取点OA=OB1,连结AB1,在B1A,B1B上分别取点A1,B2,使B1B2=B1A1,连结A1B2,…,按此规律下去,记∠A1B1B2=θ1,∠A2B2B3=θ2,…,∠A n B n B n+1=θn,则:(1)θ1=180°+α2;(2) θn=()2n-1·180°+α2n.,(第14题图))15.在如图所示的钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__12°__.,(第15题图))16.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以点A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以点A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__9__.,(第16题图)) 17.如图,已知点A(3,0),B(0,4),C为x轴上一点.(1)画出等腰三角形ABC.(2)求出C点的坐标.,(第17题图))解:(1)如解图.,(第17题图解))(2)①当A是顶点时,C1(-2,0),C2(8,0),②当B是顶点时,C3(-3,0)③当C 是顶点时,C 4⎝⎛⎭⎫-76,0.(第18题图)18.如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .(1)求证:△MED 为等腰三角形. (2)求证:∠EMD =2∠DAC .解:(1)证明:∵M 为AB 边的中点,AD ⊥BC ,BE ⊥AC ,∴ME =12AB ,MD =12AB ,∴ME =MD ,∴△MED 为等腰三角形.(2)∵ME =12AB =MA ,∴∠MAE =∠MEA , ∴∠BME =2∠MAE .同理,MD =12AB =MA ,∴∠MAD =∠MDA , ∴∠BMD =2∠MAD ,∴∠EMD =∠BME -∠BMD =2∠MAE -2∠MAD =2∠DAC .(第19题图)19.如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC .(2)若点M 在DE 上,且DC =DM ,求证:ME =BD . 解:(1)证明:∵△ABC 为等腰Rt △, ∴AC =BC ,∠CAB =∠CBA =45°. ∵∠CAD =∠CBD =15°,∴∠BAD =∠ABD =45°-15°=30°,∴BD =AD . 又∵CA =CB ,∴△BDC ≌△ADC (SAS ). ∴∠DCA =∠DCB .又∵∠ACB =90°,∴∠DCA =∠DCB =45°.∵∠BDE =∠ABD +∠BAD =30°+30°=60°,∠EDC =∠DAC +∠DCA =15°+45°=60°,∴∠BDM =∠EDC .∴DE 平分∠BDC .(第19题图解) (2)如解图,连结MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,∴CM=CD.又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM=15°.∴△ADC≌△EMC(AAS).∴ME=AD=BD.。
人教版数学八年级上册:因式分解练习题附答案
因式分解练习题一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x−1=x(x +2)+1B. (a +b)(a−b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax 2−a =a(x 2−1)2.下列各式由左边到右边的变形中,是分解因式的为( )A. 8(x +y)=8x +8yB. (x−y )2=x 2−2xy +y 2C. 10x 2+5x =5x(2x +1)D. x 2−4+3x =(x +2)(x−2)+3x 3.因式分解(x +y )2−2(x 2−y 2)+(x−y )2的结果为( )A. 4(x−y )2B. 4x 2C. 4(x +y )2D. 4y 24.多项式36a 2bc−48ab 2c +24abc 中的各项的公因式是 ( )A. 12a 2b 2c 2B. 6 abcC. 12 abcD. 36a 2b 2c 25.多项式8a 3b 2+12a 3bc−4a 2b 中,各项的公因式是( )A. a 2bB. 4a 2bC. −4a 2bD. −a 2b 6.下列各式中,不能用完全平方公式分解的有( ) ①x 2−10x +25; ②4a 2+4a−1; ③x 2−2x−1; ④−m 2+m−14; ⑤4x 4−x 2+14.A. 1个B. 2个C. 3个D. 4个7.多项式a 2+2a−b 2−2b 分解因式的结果是( )A. (a−b)(a +2)(b +2)B. (a−b)(a +b +2)C. (a−b)(a +b)+2D. (a 2−2b)(b 2−2a)8.下列多项式中不能用平方差公式因式分解的是( )A. a 2−b 2B. 49x 2−y 2z 2C. −x 2−y 2D. 16m 2n 2−25p 29.因式分解b 2(a−3)+b(a−3)的正确结果是( )A. (a−3)(b2+b)B. b(a−3)(b+1)C. (a−3)(b2−b)D. b(a−3)(b−1)10.多项式x2−mxy+9y2能用完全平方公式因式分解,则m的值是().A. 3B. 6C. ±3D. ±611.已知a−b=3,a+c=−1,则代数式ac−bc+a2−ab的值为( )A. 4B. 3C. −3D. −412.已知{3x−1<a2x>6−b的解集为−1<x<2,则a2−b2的值为( )A. −39B. −3C. 3D. 39二、填空题13.分解因式:(2a−1)2+8a=________.14.因式分解:a2b−4ab+4b=______.15.若a+b=2,ab=−3,则式子a3b+2a2b2+ab3的值为_______.16.多项式−ab(a−b)2+a(b−a)2−ac(a−b)2因式分解时,所提取的公因式应是.三、计算题17.把下列各式分解因式:(1)a2−5a;(2)ab+ac;(3)4a3b2−10ab3c;(4)−3ma3+6ma2−12ma;(5)6p(p+q)−4q(p+q).四、解答题18.先分解因式,然后计算求值:(x+y)(x2+3xy+y2)−5xy(x+y),其中x=6.6,y=−3.4.19.已知a=12m+1,b=12m+2,c=12m+3,求a2+2ab+b2−2ac+c2−2bc的值(用含m的代数式表示).20.老师在黑板上写了三个算式:52−32=8×2,92−72=8×4,152−32=8×27.王华接着又写了两个具有同样规律的算式:112−52=8×12,152−72=8×22,….(1)请你再写出两个(不同于上面的算式)具有上述规律的算式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.答案和解析1.【答案】C【解析】【分析】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.根据因式分解的意义分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C2.【答案】C【解析】【分析】此题主要考查了因式分解的意义,正确把握定义是解题关键.直接利用分解因式的定义分析得出答案.【解答】解:A.8(x+y)=8x+8y,是整式乘法运算,故此选项错误;B.(x−y)2=x2−2xy+y2,是整式乘法运算,故此选项错误;C.10x2+5x=5x(2x+1),是分解因式,符合题意;D.x2−4+3x=(x+2)(x−2)+3x,不符合分解因式的定义,故此选项错误.故选C.3.【答案】D【解析】解:原式=[(x+y)−(x−y)]2,=(x+y−x+y)2,=4y2,故选:D.利用完全平方进行分解即可.此题主要考查了公式法分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.4.【答案】C【解析】【分析】此题主要考查了公因式的确定,根据公因式的定义确定是解决问题的关键,根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.【解答】解:多项式36a2bc−48ab2c+24abc各项的公因式是:12 abc.故选C.5.【答案】B【解析】【分析】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.根据公因式的定义得出即可.【解答】解:多项式8a3b2+12a3bc−4a2b中各项的公因式是4a2b,故答案选B.6.【答案】C【解析】【分析】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.分别利用完全平方公式分解因式得出即可.【解答】 ①x2−10x+25=(x−5)2,不符合题意; ②4a2+4a−1不能用完全平方公式分解; ③x2−2x−1不能用完全平方公式分解; ④−m2+m−14=−(m2−m+14)=−(m−12)2,不符合题意; ⑤4x4−x2+14不能用完全平方公式分解.故选C.7.【答案】B【解析】【分析】本题考查用分组分解法、提取公因式法与公式法的综合运用.难点是采用两两分组还是三一分组.当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2+2a−b2−2b先变形为a2−b2+2a−2b可分成前后两组来分解.前两项组合利用平方差公式,后两项组合利用提公因式法,最后再次提公因式(a−b)即可.【解答】解:a2+2a−b2−2b=(a2−b2)+(2a−2b)=(a+b)(a−b)+2(a−b)=(a−b)(a+b+2).故选B.8.【答案】C【解析】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A.a2−b2=(a+b)(a−b),能用平方差公式分解,故此选项不合题意;B.49x2−y2z2=(7x+yz)(7x−yz),能用平方差公式分解,故此选项不合题意;C.−x2−y2不能用平方差公式分解,故此选项符合题意;D.16m2n2−25p2=(4mn−5p)(4mn+5p),能用平方差公式分解,故此选项不合题意;故选C.9.【答案】B【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式b(a−3)即可.【解答】解:原式=b(a−3)(b+1).故选B.10.【答案】D【解析】【分析】本题考查因式分解的应用,完全平方公式.由多项式x2−mxy+9y2能用完全平方公式因式分解,得x2−mxy+9y2=(x±3y)2,再用完全平方公式展开,即可得x2−mxy+9 y2=x2±6xy+9y2,最后由多项式对应项系数相等即可得出答案.【解答】解:由题意,得x2−mxy+9y2=(x±3y)2,∴x2−mxy+9y2=x2±6xy+9y2,∴−m=±6,∴m=±6,故选D.11.【答案】C【解析】【分析】本题考查了因式分解的应用:用因式分解解决求值问题,利用因式分解简化计算问题.本题的关键是把所求代数式分解因式.先利用分组分解的方法把ac−bc+a2−ab因式分解为(a−b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac−bc+a2−ab,=c(a−b)+a(a−b),=(a−b)(c+a),∵a−b=3,a+c=−1,∴ac−bc+a2−ab=3×(−1)=−3.故选C.12.【答案】A【解析】【分析】此题考查了因式分解−运用公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.表示出不等式组的解集,确定出a与b的值,即可求出所求.【解答】解:{3x−1<a2x>6−b,解得:{x<a+13x>6−b2,∵不等式的解集为为−1<x<2,∴6−b2=−1,a+13=2,解得:a=5,b=8,则原式=(a+b)(a−b)=13×(−3)=−39,故选A.13.【答案】(2a+1)2【解析】【分析】本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.【解答】解:(2a−1)2+8a=4a2−4a+1+8a=4a2+4a+1=(2a+1)2.故答案为(2a+1)2.14.【答案】b(a−2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2−4a+4)=b(a−2)2.故答案为:b(a−2)2.15.【答案】−12【解析】【分析】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=−3×4,=−12.故答案为:−12.16.【答案】−a(a−b)2【解析】【分析】此题主要考查了提公因式法分解因式,注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.首先把可把(b−a)2变成(a−b)2,再直接提取公因式−a(a−b)2即可.【解答】解:−ab(a−b)2+a(a−b)2−ac(a−b)2=−a(a−b)2(b+1−c),故答案为−a(a−b)2.17.【答案】解:(1)a2−5a=a(a−5);(2)ab+ac=a(b+c);(3)4a3b2−10ab3c=2ab2(2a2−5bc);(4)−3ma3+6ma2−12ma=−3ma(a2−2a+4);(5)6p(p+q)−4q(p+q)=2(p+q)(3p−2q).【解析】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.(1)提取公因式a,即可得出答案;(2)提取公因式a,即可得出答案;(3)提取公因式2ab2,即可得出答案;(4)提取公因式−3ma,即可得出答案;(5)提取公因式2(p+q),即可得出答案.18.【答案】(x+y)(x2+3xy+y2)−5xy(x+y)=(x+y)(x2+3xy+y2−5xy)=(x+y)(x2−2xy+y2)=(x+y)(x−y)2当x=6.6,y=−3.4时,原式=3.2×102=320.【解析】本题考查求代数式的值,关键是对待求式进行因式分解,然后将x与y的值代入计算即可19.【答案】解:a2+2ab+b2−2ac+c2−2bc=(a+b)2−2c(a+b)+c2=(a+b−c)2∵a =12m +1,b =12m +2,c =12m +3∴原式=(a +b )2−2c(a +b)+c 2=(a +b−c )2将a ,b ,c 的值代入得=[(12m +1)+(12m +2)−(12m +3)]2=14m 2【解析】此题考查代数式求值,注意利用完全平方公式因式分解,简化计算的方法与步骤.首先把代数式a 2+2ab +b 2−2ac−2bc +c 2利用完全平方公式因式分解,再代入求得数值即可.20.【答案】解:(1)112−92=8×5,132−112=8×6.(2)规律:任意两个奇数的平方差等于8的倍数.(3)证明:设m ,n 为整数,两个奇数可表示2m +1和2n +1,则(2m +1)2−(2n +1)2=4(m−n)(m +n +1).当m ,n 同是奇数或偶数时,(m−n)一定为偶数,所以4(m−n)一定是8的倍数.当m ,n 一奇一偶时,则(m +n +1)一定为偶数,所以4(m +n +1)一定是8的倍数所以,任意两奇数的平方差是8的倍数.【解析】通过观察可知,等式左边一直是两个奇数的平方差,右边总是8乘以一个数.根据平方差公式,把等式左边进行计算,即可得出结论任意两个奇数的平方差等于8的倍数.本题为规律探究题,考查学生探求规律解决问题的思维能力.。
八年级数学经典练习题附答案(因式分解)
八年级数学经典练习题附答案(因式分解)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是( )A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于( )A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( )A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是( )A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是( )A.-12 B.±24C.12 D.±126.把多项式a n+4-a n+1分解得( )A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( )A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( )A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得( )A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得( )A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( )A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( )A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得( )A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为( )A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是( )A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有( )A.1个 B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为( )A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是( )A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为( )A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是( )A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为( )A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果( )A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为( )A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为( )A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为( )A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为( )A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为( )A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为( ) A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是( )A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是( )A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.。
新初中数学因式分解专项训练解析含答案(1)
新初中数学因式分解专项训练解析含答案(1) 一、选择题 1.多项式225a与25aa的公因式是( ) A.5a B.5a C.25a D.
25a
【答案】B 【解析】 【分析】 直接将原式分别分解因式,进而得出公因式即可. 【详解】 解:∵a2-25=(a+5)(a-5),a2-5a=a(a-5), ∴多项式a2-25与a2-5a的公因式是a-5. 故选:B. 【点睛】 此题主要考查了公因式,正确将原式分解因式是解题的关键.
2.若21553xkxxx,则k的值为( )
A.-2 B.2 C.8 D.-8 【答案】B 【解析】 【分析】 利用十字相乘法化简253215xxxx,即可求出k的值. 【详解】 ∵253215xxxx
∴2k 解得2k 故答案为:B. 【点睛】 本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
3.把代数式322363xxyxy分解因式,结果正确的是( )
A.(3)(3)xxyxy B.
223(2)xxxyy
C.2(3)xxy D.
23()xxy
【答案】D 【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解. 解答:解:322363xxyxy, =3x(x2-2xy+y2),
=3x(x-y)2.
故选D.
4.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6x B.24xy2=3x•8y2 C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)
【答案】D 【解析】 【分析】 根据因式分解的定义逐个判断即可. 【详解】 A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 4
8年级数学知识点讲解与专题训练
因式分解
专题
专题一一 因式分解
.1下下下下下下下下下下( )
A.3x2 - 6x =x(x-6) B.-a2+b2=(b+a)(b-a)
C.4x2 - y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)2
2.分解因式:3m3-18m2n+27mn2=____________.
3.分解因式:(2a+b)2-8ab=____________.
专题
专题二二 在实数范围内分解因式
4.在实数范围内因式分解x4-4=____________.
5.把下列各式因式分解(在实数范围内)
(1)3x2-16; (2)x4-10x2+25.
6.在实数范围内分解因式:
(1)x3-2x; (2)x4-6x2+9.
2 / 4
专题
专题三三 因式分解的应用
7.如果m-n=-5,mn=6,则m2n-mn2的值是( )
A.30 B.-30 C.11 D.-11
8.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.
9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,
(1)请你选择其中两个进行加法运算,并把结果因式分解;
(2)请你选择其中两个并用不等号连接成不等式,并求其解集.
【知识要点知识要点】】
1.因式分解
我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因
式分解,也叫做把这个多项式分解因式.
2.因式分解的方法
(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项
式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.
3 / 4
(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特
殊形式的多项式分解因式,这种分解因式的方法叫做公式法.
(3)平方差公式:a2-b2=(a+b)(a-b),两个数的平方差,等于这两个数的和与这两个
数的差的积.
(4)完全平方公式:a2±2ab+b2=(a±b)2,两个数的平方和,加上(或减去)它们的积的
2倍,等于这两个数的和(或差)的平方.
【温馨提示温馨提示】】
1.分解因式的对象必须是多项式,如把25abc分解成abca⋅5就不是分解因式,因为
2
5abc不是多项式.
2.分解因式的结果必须是积的形式,如21(1)1
xxxx+−=+−就不是分解因式,因为结
果(1)1xx+−不是积的形式.
【方法技巧方法技巧】】
1
.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此
时括号内的各项都应变号,如)2(22−−=+−xxxx.
2
.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行
变化,使之符合公式的特点.
4 / 4
参考答案:
1.B 解析:A中,3x2 - 6x=3x(x-2),故A错误;B中,-a2+b2=-(a-b)(a+b)=(b+a)(b
-a),故B正确;C中,4x2 - y2=(2x)2-(2y)2=(2x-y)(2x+y),故C错误;D中,
4x
2
-2xy+y2的中间项不是2×2x×y,故不能因式分解,故D错误.综上所述,选B.
2.3m(m-3n)2 解析:3m3-18m2n+27mn2=3m(m2-6mn+9n2)=3m(m-3n)2.
3.(2a-b)2 解析:(2a+b)2-8ab=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.
4.(x2+2)(x+2)(x
-2) 解析:x4-4=(x2+2)(x2-2)=(x2+2)(x+2)(x-2).
5.解:(1)3x2-16=(3x+4)(3x-4);(2)x4-10x2+25=(x2-5)2=(x+5)2(x-5)2.
6.解:(1)x3-2x=x(x2-2)=x(x+2)(x-2);(2)x4-6x2+9=(x2-3)2=(x+3)2(x-3)2.
7.B 解析:m∵-n=-5,mn=6,m∴2n-mn2=mn(m-n)=6×(-5)=-30
,故
选B.
8.2013
解析:
32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×
(0.32+0.54+0.14)=2013×1=2013.
9.解:(1)答案不唯一,如:(x2-4x)+(x2+2x)=2x2-2x=2x(x-1).
(2) 答案不唯一,如:x2-4x>x2+2x,
合并同类项,得-6x>0,
解得x<0.