北邮电磁场与电磁波测量实验报告信号源 波导波长

北邮电磁场与电磁波测量实验报告信号源 波导波长
北邮电磁场与电磁波测量实验报告信号源 波导波长

北京邮电大学

电磁场与电磁波测量实验

实验报告

实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量

学院:电子工程学院

班级:2010211203班

组员:崔宇鹏张俊鹏章翀

2013年5月9日

实验一微波测量系统的使用和

信号源波长功率的测量

一、实验目的

(1) 学习微波的基本知识;

(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;

(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器

1.微波信号源

微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。在教学方式下,可实时显示体效应管的工作电压和电流的关系。仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器

位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器

把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计

电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可

读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线

测量线是测量微波传输系统中电场的强弱和分布的精密仪器。由开槽波导、不调谐探头和滑架组成。在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。由于探针与电场平行,电场的变化在探针上就感应出的电动势经过晶体检波器变成电流信号输出。

6.检波晶体

微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用电流电表的电流1来读数的。从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率。

7.选频放大器

用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检测。

8.匹配负载

9.短路片

三、实验原理

测量微波传输系统中电磁场分布情况,测量驻波比、阻抗、调匹配等,是微波测量的重要工作,该实验系统主要的工作原理如图所示:

图1 实验原理框图

四、实验内容和实验步骤

1. 微波测量系统的使用

(1) 观察测量系统的微波仪器连接装置,衰减器,波长计,波导测量线的结构形式;

(2) 熟悉信号源的使用

将信号源的工作方式选择为:等幅位置,将衰减至于较大位置,输出端接相应指示器,观察输出;

将信号源的工作方式选择为:方波位置,将衰减至于较大位置,输出端接相应指示器,观察输出;

(3) 熟悉选频放大器的使用;

(4) 熟悉谐振腔波长计的使用方法

微波的频率测量是微波测量的基本内容之一。其测量方法有两种:①谐振腔法;

②频率比较法。本实验采用了吸收式波长计测量信号源频率,为了确定谐振频率,用波长表测出微波信号源的频率。具体做法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。反映在检波指示器上的指示是一跌落点,此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。

2. 信号源波长的测量

(1) 微调单螺调配器,使腔偏离匹配状态,检波电流计上一定有示数;

(2)调节波长计是检波电流计再次出现最小值的时刻,读出此处波长计的刻度值;

(3) 按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到相应的信号源频率值;

(4) 改变信号频率,从8.6G开始测到9.6G,0.1G测一次,记录在数据表格中。

五、实验结果

表1 信号源波长测量表

实验二 波导波长的测量

一.实验内容

波导波长的测量

【方法一】两点法

实验原理如下图所示:

按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。波导内部电场强度(参见图三之坐标系)表达式为:

Z a

X

E E E Y βπsin

sin 0)(==

在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。 将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

两点法确定波节点位置

将测量线终端短路后,波导内形成驻波状态。调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:

T 2 min 'min g -=T λ

由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”

(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:

把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:

() 2

1

21min T T T +=

最后可得 T 2 min '

min g -=

T λ(参见图四) 终端短路面

Y

b

【方法二】 间接法

矩形波导中的 波,自由波长 和波导波长g λ满足公式:

2 1

2

??

? ??-a g λλ

λ=

其中:f g /1038?=λ,cm a 286.2=

通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式

确定出 ,再计算出波导波长g λ。

校准晶体二极管检波器的检波特性

由于微波晶体检波二极管的非线性, 在不同信号幅度时具有不同的检波律。在一般测量精度要求的场合, 可认为在小信号时为平方律检波,大信号时为直线律检波, 或在系统信号幅度范围内做平均检波律定标。晶体检波二极管的定标准确与否, 直接影响微波相关参数的测量精度。

微波频率很高, 通常用检波晶体(微波晶体二极管)将微波信号转换成直流信号检测出来。微波晶体二极管是一种非线性元件, 检波电流I 同微波场强E 之间不是线性关系,在一定范围内, 两者关系为:

晶体检波二极管的检波电流随其微波电场而变化, 当微波场强较大时近似为线性检波律, 当微波场强较小时近似为平方检波律。因此, 当微波功率变化较大时a 和k 就不是常数, 且和外界条件有关, 所以在精密测量中必须对晶体检波器进行定标。

本实验中采用两种定标方法 第一种定标方法

检波电压U 与探针的耦合电场成正比。晶体管的检波律n 随检波电压U 改变。在弱信号工作(检波电流不大于10 μA )情况下,近似为平方律检波,即n=2;在大信号范围,n 近似等于1,即直线律。

测量晶体检波器校准曲线最简便的方法是将测量线输出端短路,此时测量线上载纯驻波,其相对电压按正弦律分布,即:

???

? ??=g d U U λπ2sin max

式中 ,d 为离波节点的距离,Umax 为波腹点电压,λg 为传输线上波长。 因此,传输线上晶体检波电流的表达式为

n

g d C I ????

???

????? ??=λπ2sin 根据上式就可以用实验的方法得到图所示的晶体检波器的校准曲线。

将上两式联立, 并取对数得到:

作出曲线, 若呈现为近似一条直线, 则直线的斜率即是微波晶体检波器的检波律。

第二种定标方法

测量线终端短路,测出半峰值读数间的距离W ,晶体检波率可以根据下式计算:

二.实验步骤

(1)、按照图示连接好测量系统

(2)、利用两点法测量,将波导测量线终端短路,调测量放大器的衰减量和可变衰减器使当探针位于波腹时,放大器指示电表接近满格,用公式两点法测量波导波长

(3)、利用间接法测量波导波长。

(4)、将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出U 沿线分布的图形 (5)、设计表格,用驻波测量线校准晶体的检波特性

三.实验结果分析

(1)波导波长

第一,二点测得:Λg =51mm 第二,三点测得:Λg =51.9mm 平均:Λg =51.45mm 间接法测量波导波长

2 1

2

??

? ??-a g λλ

λ==52.098mm

(2)、给出检波晶体的校准曲线,求出晶体检波率。

相对场强与U的曲线

Log(u)与log(e’)的曲线

利用线性拟合法拟合出一条直线。拟合后直线的斜率为N=1.7141,所以晶体检波率为1.7141

(3)、第二种定标法

=1.687

四.思考题

(1)、波导系统终端短路的情况下,插入具有导纳的指针后,驻波图形如何改变?

答:驻波比会减小,即波腹点的电压值会减小。但是,因为指针的导纳十分微小,故不会有显著的变化。

(2)、用波长表测量自由空间中的信号振荡频率后,为什么还要失谐频率计

答:电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,即如果不失谐频率计,波导中传播的电磁波会十分微弱

(3)、在测试过程中需要采取哪些措施来实现小信号

答:使用衰减器:衰减器是把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率的作用。

(4)、为什么要测量晶体检波率,指示电表读数和微波场强E之间成什么关系

答:当微波功率变化较大时a 和k 就不是常数, 且和外界条件有关, 所以在精

密测量中必须对晶体检波器进行定标。电表读数和场强的成指数关系。

五、实验总结

本次实验是微波测量实验的第一个实验,实验对应的理论知识就是电磁场和微波,一直贯穿着大二和大三的学习,我们有一定的基本知识但没有实践经验。实验开始时对实验器材和原理很茫然,不知从何下手。后来慢慢对仪器熟悉和了解后,在老师耐心的讲解以及组员之间的积极配合协作下,很快我们就得到了正确的结果。今后,我们小组所有成员将踏实认真的对待后续实验。

北邮2016电磁场与电磁波实验报告

电磁场与电磁波实验报告 题目:校园无线信号场强特性的研究 姓名班级学号序号

目录 一、实验目的 (2) 二、实验内容 (2) 三、实验原理 (5) 四、实验步骤 (5) 1、实验对象选取 (5) 2、数据采集 (5) 五、实验数据 (2) 1、原始数据录入 (7) 2、数据处理流程 (7) 六、实验结果与分析 (8) 1、主楼周边电磁场信号强度分析 8 2、主楼室内不同楼层楼道信号强度分析 11 七、问题分析与解决 (15) 1、Matlab 仿真问题研究与解决 (23) 2、场强分布的研究 (23)

3、模型拟合........................................................ . (24) 八、分工安排及心得体会 (25) 附录I:原始数据 (26) 附录II:源代码 (30) 一.实验目的 1.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗 的概念; 2.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 3.研究建筑物穿透损耗与建筑材料的关系。 4.掌握在移动环境下阴影衰落的概念以及正确测试方法。二.实验内容 利用DS1131场强仪和拉杆天线,实地测量信号场强。

1.研究具体现实环境下阴影衰落分布规律,以及具体的分布参数 如何; 2.研究在校园内电波传播规律与现有模型的吻合程度,测试值与 模型预测值的预测误差如何; 3.研究建筑物穿透损耗的变化规律 三.实验原理 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。 【阴影衰落】 阴影衰落是电磁波在空间传播时受到地形起伏、高达建筑物群的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起信号衰减。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落,其特点是衰落与无线电传播地形和地物的分布、高度有关。在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

北邮通电实验报告

实验3 集成乘法器幅度调制电路 信息与通信工程学院 2016211112班 苏晓玥杨宇宁 2016210349 2016210350

一.实验目的 1.通过实验了解振幅调制的工作原理。 2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。3.掌握用示波器测量调幅系数的方法。 二.实验准备 1.本实验时应具备的知识点 (1)幅度调制 (2)用模拟乘法器实现幅度调制 (3)MC1496四象限模拟相乘器 2.本实验时所用到的仪器 (1)③号实验板《调幅与功率放大器电路》 (2)示波器 (3)万用表 (4)直流稳压电源 (5)高频信号源 三.实验内容 1.模拟相乘调幅器的输入失调电压调节。 2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。 3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。 四.实验波形记录、说明 1.DSB信号波形观察

2.DSB信号反相点观察 3.DSB信号波形与载波波形的相位比较 结论:在调制信号正半周期间,两者同相;负半周期间,两者反相。

4.AM正常波形观测 5.过调制时的AM波形观察(1)调制度为100%

(2)调制度大于100% (3)调制度为30% A=260.0mv B=140.0mv

五.实验结论 我们通过实验了解振幅调制的工作原理是:调幅调制就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。 DSB信号波形与载波波形的相位关系是:在调制信号正半周期间,两者同相;负半周期间,两者反相。 通过实验了解到了调制度的计算方法 六.课程心得体会 通过本次实验,我们了解了振幅调制的工作原理并掌握了实现AM和DSB的方法,学会计算调制度,具体见实验结论。我们对集成乘法器幅度调制电路有了更好的了解,对他有了更深入的认识,提高了对通信电子电路的兴趣。 和模电实验的单独进行,通电实验增强了团队配合的能力,两个人的有效分工提高了实验的效率,减少了一个人的独自苦恼。

北邮2015电磁场与电磁波期末试题,感谢电子院17级fx学长

北京邮电大学2014—2015学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 一、 (10分,每空1分) 填空题 1. 设J 为电流密度矢量,则(',',')x y z ??=J 。 2. 描述了电磁场的变化规律,以及场与源的关系。 3. 根据麦克斯韦方程组,时变电场 旋 散,电场线可以闭合,也可以不闭合;时变磁场 旋 散,磁感线总是闭合的。(注:可选择填写“有”或者“无”) 4. 分离变量法可应用于直角坐标、圆柱坐标、球坐标等坐标系下。同一个问题,在不同的坐标系里求解会导致一般解的形式不同,但其解是 。 5. 在相对介电常数为4,相对磁导率为1的理想介质中,电磁波的波阻抗为 。 6. 平面波()() sin 2cos z m y m E t kx E t kx ωω=-+-E e e v v v 的传播方向为: ;其极化形式为: 。 答案: 1. 0; 2. 麦克斯韦方程组; 3. 有,有,有,无; 4. 唯一的; 5. 60π 377/2Ω或者 6. x 方向传播,右旋椭圆极化波; 二、(14分)如图1所示,一半径为R 的导体球上带有电量为Q 的电荷,在距离球心D (D > R )处有一点电荷q ,求: (1)导体球外空间的电位分布; (2)导体球对点电荷q 的力。 q (,) p r θ A

图1 题二图 解:(1)导体电位不为零,球外任一点P (到球心O 距离为r )的电位?可分解为一个电位为V 的导体产生的电位?1,以及电位为零的导体的感应电荷q ′与点电荷q 共同产生的电位?2。? = ?1+?2。q ′与可用镜像电荷代替,电位?1由放在球心的-q ′与Q 产生。 利用球面镜像得 2 ',R R q q d D D =-=…………………………3分 1200102 00102 ,4π4π4π4π4π4πQ q q q r r r Q q q q r r r ??εεε?εεε''-==+ ''-=++ ……………………5分 因此,导体球外任一点的电位为 42 221/2 2 1/2 021(4π(2cos )(2cos )DQ Rq qR q R R Dr r D rD D r r D D ?εθθ+= -+ +-+- …………………………8分 导体球的电位为 004πDQ Rq RD ?ε+= ……… …………………10分 (2)点电荷q 所受到的力为'Q q -和'q 对点电荷q 的力,即 ''322222222 00(2) [][]4π()4π()Q q q q q R q R D f Q D D d D D D R εε--=+=+-- …………………………14分 三、(14分)相对磁导率为r 1μ=的理想介质中传播电场瞬时值为 :8(,)30)cos[3π10π()]x z r t t x =+?-E e V/m 。试求:

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告 班级学号班序号亚东2011211116 2011210466 22

实验二微带分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 实验原理 1.支节匹配器 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+YY形式,即Y=Y0+YY,其中Y0=1/Y0 。并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为Y0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为?YY,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。 双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 2.微带线 微带线是有介质Y Y(Y Y>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质Y Y,可以近似等效为均匀介质填充的传输线,等效介质电常数为Y Y,介于1和Y Y之间,依赖于基片厚度H和导体宽度W。而微带线的特性阻抗与其等效介质电常数为Y Y、基片厚度H和导体宽度W有关。 实验容 已知:输入阻抗Zin=75Ω 负载阻抗Zl=(64+j35)Ω 特性阻抗Z0=75Ω 介质基片εr=2.55,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。

北邮2020春电磁场与电磁波期末试题

北京邮电大学2019-2020年第二学期期末考试 电磁场与电磁波试题(开卷,A ) 已知:-12091= =8.8510(/)3610 F m επ??,70=410(/)H m μπ-? 一、(15分) 相距无穷远的不带电孤立导体球壳A 与孤立导体球B ,其中球壳A 的内径为b ,外径为a ,内外径之间为理想导体,r b <及r a >处为真空;导体球B 半径为与球壳A 的外径相同。在球壳A 中,距离中心c (c b <)处存在一电量为Q 的点电荷。将导体球B 从无穷远处移动到球壳A 处,并与球壳A 充分接触后再移动到无穷远处,试求:在整个移动导体球B 的过程中外力所作的功。(提示:可考虑功能原理) 二(10分)、太阳能电池板的能量转化效率为30%,一个2.5平方米的太阳能电池板供一个1000瓦的灯泡照明,假设太阳光是线偏振的单色平面波,试估计太阳光的电场与磁场的振幅。 三(15分)、设一平行大地的双导体传输线, 距地面高度为h, 导体半径为a, 二轴线间的距离为d (a<

四(15分)、一个长方形导体盒,各边尺寸分别是a ,b ,c ,各周界之间相互绝缘,每个面的电位函数如题四图所示,试求导体盒内部的电位函数。。 题四图 五(10分)、证明:对于良导体导体内单位宽度断面的表面电流:J s =H 0,期中H 0为导体表面的切向磁场强度。 六、(15分)一右旋圆极化波垂直入射到位于z=0的理想导体板上,其电场强度的复数表示式为0()j z x y i E E e j e e β→→ -=- 求:(1) 确定反射波的极化方式,说明原因; (2) 求导体板上的感应电流; (3) 求总电场的瞬时表达式。 七(10分)、设在波导中沿z 轴传播的电磁波的形式为: 022c c πππcos sin e j z z x E m m n E E x y k x k a a b βγγ-?-??????==- ? ? ???????? 试以此分析并说明相移常数β和波数k 之间的关系。 八、(10分)为什么说电偶极子的近区场为准静态场?是不是在近区场绝对没有能量的辐射?电偶极子的辐射效率如何?

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告

实验一:验证抽样定理 一、实验目的 1、掌握抽样定理 2. 通过时域频域波形分析系统性能 二、实验原理 低通滤波器频率与m(t)相同 三、实验步骤 1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。 2. 连接各模块完成系统,同时在必要输出端设置观察窗。 3. 设置各模块参数。 三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。 抽样信号频率设置为28hz,即2*14hz。(由抽样定理知,) 将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。 3.观察基带信号、抽样后的信号、最终恢复的信号波形

四、实验结果 最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。 五、实验讨论 从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。 由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。 讨论:若抽样速率少于每秒2次,会出现什么情况? 答:会产生失真,这种失真被称为混叠失真。 六、实验建议、意见 增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则 一、实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、实验原理 在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个传送过程传递函数满足:,其充分必要条件是x(t)的傅氏变换X ( f )必须满足 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即R B =1/T B =2? N =2B N。 式中R b 为传码率,单位为比特/每秒(bps)。f N 和B N 分别为理想信道的低通截止 频率和奈奎斯特带宽。上式说明了理想信道的频带利用率为R B /B N =2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波器。 升余弦滤波器的带宽为:。其中,α为滚降系数,0 ≤α≤1, 三、实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必 要输出端设置观察窗。设计图如下

北邮2013年电磁场与电磁波期末试卷

北京邮电大学2012—2013学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 试题中需要用到的介质常数:0913610 επ=?F/m,70410μπ-=?H/m 一 填空题(每个空1分,共10分) (1) 截面为矩形(a ×b )的无限长金属槽, 各面的电位如图所示,使用分离变量法求解电位 (,)()()x y X x Y y φ=所满足的拉普拉斯方程,X (x )的通 解为 函数,Y (y )的通解为 函数。(无需写 出具体的解函数,仅指出函数类型即可) (2) 时变电磁场磁场强度的切向边界条件为 ,电场强度的切向边界条件为 。 (3)平行极化波从空气中斜入射到理想导体的表面,合成波在分界面法线方向上属于 波,在平行于分界面方向上属于 波。 (4) 极化波以布儒斯特角入射时会发生全折射现象,当平面波从折射率较高的介质入射到折射率较低的介质,当入射角 临界角时发生全反射现象。 (5)在电偶极子激发的电磁场中,近区场为 场,远区场为 场。 二 在接地的导体平面上有一半径为a 的半球凸部,半球的球心在导体平面上,若在半球对称轴上离球心h (h>a )处放一点电荷q , (1)确定镜像电荷的个数、大小与位置(10分); (2)求导体外任一点P 处的电位(5分)。 x

三 给出麦克斯韦方程组的微分形式、物质的本构方程(辅助方程)及用复数表示的麦克斯韦方程组的微分形式(10分) 四 真空中一均匀平面电磁波的磁场强度矢量为 63110()cos[()](/)22 x y z H a a a t x y z A m ωπ-=+++--r r r r ,求 (1) 波的传播方向的单位矢量,波长与频率(5分); (2) 电场强度矢量的瞬时值表达式(5分); (3) 波印廷矢量的平均值(5分)。 五 频率100MHz 的平面波在金属铜中传播,已知铜的电导率为75.810(/)S m σ=?,相对介电常数1r ε=,相对磁导率1r μ=,某处磁场强度的幅度为00.1(/)y H A m =,求 (1) 铜内平面波传播的衰减常数、相移常数及相速度(5分); (2) 波阻抗ηe 及磁场对应处的电场幅度E x 0(5分)。 (注意:解题过程可能会用到需要以下公式,大家可根据需要选择使用: 2111,281,2e e j σασβαβωεσηηωε???≈≈+≈≈? ??????= +=?? ) 六 均匀平面波(电场在x 方向,磁场在y 方向,向z 方向传播)由空气垂直入射到位于z=0处理想介质平面,已知入射波电场强度的幅度30 1.510(/)E V m +-=?,初相位?=0,介质的相对电导率4r ε=,相对磁导率1r μ=,8310(/)rad s ω=?,求 (1) 电场反射系数与透射系数(5分); (2) 反射波的电场强度与磁场强度的复数表达式(5分); (3) 透射波的电场强度与磁场强度的复数表达式(5分)。 七 证明题 (1) 证明任一线极化波总可以分解为两个振幅相等旋向相反的圆极化波的叠 加(5分);

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

北邮arduino实验报告

电子电路综合实验设计 实验名称: 基于 Arduino 的电压有效值测量电路设计与实现 学院: 班级: 学号: 姓名: 班内序号:

实验 基于Arduino 的电压有效值测量电路设计与实现 一. 摘要 Arduino是一个基于开放原始码的软硬件平台,可用来开发独立运作、并具互动性的电子产品,也可以开发与PC 相连的周边装置,同时能在运行时与PC 上的软件进行交互。为了测量正弦波电压有效值,首先我们设计了单电源供电的半波整流电路,并进行整流滤波输出,然后选择了通过Arduino设计了读取电压有效值的程序,并实现使用此最小系统来测量和显示电压有效值。在频率和直流电压幅度限定在小范围的情况下,最小系统的示数基本和毫伏表测量的值相同。根据交流电压有效值的定义,运用集成运放和设计的Arduino最小系统的结合,实现了运用少量元器件对交流电压有效值的测量。 关键字:半波整流整流滤波 Arduino最小系统读取电压有效值 二. 实验目的 1、熟悉Arduino 最小系统的构建和使用方法; 2、掌握峰值半波整流电路的工作原理; 3、根据技术指标通过分析计算确定电路形式和元器件参数; 4、画出电路原理图(元器件标准化,电路图规范化); 5、熟悉计算机仿真方法; 6、熟悉Arduino 系统编程方法。 三. 实验任务及设计要求 设计实现 Arduino 最小系统,并基于该系统实现对正弦波电压有效值的测量和显示。 1、基本要求 (1)实现Arduino 最小系统,并能下载完成Blink 测试程序,驱动Arduino 数字13 口LED 闪烁; (2)电源部分稳定输出5V 工作电压,用于系统供电; (3)设计峰值半波整流电路,技术指标要求如下:

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

极化波实验报告

内蒙古工业大学信息工程学院 实验报告 课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生 与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实 验室班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波 反射定律的方法 实验设备与仪器 dh926ad型数据采集仪 dh926b型微波分光仪 dh1121b型三厘米固态信号源金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍 物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和 通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折 射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启dh1121b型三厘米固态信号源。dh926b型微波分光仪的两喇 叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作 平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉 起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应 使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。 将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯 亮(蓝色),表示已连接好。然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红 色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅 通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看dh1121b 型三厘米固态信号源的“等幅”和“方波”档的设置,将dh926ad型数据采集仪的“等幅/ 方波”设置按钮等同于dh1121b型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数, 然后转动活动臂在dh926ad型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动 臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪 微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取 30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应 注意系统的调整和周围环境的影响。 采集过程中,dh926ad型数据采集仪的usb指示灯连续闪动(蓝色),表示采集过程正在 继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

北邮通信原理实验报告

北京邮电大学通信原理实验报告 学院:信息与通信工程学院班级: 姓名: 姓名:

实验一:双边带抑制载波调幅(DSB-SC AM ) 一、实验目的 1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB 信号的时域表达式为 ()()cos DSB c s t m t t ω= 频域表达式为 1 ()[()()]2 DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示 DSB-SC AM 信号的产生及相干解调原理框图如下图所示

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。 DSB—SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin2πf c t+φ与输入的导频信号cos2πf c t 的频率相同,但二者的相位差为φ+90°,其中很小。锁相环中乘法器的两个 输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 A C m t cos2πf c t+A p cos2πf c t?sin2πf c t+φ =A c 2 m t sinφ+sin4πf c t+φ+ A p 2 sinφ+sin4πf c t+φ 在锁相环中的LPF带宽窄,能通过A p 2 sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。锁定后的VCO输出信号sin2πf c t+φ经90度移相后,以cos2πf c t+φ作为相干解调的恢复载波,它与输入的导频信号cos2πf c t 同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 A C m t cos2πf c t+A p cos2πf c t?cos2πf c t+φ =A c 2 m t cosφ+cos4πf c t+φ+ A p 2 cosφ+cos4πf c t+φ 经过低通滤波可以滤除四倍载频分量,而A p 2 cosφ是直流分量,可以通过隔直

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮程序设计实验报告

程序设计实践 设 计 报 告 课题名称:邮件客户端学生姓名: 班级: 2 班内序号:16 学号: 2 日期:2014.6.4

1.课题概述 1.1课题目标和主要内容 本课题主要通过MFC的方式,利用SOCKET以及SMTP相关知识,来实现邮件(可携带附件)的定向发送,借此来复习和巩固C++编程的基本思想;学习SOCKET以及SMTP的相关知识,了解复杂网络应用程序的设计方法,并独立完成一个网络应用。 1.2系统的主要功能 1.邮件的发送(不携带附件) 2.邮件的发送(携带附件) 3.邮件接收 2. 系统设计 2.1 系统总体框架 程序的功能由MyEmailClientDlg.cpp,SMTP.cpp,MailMessage.cpp,Base64.cpp, MIMECode.cpp,MIMEContentAgent.cpp,MIMEMessage.cpp,AppOctetStream.cpp, MyEmailClient.cpp,StdAfx.cpp,TextPlain.cpp来实现。其中MIMECode.cpp, MIMEContentAgent.cpp,MIMEMessage.cpp, AppOctetStream.cpp, TextPlain.cpp来对MIME 协议进行封装,Base64.cpp来对Base64编码进行封装,SMTP.cpp是对SMTP协议进行封装,MailMessage.cpp是利用MIME协议对邮件内容的一个处理,最终通过MyEmailClientDlg.cpp 来实现邮件的发送的功能。 2.2 系统详细设计 [1] 模块划分图及描述 协议模块:包括网络应用程序中的各种协议,包括STMP协议,MIME协议等。 处理模块:主要实现对数据的进行编码以及解码。 实现模块:主要内容为邮件发送的具体步骤,相关按钮操作。 [2] 类关系图及描述 协议类:CSMTP, CTEXTPlai, CMIMECode,C MIMEContentAgent,C MIMEMessage, CAppOctetStream, CTextPlain.主要为协议中信息处理的中作用 编码类:Base64, MailMessage.主要为对邮件信息的处理

相关文档
最新文档