知识讲解_不等关系与不等式

知识讲解_不等关系与不等式
知识讲解_不等关系与不等式

不等关系与不等式

编稿:张希勇 审稿:李霞

【学习目标】

1.了解实数运算的性质与大小顺序之间的关系;

2.会用差值法比较两实数的大小;

3.掌握不等式的基本性质,并能运用这些性质解决有关问题.

【要点梳理】

要点一、符号法则与比较大小

实数的符号:

任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立.

两实数的加、乘运算结果的符号具有以下符号性质:

①两个同号实数相加,和的符号不变

符号语言:0,00a b a b >>?+>;

0,00a b a b <

②两个同号实数相乘,积是正数

符号语言:0,00a b ab >>?>;

0,00a b ab <

③两个异号实数相乘,积是负数

符号语言:0,00a b ab >

④任何实数的平方为非负数,0的平方为0

符号语言:20x R x ∈?≥,2

00x x =?=.

比较两个实数大小的法则:

对任意两个实数a 、b

①0b a b a ->?>;

②0b a b a -

③0b a b a -=?=.

对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.

要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.

要点二、不等式的性质

不等式的性质可分为基本性质和运算性质两部分

基本性质有:

(1) 对称性:a>b b

(2) 传递性:a>b, b>c a>c ?

(3) 可加性:a b a c b c >?+>+ (c∈R)

(4) 可乘性:a>b ,??

????>bc ac c bc ac c bc ac c 000

运算性质有:

(1) 可加法则:,.a b c d a c b d >>?+>+

(2) 可乘法则:,a b>0c d>0a c b d>0>>??>?

(3) 可乘方性:*0,0n n a b n N a b >>∈?>>

(4)

可开方性:a b 0,n N ,n 1+>>∈>要点诠释:不等式的性质是不等式同解变形的依据.

要点三、比较两代数式大小的方法

作差法:

任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.

①0b a b a ->?>;

②0b a b a -

③0b a b a -=?=.

作商法:

任意两个值为正的代数式a 、b ,可以作商a b ÷后比较a b

与1的关系,进一步比较a 与b 的大小. ①

1b a a b

>?>; ②1b a a b

若a>b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量.

利用函数的单调性比较大小

若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.

作差比较法的步骤:

第一步:作差;

第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”;

第三步:定号,就是确定差是大于、等于还是小于0;

最后下结论.

要点诠释:概括为:“三步一结论”.这里“定号”是目的,“变形”是关键过程.

【典型例题】

类型一:用不等式表示不等关系

例1.某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为218m ,

可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式.

【思路点拨】把已知条件用等式或不等式列出来(代数化),把目标用代数式表示,再研究条件和目标的关系。

【解析】假设装修大、小客房分别为x 间,y 间,根据题意,应由下列不等关系:

(1) 总费用不超过8000元

(2) 总面积不超过2180m ;

(3) 大、小客房的房间数都为非负数且为正整数.

即有:

**1800(0(100060080001815))x x N y y N x y x y ≤≥∈≥∈+≤??+????? 即**600(0(534065))x x N y y N x y x y ≤≥∈≥∈+≤??+?????

此即为所求满足题意的不等式组

【总结升华】求解数学应用题的关键是建立数学模型,只要把模型中的量具体化,就可以得到相应的数学问题,然后运用数学知识、方法、技巧等解决数学问题.在解决实际问题时,要注意变量的取值范围.

举一反三:

【变式】某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?

【答案】假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:

(1)截得两种钢管的总长度不超过4000mm ;

(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;

(3)截得两种钢管的数量都不能为负.

要同时满足上述的三个不等关系,可以用下面的不等式组来表示:

5006004000;3;0;0.x y x y x y +≤??≥??≥??≥?

类型二:不等式性质的应用

例2.已知22π

π

αβ-≤<≤,求2αβ

+,2αβ

-的取值范围.

【解析】 因为22ππαβ-

≤<≤,所以424παπ-≤<,424πβπ-<≤. 两式相加,得222παβπ+-

<<. 因为424π

βπ-<≤,所以4

24πβπ-≤-<, 则222

παβπ--≤<. 又α<β,所以02

αβ-<, 则022παβ--≤<. 【总结升华】求含字母的数(式)的取值范围,一是要注意题设中的条件,充分利用条件,二是在变换过程中要注意利用不等式的基本性质以及其他与题目相关的性质等.

举一反三:

【变式1】【变式】已知23,14a b <<<<,求(1) ,a b -(2)

a b 的取值范围. 【答案】(1)22a b -<-<;(2)132a b

<< 【高清课堂:不等关系与不等式387156 题型三 不等式性质的应用】

【变式2】已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围.

【答案】f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .

设m (a +b )+n (a -b )=4a -2b .

∴42m n m n +=??-=-?∴13m n =??=?

∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).

∵1≤f (-1)≤2,2≤f (1)≤4,

∴5≤f (-2)≤10.

例3.对于实数a,b,c 判断以下命题的真假

(1)若a>b, 则ac

(2)若ac 2>bc 2,则a>b;

(3)若aab>b 2;

(4)若a|b|;

(5)若a>b, a 1>b

1, 则a>0, b<0.

【思路点拨】本类题一般采用不等式性质法或者比差法。

【解析】

(1)因为c 的符号不定,所以无法判定ac 和bc 的大小,故原命题为假命题.

(2)因为ac 2>bc 2, 所以c≠0, 从而c 2

>0,故原命题为真命题. (3)因为???<<0

a b a ,所以a 2>ab ①

又???<<0

b b a ,所以ab>b 2 ②

综合①②得a 2>ab>b 2

,故原命题为真命题.

(4)两个负实数,绝对值大的反而小,故原命题为真命题. (5)因为?????>>b a b a 11 ,所以0110a b a b

->???->?? 所以?????>-<-00ab

a b a b ,从而ab<0 又因a>b ,所以a>0, b<0,故原命题为真命题.

【总结升华】题目中要注意不等式变形的等价性,性质的应用要合理.

举一反三:

【高清课堂:不等关系与不等式387156 题型二 不等式的性质】

【变式1】若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)

0a b d c +<;(3)a -c >b -d ; (4)a ·(d -c )>b (d -c )中能成立

的个数是( ).

A .1

B .2

C .3

D .4

【答案】C ;

【变式2】若a

>>和均不成立 B.1111a-b a |a ||b |

>>和均不成立 C.

221111a )(b )a b a b a >+>+-和(均不成立

D.221111(a )(b+)|a ||b |b a

>+>和均不成立 【答案】B ;

【解析】特殊值法:a b 0,<<∴ 取a=-2,b=-1 ,分别代入四个选项,即得选项B.

例4.船在流水中航行,在甲地与乙地间来回行驶一次的平均速度和船在静水中的速度是否相等,为什么?

【解析】设甲地与乙地的距离为S ,船在静水中的速度为u, 水流速度为v(u>v>0), 则船在流水中在甲地和乙地间来回行驶一次的时间222S S uS t u v u v u v

=+=+-- 平均速度22

2S u v u t u

-==, ∵222

0u v v u u u u u

--=-=-< , ∴ u u <

因此,船在流水中来回行驶一次的平均速度与船在静水中的速度不相等,平均速度小于船在静水中的速度.

【总结升华】 恰当的设出变量,利用了做差比较大小是本例的关键.

举一反三:

【变式】甲乙两车从A 地沿同一路线到达B 地,甲车一半时间的速度为a,另一半时间的速度为b;乙车用速度为a 行走一半路程,用速度b 行走另一半路程,若a b ≠,试判断哪辆车先到达B 地.

【答案】甲车先到达B 地;

【解析】设从A 到B 的路程为S ,甲车用的时间为1t ,乙车用的时间为2t , 则1112211,,(),22222t t S S S S a b S t t a b a b a b

+=∴==+=++ 222S S 112S ()S 4S ()S ()S 0222()2()

a b ab a b a b a b a b a b ab ab a b ab a b ??===-< ??? +-+--+-++++ 所以,甲车先到达B 地.

类型三:作差比较大小

【高清课堂:不等关系与不等式387156 题型一 比较大小】

例5. 已知a ,b ,c 是实数,试比较a 2+b 2+c 2与ab +bc +ca 的大小.

【思路点拨】此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)。根据实数运算的符号法则来得出两个代数式的大小。比较两个代数式大小的问题转化为实数运算符号问题。

【解析】∵222()a b c ab bc ca ++-++ =2221[()()()]02a b b c c a -+--≥,

当且仅当a =b =c 时取等号.

∴a 2+b 2+c 2≥ab +bc +ca .

【总结升华】用作差法比较两个实数(代数式)的大小,其具体解题步骤可归纳为:

第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式;

第二步:判断差值与零的大小关系,必要时需进行讨论;

第三步:得出结论。

【总结升华】

用作差法比较两个实数(代数式)的大小,其具体解题步骤可归纳为:

第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式;

第二步:判断差值与零的大小关系,必要时须进行讨论;

第三步:得出结论.

举一反三:

【变式1】在以下各题的横线处适当的不等号:

(1)2 6+

(2)2 21);

(3)

2

51-; (4)当0a b >>时,12log a 12log b .

【答案】(1)<; (2)< ; (3)<; (4)<

【变式2】比较下列两代数式的大小:

(1)(5)(9)x x ++与2(7)x +;(2)22

222a b ab +-与223a b +-. 【答案】

(1)2

(5)(9)(7)x x x ++<+

(2)22(222)(223)a b ab a b +--+-

2222(21)(21)(2)1a a b b a ab b =-++-++-++

222(1)(1)()110a b a b =-+-+-+≥>,

∴22222223a b ab a b +->+-.

例6.已知a b >(0ab ≠), 试比较1a 和1b

的大小. 【解析】

11b a a b ab

--=, ∵a b >即0b a -<,

∴当0ab >时0b a ab -<,11a b

<; 当0ab <时0b a ab ->,11a b >.

【总结升华】变形一步最为关键,直至变形到能判断符号为止;另需注意字母的符号,必要时需要分类讨论

举一反三:

【变式】已知a 0,b>0a b >≠且,比较22

a b a b b a

++与的大小 【答案】22

()a b a b b a

+-+ () 33

22

2

()2()()()()0a b a b ab

a a

b b a b ab

a b a b ab

+=-+-+=++-=> 22

.a b a b b a

∴+>+ 类型四:作商比较大小

例7.已知:a 、b R +∈, 且a b ≠,比较a b b a a b a b 与的大小.

【思路点拨】本题是两指数式比较大小,如果设想作差法,很明显很难判断符号,由指数式是正项可以联想到作商法.

【解析】 ∵a 、b R +∈ ,∴0a b a b >,0b a

a b >

作商:()()()()()a b a b a b a b b a a b a b a a a a b b a b b b

--=== (*) (1)若a>b>0, 则

1>b a ,a-b>0, 1)(>-b a b

a , 此时a

b b a a b a b >成立; (2)若b>a>0, 则10<-b a b a , 此时a b b a a b a b >成立. 综上,a b b a a b a b >总成立.

【总结升华】

1、作商比较法的基本步骤是:

判定式子的符号并作商→变形→ 判定商式大于1或等于1或小于1 →结论.

2、正数的幂的乘积形式的大小比较一般用作商比较法.

举一反三:

【变式】已知a b c 、、为互不相等的正数,求证:2a 2b 2c b c c a a b a b c a b c .+++>

【答案】a b c 、、为不等正数,不失一般性,设a b c 0,>>>

这时2a 2b 2c a b c 0>,b c c a a b a b c 0+++>,则有:

2a 2b 2c (a b)(a c)(b c)(b a)(c a)(c b)a b b c c a b c c a a b a b c a b c a b c ()()()a b c b c a

-+--+--+----+++== a b c 0>>> a b c 1,a b 0;1,b c 0;01,c-a<0b c a

∴>->>-><< 由指数函数的性质可知:a b b c c a a b c ()1,()1,()1b c a

--->>> 2a 2b 2c

b c c a a b a b c 1a b c

+++∴>,即2a 2b 2c b c c a a b a b c a b c +++>.

基本不等式知识点归纳

1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义 提示:①当b a =时, ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 + =在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( )

C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18. 2.若函数)2(2 1 )(>-+ =x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .4 3.已知,02,0,0,0=+->>>z y x z y x 则 2 y xz 的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为1 8 4.函数x x y 1 + =的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2 )(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________. 利用基本不等式证明不等式 [例1] 已知,0,0>>b a ,1=+b a 求证:.9)11)(11(≥++b a

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

七年级一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念(3分) 1、不等式:用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4、求不等式的解集的过程,叫做解不等式。 5、用数轴表示不等式的方法 考点二、不等式基本性质(3~5分) 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等 号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式(6--8分) 1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不 等式叫做一元一次不等式。 2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1 考点四、一元一次不等式组(8分) 1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 6、不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。 7、不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 知识点与典型基础例题 一不等式的概念: 例判断下列各式是否是一元一次不等式? -x≥5 2x-y<0 二不等式的解: 三不等式的解集: 例判断下列说法是否正确,为什么? X=2是不等式x+3<2的解。 X=2是不等式3x<7的解。不等式3x<7的解是x<2。 X=3是不等式3x≥9的解 四一元一次不等式: 例判断下列各式是否是一元一次不等式 -x<52x-y<0≥3x 例五.不等式的基本性质问题 例1 指出下列各题中不等式的变形依据 1)由3a>2得a> 2) 由3+7>0得a>-7 3)由-5a<1得a>- 4)由4a>3a+1得a>1 例2 用>”或<”填空,并说明理由 如果aa x7 5x<1+4x -x>-1 2x+5<4x-2 例4 已知实数a/b/c/在数轴上的对应点如图,则下列式子正确的是() A cb>ab B ac>ab C cb

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

初中人教版七年级不等式知识点总结

一元一次不等式(组 ) 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做 这个不等式的解。 3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式 的解集。 4、求不等式的解集的过程,叫做解不等式。 5、用数轴表示不等式的方法 考点二、不等式基本性质(3~5分) 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如 果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式(6--8分) 1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的 两边都是整式,这样的不等式叫做一元一次不等式。 2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项 的系数化为1 考点四、一元一次不等式组(8分) 1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 6、不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中不等式的基本知识点和练习题(供参考)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a ab b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况如下表: 2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,列出线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解 2 a b +≤

人教版七年级数学下册不等式与不等式组知识点

不等式与不等式组知识总结 一、不等式的概念 1.不等式:用不等号表示不等关系的式子,叫做不等式。 2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4.解不等式:求不等式的解集的过程,叫做解不等式。 5.用数轴表示不等式的解集。 二、不等式的基本性质 1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 说明: ①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。 ②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。 三、一元一次不等式 1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项 (4)合并同类项(5)将x项的系数化为1 四、一元一次不等式组 1、一元一次不等式组的概念:

几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 练习题:P133

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

人教版七年级数学下不等式与不等式组知识点与试题

不等式与不等式组 本章知识点: 1、不等式:用>或<号表示大小关系的式子叫做不等式。Shu 53 2、不等式的解:把使不等式成立的未知数的值叫做不等式的解。 3、解集:使不等式成立的x 的取值范围叫做不等式解的集合,简称解集。 4、不等式的性质: 1、不等式两边同时加(或减)同一个数(或式子),不等号的方 向不变。a+c>b+c,a-c>b-c 2、不等式两边同乘(或除以)同一个正数,不等号的方向不变。 如果a>b,并且c>0,ac>bc,a/cb,c<0,ac,当bc ac <时,c 0 (3)若b a >,则c a -c b -(4)若b a -<2,则a 2-b (5)若0,0<>a ab ,则b 0 (6)a b a >-,则b 0 (7)若a b a ><,0,则ab 2a (8)若b a <,则3a b a 2 一、画出数轴,在数轴上表示出下列不等式的解集: (1)?>2 13x (2)x ≥-4. (3)?≤5 1x (4) -2x<5 解下列不等式,并把它们的解集在数轴上表示出来。 1、3(x+2)>4(x-1)+7 2、 312-x ≤6 43-x 二、选择 1、下列数中是不等式x 3 2>50的解的有( )

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

高中数学复习不等式知识点及主要题型_讲义含解答

不等式的基本知识 一、解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则 不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 00 2 >=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、标根法:其步骤是: 1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; 2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回; 3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3

3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0() ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 二、线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域; 3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

相关文档
最新文档