广东专用八年级数学上册第十五章分式15.3分式方程1课件 新人教版(1)
人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件

经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.
人教版八年级上册 第十五章 15.3 分式方程 课件(共19张PPT)

两边应同时乘以( 8 x2 1)( x 1)( x 1)。
首页 上页 下页 返回
做一做
2.解下列分式方程:
14 1 0
x x1
2 1 x x
x1 x21
32x55x41
3x6 2x4 2
4 3 2 6
x2x x2x x21
5 1 1
变式2:
k为何值时,方程
x22 a 有解? x3 3x
思考:“方程有增根”和“方程无解” 一样吗?
首页 上页 下页 返回
例5.已知
x42x x15xA 5xB 2,求 A, B的值
首页 上页 下页 返回
例题讲解与练习
变式 解方程:1 1 1 1 .
x4 x7 x3 x6
解: 方程两边分别通分
得x , 7x4x6x3 (x4)x (7) (x3)x (6)
即, 3 3 (x4)x(7) (x3)x(6)
所以 x 3 x 6 x 4 x 7
解得 x5 经检验 x5是原方程的根
∴原方程的根是 x5 .
解整式方程
目标
a是分式 方程的解
X=a
检验
最简公分
最简公分
母不为0
母为0
a不是分式 方程的解
首页 上页 下页 返回
1.若方程中的分母是多项式,须先分解 因式.再确定最简公分母. 2.若方程中的含有整数项,去分母时不 要漏乘.
首页 上页 下页 返回
例3.当k为何值时,方程 k 3的解1为x
负数?
首页 上页 下页 返回
做一做
1.判断:
1方程
x 1 x
2 x2
1的解是x
2;
人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3

8
8
x 2 2x 15 x 2 16x 48
x2
x2x159
x2
16x
48
2
经检验, x 9 是原方程的根
2
11 1 1 x 3 x 4 x 5 x 12
1 1 11 x 3 x 12 x 5 x 4
2x 9 0
x
2x
3x
9 12
x
2x 9
5x
4
x 9 2
x2 9x 36 x2 9x 9
经检验, x 9 是 2
原方程的根
例3 :解方程 y 4 y 5 y 7 y 8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
1
1
1
y 1 y 2y01yy12y1,y2102yyy1121y,y220 20
下面的过程请同学们自己完成 相信你们能行
以下各方程能利用换元法进行换元吗?
x x2 1
x2 1 x
5 2
能 y 1 5 y2
( x )2 5( x ) 3 能 y2 5y 3
x 1
x 1
x2 x2
1 1
3(x2 1) x2 1
2x
0
不能
小结
有些分式方程用常规方法-----------去分母,是很复 杂 ,甚至无法求解,有时要采取其他的方法
①采取局部通分法,会使解法很简单.这种解 法称为 ——通 分 法
②各分式的分子、分母的次数相同,且相差 一定的数,可将各分式拆成几项的和。这种 解法称为 —— 拆 项 法
最新数学人教版八年级上册第15章分式15.3.1分式方程课件

B. 160 400 160 18
x
1 20% x
C.
160 400 160 18 x 20% x
D.
400 400 160 18 x 1 20% x
知2-练
1
(中考· 乌鲁木齐)九年级学生去距学校10 km的博物馆参 观,一部分学生骑自行车先走,过了20 min后,其余 学生乘汽车出发,结果他们同时到达.已知汽车的速 度是骑车学生速度的2倍,求骑车学生的速度.设骑车
辽阳)从甲地到乙地有两条公路,一条是全长450 3 (中考· 公里的普通公路,一条是全长330公里的高速公路,某
客车在高速公路上行驶的平均速度比在普通公路上快35
公里/小时,由高速公路从甲地到乙地所需的时间是由普 通公路从甲地到乙地所需时间的一半.如果设该客车由 高速公路从甲地到乙地所需时间为x小时,那么x满足的 分式方程是( D )
本的价格多3元,且用200元购买笔记本的数量与用350元
购买笔袋的数量相同.设每个笔记本的价格为x元,则下 列所列方程正确的是( B )
A.
C.
200 350 x x3 200 350 x3 x
B.
D.
200 350 x x3 200 350 x3 x
(来自《典中点》)
知2-练
导引:(1)中的方程分母不含有未知数,(2)(3)(4) 中的方
程分母含有未知数.
解: (1)不是分式方程,因为分母中不含有未知数; (2)是分式方程,因为分母中含有未知数;
(3)是分式方程,因为分母中含有未知数;
(4)是分式方程,因为分母中含有未知数.
(来自《点拨》)
知1-讲
总 结
(1)分式方程的两个特点:
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
2024-2025学年人教版中学数学八年级(上)教案第十五15.3分式方程(第1课时)

15.3 分式方程15.3 分式方程(第1课时)教学目标1.理解分式方程的意义,了解解分式方程的基本思路和方法,理解解分式方程时可能无解的原因,会解分式方程.2.经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,感悟数学的转化思想,培养学生的应用意识.教学重点难点重点:解分式方程的基本思路和方法. 难点:理解分式方程可能无解的原因.教学过程导入新课导入一:西天取经路上,唐僧给徒弟们出了一道数学题目:某项工程要在规定的期限内完成,甲卫队单独做正好能够按期完成,乙卫队单独做则需要延期3天完成.现在这两个队合作2天后,再由乙卫队单独做,也正好按期完成.如果设规定的期限是x 天,工程总量为1,如何列方程呢?三个徒弟都给出了自己的答案:孙悟空:2x +3x x +=1;猪八戒:2x +23x +=1;沙和尚:1123x x ⎛⎫+ ⎪+⎝⎭+23x x -+=1.师傅表扬徒弟积极动脑,并说道:有一个徒弟的结论是错误的.你知道谁的错了吗?请同学们分析一下,解决这个问题所列出的方程还是整式方程吗?该如何解呢?导入二:某公司打字员小刚为了提高打字速度,决定到某电脑培训班培训,半个月后,打字速度相当于原来的3倍.现在打80字所用的时间比原来少用100秒,则小刚现在每分钟能打多少个字?如果设小刚现在每分钟打x 个字,你能列出方程吗?你列出的这个方程和我们学过的一元一次方程有什么不同?你会解这个方程吗?快跟我来学习本节吧,学了本节后问题就迎刃而解了.学生思考讨论,教师引入课题.引导学生分析:设小刚现在每分钟打x 个字,则小刚原来每分钟打3x个字,根据“现在打80字所用的时间比原来少用100秒”可以建立方程为803x -80x =10060. 导入三:教师提出问题,引入课题(出示多媒体课件) 活动一:教学反思问题:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用的时间与以最大航速逆流航行60 km所用的时间相等,江水的流速为多少?分析:设江水的流速是v km/h.填空:(1)轮船顺流航行速度为(30+v)km/h,逆流航行速度为(30-v)km/h;(2)顺流航行90 km所用时间为9030v+h;(3)逆流航行60 km所用时间为6030v-h;(4)根据题意可列方程为9030v+=6030v-.在学生完成填空的过程中,教师应关注学生能否把实际问题转化成数学问题,能否找到相等关系列出方程,对于基础较差的学生应加以指导.探究新知活动二:1.议一议:方程9030v+=6030v-的特征.教师提出问题,学生思考、讨论后全班进行交流.学生归纳出:该方程的特征是分母中含有未知数.教师板演出分式方程的定义:分母中含有未知数的方程叫分式方程.2.想一想:方程x+13(x+1)=16是不是分式方程?如何区分分式方程和整式方程?学生交流讨论,教师点拨归纳:上式不是分式方程.主要是看分母中是否含有未知数,含未知数的是分式方程,不含未知数的是整式方程.3.做一做:在方程①73x-=8+152x-,②1626x-=x,③281x-=81xx+-,④x-112x-=0中,是分式方程的有()A.①和②B.②和③C.③和④D.①和④由学生代表回答:C.4.解一解:解方程24x+-236x-=1.由一位学生代表板演,其余学生独立完成,教师和学生一起得出答案. 解:方程两边同时乘12,得3(x+2)-2(2x-3)=12,去括号,得3x+6-4x+6=12,合并同类项,得-x=0,系数化为1,得 x=0.5.讨论:怎样解方程9030v+=6030v-?学生分小组讨论,让学生讨论后得出:通过去分母.教师继续问:怎么去分母?学生继续讨论得出:方程两边同乘各分式的最简公分母.(教师可帮助学生回忆最简公分母的定义)请学生代表板演,其余学生独立完成,教师点拨,对学习有困难的学生给予一定的帮助.解:方程的两边同乘(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.(教师提醒学生注意检验)检验:将v=6代入原方程中,左边=右边,因此v=6是原分式方程的解.由以上可知,江水的流速为6 km/h.6.试一试:解方程15x-=21025x-.教师引导学生观察两个分母,x2-25能分解因式,这个方程的最简公分母是(x+5)(x-5).师生共同解这个分式方程,教师板书:解:方程的两边同乘(x+5)(x-5),得x+5=10,解得x=5.检验:将x=5代入原方程中,发现这时分母x-5和x2-25的值都为0.相应的分式是无意义的.因此,这个分式方程无解.7.再议一议:为什么分式方程有时会无解?学生先独立思考问题,然后提出自己的看法并在小组内讨论.在学生讨论期间,教师应到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验.师生合作达成共识:明确因为x=5使原方程没有意义,因此x=5不是原分式方程的根,所以原方程无解(提示:方程的解也可称为方程的根).①增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的根(或解),这种根通常称为增根.②解分式方程时必须进行检验.③为什么会产生增根呢?对于原分式方程来说,方程中各分式的分母的值均不为零,但方程变形后得到的整式方程则没有这个要求,如果所得的整式方程的某个根使原分式方程中至少一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,那么它就不适合原方程,即是原方程的增根.④怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.8.你能结合解法,归纳出解分式方程的基本步骤吗?学生独立思考后,请学生代表回答,老师帮忙总结出解分式方程的一般步骤:(1)去分母(方程两边同乘最简公分母,化为整式方程).(2)解这个整式方程.(3)检验.把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,须舍去.可简单记作:一化、二解、三检验.新知应用例1 解方程:23x -=3x. 由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘x (x-3),得 2x =3(x-3). 解得x =9.检验:将x =9代入x (x-3)得x (x-3)=54≠0, 因此x =9是分式方程的解.例2 解方程:1xx --1=3(1)(2)x x -+.由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘(x+2)(x-1),得 x (x+2)-(x+2)(x-1)=3. 解得x =1.检验:当x =1时,(x+2)(x-1)=0,所以x =1不是原分式方程的解,原分式方程无解.解完例题后,教师和学生共同总结解分式方程需要注意的问题. 总结:1.解分式方程的过程,实质上是将方程的两边乘同一个整式,把分式方程转化为整式方程来解的过程,所乘的整式通常是方程中出现的各分式的最简公分母.2.解分式方程时必须进行检验,检验时,可将转化成的整式方程的根代入所乘的整式(即最简公分母)中,看它的值是否为零,如果为零,即为增根,应舍去.3.一个未知数的值是分式方程的增根应具备两个条件:一是该值应是去分母后所得到的整式方程的根,二是该值应使最简公分母的值为零.课堂练习(见导学案“当堂达标”) 参考答案1.D2.B3.D4.C5.B6.A7.解:(1)方程变形为13x ++23x -=2129x -. 两边同时乘(x 2-9),得x-3+2x+6=12, 解得x =3,经检验x =3是原方程的增根, 故原方程无解.(2)原方程去分母,得2+3(x-2)=-(1-x ), 解得x =32.经检验x=32是原分式方程的解,所以原分式方程的解为x=32.(3)方程两边乘x(x2-1),得5x-2=3x,解得x=1,经检验x=1是原方程的增根,故原方程无解.8.a<5且a≠3解析:去分母得1-(a-2)=x-2,整理得x=5-a.因为分式方程的解为正数,所以5-a>0,解得a<5.又因为x≠2,所以5-a≠2,即a≠3.所以a的取值范围是a<5且a≠3.课堂小结今天我们学习了:1.什么是分式方程.2.解分式方程的基本思路和一般步骤是什么.解分式方程应该注意什么问题.布置作业教材154页习题15.3第1题.板书设计。
新人教版初中八年级数学上册《分式方程》教学课件
②解整式方程;
③检验——将整式方程的解代入最简公分母,如果最简公分
母的值不为0,则整式方程的解是原分式方程的解;否则,这
个解不是原分式方程的解。
知识要点
二. 列分式方程解应用题的一般步骤:
1. 审:分析题意,找出数量关系和相等关系。
2. 设:选择恰当的未知数,注意单位和语言完整。
3
2
=
(a,b为非0常数)是整式方程。
知识梳理
知识点二:分式方程的解法
解分式方程的基本思路:将分式方程化为整式方程。
解分式方程的一般步骤:
①去分母——将方程两边同乘最简公分母;
②解整式方程;
③检验——将整式方程的解代入最简公分母,如果最简公分母的
值不为0,则整式方程的解是原分式方程的解;否则,这个解不
1
1 1 1
+ +
工程的_____,两队半个月完成总工程的___________。
2
3 6 2
在用式子表示上述的量之后,再考虑如何列出方程。
解析
1
3
解:设乙队单独施工1个月能完成总工程的 。记总工程量为1,根据工程的实
际进度,得
方程两边乘6,得
1 1 1
+ +
=1
3 6 2
2 + + 3 = 6
解析
解: 设提速前这次列车的平均速度为 /ℎ,则提速前它行驶
所用时间为 h;提速后列车的平均速度为( + ) /ℎ ,
+50
50) 所用时间为
ℎ。
+
提速后它行驶( +
八年级数学上册第十五章分式课件PPT
15.3 分式方程(2课时)
第1课时 分式方程的解法
重点 解分式方程的基本思路和解法. 难点 理解解分式方程时可能无解的原因.
解分式方程的步骤: 在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.
一、复习引入 1.分式的乘除法法则. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: an=a·a·a·…·a(n为正整数).
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.
重点 理解并掌握分式的基本性质. 难点 灵活运用分式的基本性质进行分式变形.
在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化. 三、课堂小结 1.分式的基本性质是什么? 2.分式的变号法则是什么? 3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业 教材第133页习题15.1第4,5题.
三、课堂小结 1.列分式方程解应用题的一般步骤: (1)审:审清题意; (2)设:设未知数(要有单位); (3)列:根据题目中的数量关系找出相等关系,列出方程; (4)解:解方程,并验根,还要看方程的解是否符合题意; (5)答:写出答案(要有单位).
初中数学人教版八年级上册《15.分式方程》课件(1)
谢谢大家
解:方程两边同时乘以(x-m)(x-n),
可得(x+m)(x-m)+(x+n)(x-n)=2(x-m)(x-n),
即是 x2 - m2 x2 - n2 2x2 - 2(m n)x 2m,n 整理得:2(m n)x (m n)2 ,
因为 m ≠n,所以m+n≠0,解得:x m n ,
5k
解得k≠-3.
②x存在,则 3 k 有意义,即k≠-5. 5k
所以k的取值范围是k≠-3且k≠-5.
3 k ≠,1 5k
含字母的 分式方程
含字母的分式方程的概念
解含字母的分式方程的 一般步骤
若关于x的分式方程 2 - 1- kx 1 无解,求k的值. x-2 2-x
解析:分式方程无解分为两种情况: ①分式方程化为整式方程后,求出整式方程的解使得最简公分母为0; ②分式方程化为的整式方程无解. 根据两种情况分类讨论,确定 k 的值即可.
分式方程
解关于x的分式方程: x m x n 2(m n.) x-n x-m
解析:原方程是关于x的分式方程,则x表示未知数,m、n表示已 知数,将字母m、n看作是常数,按照解一般分式方程的步骤即可. 注意:原分式方程含有常数项,在去分母的时候要将常数项也乘 以最简公分母.
解关于x的分式方程: x m x n 2(m n.) x-n x-m
x
2
3
.
解:方程两边同时乘以2x(x+3),得x+3=4x, 解得:x=1. 检验:当x=1时,2x(x+3)=8≠0, 所以原分式方程的解是 x=1.
解分式方程: 2 x -1
4 x2 -1
.
解:方程两边同时乘以(x+1)(x-1),得2(x+1)=4, 解得:x=1. 检验:当x=1时,(x+1)(x-1)=0, 所以x=1不是原分式方程的解, 则原分式方程无解.
人教版八年级上册数学课件 15.3 分式方程(共51张PPT)(共51张PPT)
1.利用分式方程模型解决实际问题: 问题情境 ---提出问题 ---建立分式方程模型 ---解决问题
2. 列分式方程解应用题的一般步骤 (1)审:分析题意,找出研究对象,建立等量 关系。 (2)设:选择恰当的未知数,注意单位。 (3)列:根据等量关系正确列出方程。 (4)解:认真仔细。 (5)验:有三种方法检验。 (6)答:不要忘记写答。
例5
甲乙两人要走3千米的路,甲的速度是乙的速度的1.2倍, 甲比乙少用0.1小时。
问:甲乙两人的速度各多少?
等量关系:甲的速度=乙的速度×1.2
乙走3千米用时-甲走3千米用时=0.1
有两个等量关系时,一 个设未知数一个列方程
解:设乙的速度为x千米/小时,则甲的速度为 1.2x千米/小时。 3 3 0.1
年级捐款人数为x人,那么x满足怎样
的方程?
解:4800 5000 x x 20
1400 1400 9 x 2.8x
1400 2.8 1400
y
y9
4800 5000
x
x 20
观察上面的几个方程,有什么共同特点? 共同点:这几个方程分母中都含有未知数
分母中含有未知数的方程叫做分式方程
耕还林与退耕还草的面积比为5∶3,设退耕还林的
面积为x hm2,那么x满足怎样的分式方程?
解: x 5 69000 x 3
3.王军同学准备在课外活动时间组织部分同学参加电脑网 络培训,按原定的人数估计共需费用300元。后因人数增加 到原定人数的2倍,费用享受了优惠,一共只需要480元, 参加活动的每个同学平均分摊的费用比原计划少4元,原定
等量关系: 1.科普书价格=文学书价格×1.5 2.所买文学书本数-所买的科普书本数=1 3.书本数=总金额/价格