6.1.1 PCB板的结构
PCB板焊接工艺标准(通常规范标准)

-* PCB板焊接工艺(通用标准)1.PCB板焊接的工艺流程1.1 PCB板焊接工艺流程介绍PCB板焊接过程中需手工插件、手工焊接、维修和查验。
1.2 PCB板焊接的工艺流程按清单归类元器件—插件—焊接—剪脚—检查—修整。
2.PCB板焊接的工艺要求2.1 元器件加工办理的工艺要求元器件在插装以前,一定对元器件的可焊接性进行办理,若可焊性差的要先对元器件引脚镀锡。
元器件引脚整形后,其引脚间距要求与PCB板对应的焊盘孔间距一致。
元器件引脚加工的形状应有益于元器件焊接时的散热和焊接后的机械强度。
2.2 元器件在 PCB板插装的工艺要求元器件在PCB板插装的次序是先低后高,先小后大,先轻后重,先易后难,先一般元器件后特别元器件,且上道工序安装后不可以影响下道工序的安装。
元器件插装后,其标记应向着易于认读的方向,并尽可能从左到右的次序读出。
有极性的元器件极性应严格依据图纸上的要求安装,不可以错装。
元器件在PCB板上的插装应散布平均,摆列齐整雅观,不一样意斜排、立体交错和重叠摆列;不一样意一边高,一边低;也不一样意引脚一边长,一边短。
2.3 PCB板焊点的工艺要求焊点的机械强度要足够焊接靠谱,保证导电性能焊点表面要圆滑、洁净3.PCB板焊接过程的静电防备 3.1 静电防备原理对可能产生静电的地方要防备静电累积,采纳举措使之控制在安全范围内。
对已经存在的静电累积应快速除去掉,即时开释。
3.2 静电防备方法泄露与接地。
对可能产生或已经产生静电的部位进行接地,供给静电开释通道。
采纳埋地线的方法成立“独立”地线。
非导体带静电的除去:用离子风机产生正、负离子,能够中和静电源的静电。
4.电子元器件的插装电子元器件插装要求做到齐整、雅观、坚固。
同时应方便焊接和有益于元器件焊接时的散热。
4.1元器件分类按电路图或清单将电阻、电容、二极管、三极管,变压器,插排线、座,导线,紧固件等归类。
4.2元器件引脚成形元器件整形的基本要求全部元器件引脚均不得从根部曲折,一般应留 1.5mm以上。
PCBEMC设计规范

PCB--EMC设计规范PCB EMC设计规范目录第一部分布局1 层的设置1.1 合理的层数1.1.1 Vcc、GND的层数1.1.2 信号层数1.2 单板的性能指标与成本要求1.3 电源层、地层、信号层的相对位置1.3.1 Vcc、GND 平面的阻抗以及电源、地之间的EMC环境问题1.3.2 Vcc、GND 作为参考平面,两者的作用与区别1.3.3 电源层、地层、信号层的相对位置2 模块划分及特殊器件的布局2.1 模块划分2.1 .1 按功能划分2 .1.2 按频率划分2.1.3 按信号类型分2.1.4 综合布局2.2 特殊器件的布局2.2.1 电源部分2.2.2 时钟部分2.2.3 电感线圈2.2.4 总线驱动部分2.2.5 滤波器件3 滤波3.1 概述3.2 滤波器件3.2.1 电阻3.2.2 电感3.2.3 电容3.2.4 铁氧体磁珠3.2.5 共模电感3.3 滤波电路3.3.1 滤波电路的形式3.3.2 滤波电路的布局与布线3.4 电容在PCB的EMC设计中的应用3.4.1 滤波电容的种类3.4.2 电容自谐振问题3.4.3 ESR对并联电容幅频特性的影响3.4.4 ESL对并联电容幅频特性的影响3.4.5 电容器的选择3.4.6 去耦电容与旁路电容的设计建议3.4.7 储能电容的设计4 地的分割与汇接4.1 接地的含义4.2 接地的目的4.3 基本的接地方式4.3.1 单点接地4.3.2 多点接地4.3.3 浮地4.3.4 以上各种方式组成的混合接地方式4.4 关于接地方式的一般选取原则4.4.2 背板接地方式4.4.3 单板接地方式第二部分布线1 传输线模型及反射、串扰1.1 概述:1.2 传输线模型1.3 传输线的种类1.3.1 微带线(microstrip)1.3.2 带状线(Stripline)1.3.3嵌入式微带线1.4 传输线的反射1.5 串扰2 优选布线层2.1 表层与内层走线的比较2.1.1 微带线(Microstrip)2.1.3 微带线与带状线的比较2.2 布线层的优先级别3 阻抗控制3.1 特征阻抗的物理意义3.1.1 输入阻抗:3.1.2 特征阻抗3.1.3 偶模阻抗、奇模阻抗、差分阻抗3.2 生产工艺对对阻抗控制的影响3.3 差分阻抗控制3.3.1 当介质厚度为5mil时的差分阻抗随差分线间距的变化趋势3.3.2 当介质厚度为13 mil时的差分阻抗随差分线间距的变化趋势3.3.3 当介质厚度为25 mil时的差分阻抗随差分线间距的变化趋势3.4 屏蔽地线对阻抗的影响3.4.1 地线与信号线之间的间距对信号线阻抗的影响3.4.2 屏蔽地线线宽对阻抗的影响3.5 阻抗控制案例4 特殊信号的处理5 过孔5.1 过孔模型5.1.1 过孔的数学模型5.1.2 对过孔模型的影响因素5.2 过孔对信号传导与辐射发射影响5.2.1 过孔对阻抗控制的影响5.2.2 过孔数量对信号质量的影响6 跨分割区及开槽的处理6.1 开槽的产生6.1.1 对电源/地平面分割造成的开槽6.2 开槽对PCB板EMC性能的影响6.2.1 高速信号与低速信号的面电流分布6.2.2 分地”的概念6.2.3 信号跨越电源平面或地平面上的开槽的问题6.3 对开槽的处理6.3.1 需要严格的阻抗控制的高速信号线,其轨线严禁跨分割走线6.3.2 当PCB板上存在不相容电路时,应该进行分地的处理6.3.3 当跨开槽走线不可避免时,应该进行桥接6.3.4 接插件(对外)不应放置在地层隔逢上6.3.5 高密度接插件的处理6.3.6 跨“静地”分割的处理7 信号质量与EMC 7.1 EMC简介7.2 信号质量简介7.3 EMC与信号质量的相同点7.4 EMC与信号质量的不同点7.5 EMC与信号质量关系小结第三部分背板的EMC设计1 背板槽位的排列1.1 单板信号的互连要求1.2 单板板位结构1.2.1 板位结构影响;1.2.2 板间互连电平、驱动器件的选择2 背板的EMC设计2.1 接插件的信号排布与EMC设计2.1.1 接插件的选型2.1.2 接插件模型与针信号排布2.2 阻抗匹配2.3 电源、地分配2.3.1 电源分割及热插拔对电源的影响2.3.2 地分割与各种地的连接2.3.3屏蔽层第四部分射频PCB的EMC设计1 板材1.1 普通板材1.2 射频专用板材2 隔离与屏蔽2.1 隔离2.2 器件布局2.3 敏感电路和强辐射电路2.4 屏蔽材料和方法2.5 屏蔽腔的尺寸3 滤波3.1 电源和控制线的滤波3.2 频率合成器数据线、时钟线、使能线的滤波4 接地4.1 接地分类4.2 大面积接地4.3 分组就近接地4.4 射频器件接地4.4 接地时应注意的问题4.5 接地平面的分布5 布线5.1 阻抗控制5.2 转角5.3 微带线布线5.4 微带线耦合器5.5 微带线功分器5.6 微带线基本元件5.7 带状线布线5.8 射频信号走线两边包地铜皮6 其它设计考虑第一部分布局1 层的设置在PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;电源层、地层、信号层的相对位置以及电源、地平面的分割对单板的EMC指标至关重要。
PCB制板基础知识1

PCB制板基础知识一、PCB概念PCB(PrintedCircuitBoard),中文名称为印制电路板,又称印刷电路板、印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的提供者。
由于它是采用电子印刷术制作的,故被称为“印刷”电路板。
二、PCB在各种电子设备中作用和功能1.焊盘:提供集成电路等各种电子元器件固定、装配的机械支撑。
2.走线:实现集成电路等各种电子元器件之间的布线和电气连接(信号传输)或电绝缘。
提供所要求的电气特性,如特性阻抗等。
3.绿油和丝印:为自动装配提供阻焊图形,为元器件插装、检查、维修提供识别字符和图形。
三、PCB技术发展概要从1903年至今,若以PCB组装技术的应用和发展角度来看,可分为三个阶段1、通孔插装技术(THT)阶段PCB1.金属化孔的作用:(1).电气互连---信号传输(2).支撑元器件---引脚尺寸限制通孔尺寸的缩小a.引脚的刚性b.自动化插装的要求2.提高密度的途径(1)减小器件孔的尺寸,但受到元件引脚的刚性及插装精度的限制,孔径≥0.8mm(2)缩小线宽/间距:0.3mm—0.2mm—0.15mm—0.1mm(3)增加层数:单面—双面—4层—6层—8层—10层—12层—64层2、表面安装技术(SMT)阶段PCB1.导通孔的作用:仅起到电气互连的作用,孔径可以尽可能的小,堵上孔也可以。
2.提高密度的主要途径(1).过孔尺寸急剧减小:0.8mm—0.5mm—0.4mm—0.3mm—0.25mm(2).过孔的结构发生本质变化:a.埋盲孔结构优点:提高布线密度1/3以上、减小PCB尺寸或减少层数、提高可靠性、改善了特性阻抗控制,减小了串扰、噪声或失真(因线短,孔小)b.盘内孔(hole in pad)消除了中继孔及连线(3)薄型化:双面板:1.6mm—1.0mm—0.8mm—0.5mm(4)PCB平整度:a.概念:PCB板基板翘曲度和PCB板面上连接盘表面的共面性。
PCB印制电路板-cadPCB元件库的修改与创建 精品

(1) 在PCB编辑窗口内,以“Libraries”(元 件封装图形库)或“Component”(元件)作为 浏览对象时,单击元件列表窗下的“Edit”(编 辑)按钮,即可直接启动元件封装图编辑器 PCBLib。
图6-1 PCB编辑状态(以“元件库”作为浏览对象)
图6-2 PCBLib编辑器窗口
1) Components(元件列表)窗 2) 绘图区 3) 工具栏
6.1.3 工作参数及图纸参数设置
1. 工作参数设置 执行“Tools”菜单下的“Library…”命令,
在弹出的“Document Options”(文档选项)窗 内,分别单击“Layers”和“Options”标签,即 可设置工作参数,窗口中各选项含义与第4章 有关PCB窗口工作参数设置的内容相同。
(1) 首 先 打 开 元 件 封 装 图 形 库 文 件 包 : Design Explorer 99\Library\PCB\Generic Footprint \Advpcb.ddb。
(2) 单击“Explorer”标签,在“设计文件管 理器”窗口内,单击Advpcb.ddb文件包内的 PCB Footprints.lib元件封装图形库图标。
2. 设置工作层、焊盘、过孔等显示颜色
执 行 “ Tools” 菜 单 下 的 “ Options” 命 令 , 在 弹出的“Preferences”(特性选项)”窗内,分 别单击“Color”和“Options”标签,即可重新选 择工作层、焊盘、过孔等的显示颜色,以及光标 形状、屏幕自动更新方式等,窗口各选项含义也 与4章的完全相同,这里不再重复。
图6-12 输入元件名称
图6-13 完成元件封装图形前的确认
图6-14 新生成的LED发光二极管封装图
PCB、EMC设计

总目1 目的2 范围3 定义4 引用标准和参考资料第一部分布局1 层的设置2 模块划分及特殊器件的布局3 滤波4 地的分割与汇接第二部分布线1 传输线模型及反射、串扰2优选布线层3阻抗控制4 特殊信号的处理5 过孔6跨分割区及开槽的处理7 信号质量与EMC第三部分背板的EMC设计1 背板槽位的排列2 背板的EMC设计第四部分射频PCB的EMC设计1 板材2 隔离与屏蔽3滤波4 接地5布线6 其它设计考虑:第五部分附录1 PCB设计中的安规考虑目录1 目的2 范围3 定义4 引用标准和参考资料第一部分布局1 层的设置1.1 合理的层数1.1.1 Vcc、GND的层数1.1.2 信号层数1.2 单板的性能指标与成本要求1.3 电源层、地层、信号层的相对位置1.3.1 Vcc、GND 平面的阻抗以及电源、地之间的EMC环境问题1.3.2 Vcc、GND 作为参考平面,两者的作用与区别1.3.3 电源层、地层、信号层的相对位置2 模块划分及特殊器件的布局2.1 模块划分2.1 .1 按功能划分2 .1.2 按频率划分2.1.3 按信号类型分2.1.4 综合布局2.2 特殊器件的布局2.2.1 电源部分2.2.2 时钟部分2.2.3 电感线圈2.2.4 总线驱动部分2.2.5 滤波器件3 滤波3.1 概述3.2 滤波器件3.2.1 电阻3.2.2 电感3.2.3 电容3.2.4 铁氧体磁珠3.2.5 共模电感3.3 滤波电路3.3.1 滤波电路的形式3.3.2 滤波电路的布局与布线3.4 电容在PCB的EMC设计中的应用3.4.1 滤波电容的种类3.4.2 电容自谐振问题3.4.3 ESR对并联电容幅频特性的影响3.4.4 ESL对并联电容幅频特性的影响3.4.5 电容器的选择3.4.6 去耦电容与旁路电容的设计建议3.4.7 储能电容的设计4 地的分割与汇接4.1接地的含义4.2 接地的目的4.3 基本的接地方式4.3.1 单点接地4.3.2 多点接地4.3.3 浮地4.3.4 以上各种方式组成的混合接地方式4.4 关于接地方式的一般选取原则:4.4.2 背板接地方式4.4.3 单板接地方式第二部分布线1 传输线模型及反射、串扰1.1 概述:1.2 传输线模型1.3 传输线的种类1.3.1 微带线(microstrip)1.3.2 带状线(Stripline)1.3.3嵌入式微带线1.4 传输线的反射1.5 串扰2优选布线层2.1 表层与内层走线的比较2.1.1 微带线(Microstrip)2.1.3 微带线与带状线的比较2.2 布线层的优先级别3 阻抗控制3.1 特征阻抗的物理意义3.1.1 输入阻抗:3.1.2 特征阻抗3.1.3 偶模阻抗、奇模阻抗、差分阻抗3.2 生产工艺对对阻抗控制的影响3.3 差分阻抗控制3.3.1 当介质厚度为5mil时的差分阻抗随差分线间距的变化趋势3.3.2 当介质厚度为13 mil时的差分阻抗随差分线间距的变化趋势3.3.3 当介质厚度为25 mil时的差分阻抗随差分线间距的变化趋势3.4 屏蔽地线对阻抗的影响3.4.1 地线与信号线之间的间距对信号线阻抗的影响3.4.2 屏蔽地线线宽对阻抗的影响3.5 阻抗控制案例4 特殊信号的处理5 过孔5.1 过孔模型5.1.1 过孔的数学模型5.1.2 对过孔模型的影响因素5.2 过孔对信号传导与辐射发射影响5.2.1 过孔对阻抗控制的影响5.2.2 过孔数量对信号质量的影响6 跨分割区及开槽的处理6.1 开槽的产生6.1.1 对电源/地平面分割造成的开槽6.2 开槽对PCB板EMC性能的影响6.2.1 高速信号与低速信号的面电流分布6.2.2 分地”的概念6.2.3 信号跨越电源平面或地平面上的开槽的问题6.3 对开槽的处理6.3.1 需要严格的阻抗控制的高速信号线,其轨线严禁跨分割走线6.3.2 当PCB板上存在不相容电路时,应该进行分地的处理6.3.3 当跨开槽走线不可避免时,应该进行桥接6.3.4 接插件(对外)不应放置在地层隔逢上6.3.5 高密度接插件的处理6.3.6 跨“静地”分割的处理7 信号质量与EMC7.1 EMC简介7.2 信号质量简介7.3 EMC与信号质量的相同点7.4 EMC与信号质量的不同点7.5 EMC与信号质量关系小结:第三部分背板的EMC设计1 背板槽位的排列1.1 单板信号的互连要求1.2 单板板位结构1.2.1 板位结构影响;1.2.2 板间互连电平、驱动器件的选择2 背板的EMC设计2.1 接插件的信号排布与EMC设计2.1.1 接插件的选型2.1.2 接插件模型与针信号排布2.2 阻抗匹配2.3 电源、地分配2.3.1 电源分割及热插拔对电源的影响2.3.2 地分割与各种地的连接2.3.3屏蔽层第四部分射频PCB的EMC设计1 板材1.1 普通板材1.2 射频专用板材2 隔离与屏蔽2.1 隔离2.2 器件布局2.3 敏感电路和强辐射电路2.4 屏蔽材料和方法2.5 屏蔽腔的尺寸3滤波3.1 电源和控制线的滤波3.2 频率合成器数据线、时钟线、使能线的滤波4 接地4.1 接地分类4.2 大面积接地4.3 分组就近接地4.4 射频器件接地4.4 接地时应注意的问题4.5 接地平面的分布5布线5.1 阻抗控制5.2 转角5.3 微带线布线5.4 微带线耦合器5.5 微带线功分器5.6 微带线基本元件5.7 带状线布线5.8 射频信号走线两边包地铜皮6 其它设计考虑:第五部分附录1 PCB设计中的安规考虑1.1 引言1.2 安全标识1.2.1 对安全标识通用准则1.2.2 电击和能量的危险1.2.4 可更换电池1.3 爬电距离与电气间隙1.4 涂覆印制板1.4.1 PCB板的机械强度1.4.2 印制板材料的阻燃等级1.4.3 热循环试验与热老化试验1.4.4 抗电强度试验1.4.5 耐划痕试验1.5 布线和供电工作室技术规范1 目的本指导书旨在指导PCB的EMC设计,将电路EMC设计要求在PCB中得以实现。
PCB设计的基本规则

5. 孔的设置
5.1 板厚和孔径比 制成板的最小孔径定义取决于板厚度, 板厚和孔径比 最好应小于 5~8:1。大的比值会使生产困难,成本增加。 板厚度与最小孔径的关系: 板厚:
3.0mm(118mil) 2.5mm(98.4mil) 2.0mm(78.7mil) 1.6mm(63mil) 1.0mm (39.4mil)
4. 布局
A.根据结构图设置板框尺寸,按结构要素布置安装孔、接 插件等需要定位的器件,并给这些器件赋予不可移动属性 B.根据结构图和生产加工时所需的夹持边设置印制板的禁 止布线区、禁止布局区域。根据某些元件的特殊要求,设置 禁止布线区。尽量避免晶体、变压器、光耦、电源模块下面 穿线,特别是晶体、晶振下面应尽量铺设接地的铜皮。 C.印制板的装焊要求离板边200mil(5.08mm)不能有元器 件,否则印制板在印刷机无法固定。一些特殊的元器件需要 靠板边安放的(如复位开关、发光二极管、连接器等)不在 此要求范围内,这些元器件可以进行手工补焊,如图4-1所 示,虚线到板边框的范围不能有元器件,至少要保证有两个 相对的板边不能有元器件。
ቤተ መጻሕፍቲ ባይዱ 4. 布局
200mil(5.08mm)
图4-1 元器件布置离板边的距离要求(0.2″=200mil=5.08mm)
4. 布局
E. 布局操作的基本原则: 1)遵照“先大后小,先难后易”的布置原则,即重要的 单元电路、核心元器件应当优先布局。 2)尽量避免大的器件两面重叠放置,以免在焊接加热时 两面都有大器件的温度上升慢,整板温度不均匀。导致温 度过低,焊接质量不可靠。 3)布局中应参考原理框图,根据单板的主信号流向规律安 排主要元器件。 4)布局应尽量满足以下要求:总的连线尽可能短,关键信 号线最短;高电压、大电流信号与小电流、低电压的弱信 号完全分开;模拟信号与数字信号分开;高频信号与低频 信号分开;高频元器件的间隔要充分。
1.PCB基础

PCB制造流程(以六层板为例)
基板—内层—压合—钻孔—一次铜—
外层线路—二次铜—蚀刻—中检—防焊 —镀金—喷锡—文字—成型—测试— 终检
基板
基材剪裁 将大的一张板材按规定的尺寸裁切成相应的尺 寸,以便后面制程作业.基板的尺寸規格一般都 包括三种:36 *48 40 * 48 42 * 48 inch
未聚合部分被溶解 掉
一次铜(PTH:Plated Through Hole )
在孔壁和整板的表面镀上一层铜约0.3mil 以备后工序电镀
外层线路(干膜)
利用干膜将菲林上的图形按客户要求转移
到板面上 前处理—压膜—曝光—显影(把没发生聚 合反应的区域用显影液将干膜冲洗掉,感 光部分因发生反应而洗不掉留在铜面上) —AOI
表面处理
覆盖一层金、银、锡 等…
文字
依客户资料要求印刷相应之文字字符,起辨识 作用,方便后段贴片及插件作业
成型
以CNC或模具的方式将pln尺寸切割成客户所 需的尺寸(pcs/set) 金手指 gold finger V-CUT(PCB分板) 洗板
测试
针对线路进行open/short性能测试. 治具测试或飞针测试
刚性PCB
它所用的基材是由纸基(常用于单面)或玻璃布基 (常用于双面及多层),预浸酚醛或环氧树脂, 表层一面或两面粘上覆铜箔再层压固化而成。这 种PCB 覆铜箔板材,我们就称它为刚性板。再 制成PCB,我们就称它为刚性PCB。
柔性PCB
打开通用电脑的键盘就能看到一张软性 薄膜(柔性的绝缘基材),印上有银白色 (银浆)的导电图形与健位图形。因为通 用丝网漏印方法得到这种图形,所以我们 称这种印制PCB 为单面柔性银浆印制PCB, 柔性PCB。
PCB设计规范

PCB设计规范修订记录目录1. 范围 (1)2. 规范性引用文件 (1)3. 术语和定义 (1)3.1. 印制电路板(PCB-printed circuit board) (1)3.2. 原理图(schematic diagram) (1)3.3. 网络表(Schematic Netlist) (1)3.4. 背板(backplane board) (1)3.5. TOP面 (1)3.6. BOTTOM面 (2)3.7. 细间距器件 (2)3.8. Stand Off (2)3.9. 护套 (2)3.10. 右插板 (2)3.11. 板厚(board thickness) (2)3.12. 金属化孔(plated through hole) (2)3.13. 非金属化孔(NPTH—unsupported hole) (2)3.14. 过孔(Via hole) (2)3.15. 盲孔(blind via) (2)3.16. 埋孔(埋入孔,buried via) (2)3.17. HDI (High Density Interconnect) (2)3.18. 盘中孔(Via in pad) (3)3.19. 阻焊膜(solder mask or solder resist) (3)3.20. 焊盘(连接盘,Land) (3)3.21. 双列直插式封装 (DIP—dual-in-line package) (3)3.22. 单列直插式封装 (SIP—single-inline package) (3)3.23. 小外型集成电路 (SOIC—small-outline integrated circuit) (3)3.24. BGA (Ball Grid Array) (3)3.25. THT(Through Hole Technology) (3)3.26. SMT (Surface Mounted Technology) (3)3.27. 压接式插针 (3)3.28. 波峰焊(wave soldering) (3)3.29. 回流焊(reflow soldering) (3)3.30. 压接 (4)3.31. 桥接(solder bridging) (4)3.32. 锡球( solder ball) (4)3.33. 锡尖(拉尖,solder projection) (4)3.34. 立片(器件直立,Tombstoned component) (4)3.35. 当前层(Active layer) (4)3.36. 反标注(反向标注,Back annotation) (4)3.37. FANOUT (4)3.38. 材料清单(BOM-Bill of materials) (4)3.39. 光绘(photoplotting) (4)3.40. 设计规则检查(DRC-Design rules checking) (4)3.41. DFM(Design For Manufacturability) (5)3.42. DFT(Design For Testability) (5)3.43. ICT(In-circuit Test) (5)3.44. EMC(Electromagnetic compatibility) (5)3.45. SI(Signal Integrality) (5)3.46. PI(Power Integrality) (5)4. PCB设计活动过程 (5)4.1.系统分析 (5)4.2.布局 (5)4.3.仿真 (6)4.4.布线 (6)4.5.测试验证 (6)5. 系统分析 (6)5.1.系统框架划分 (6)5.2.系统互连设计 (6)5.3.单板关键总线的信噪和时序分析 (7)5.4.关键元器件的选型建议 (7)5.5.物理实现关键技术分析 (7)6. 前仿真及布局过程 (8)6.1.理解设计要求并制定设计计划 (8)6.2.创建网络表和板框 (8)6.3.预布局 (8)6.4.布局的基本原则 (9)6.5.信号质量 (10)6.5.1.规则分析 (10)6.5.2.层设计与阻抗控制 (12)6.5.3.信号质量测试需求 (15)6.6.DFM (16)6.6.1.PCB尺寸设计一般原则 (16)6.6.2.基准点ID的设计 (17)6.6.3.器件布局的通用要求 (17)6.6.4.SMD器件布局要求 (17)6.6.5.THD布局要求 (20)6.6.6.压接件器件布局要求 (21)6.6.7.通孔回流焊器件布局要求 (21)6.6.8.走线设计 (22)6.6.9.孔设计 (24)6.6.10.阻焊设计 (26)6.6.11.表面处理 (26)6.6.12.丝印设计 (27)6.6.13.尺寸和公差标注 (29)6.6.14.背板部分 (30)6.7.DFT设计要求 (32)6.7.1.PCB的ICT设计要求 (32)6.7.2.功能和信号测试点的添加 (35)6.8.热设计要求 (35)6.9.安规设计要求 (36)6.9.1.线宽与所承受的电流关系 (36)6.9.2.-48V电源输入口规范 (36)6.9.3.有隔离变压器的接口(E1/T1口和类似端口)的安规要求 (36)6.9.4.网口安规要求(类似有隔离变压器的接口) (37)7. 布线及后仿真验证过程 (37)7.1.布线的基本要求 (37)7.1.1.布线次序考虑 (37)7.1.2.约束规则设置基本要求 (38)7.1.3.布线处理的基本要求 (38)7.1.4.布线所遵循的基本规则 (39)7.2.布线约束规则设置 (43)7.2.1.物理规则设置 (43)7.2.2.通用属性设置 (46)7.2.3.电气规则设置 (46)7.3.交互式规则驱动布线策略 (47)7.3.1.交互布线策略 (47)7.3.2.自动布线前期处理 (47)7.3.3.不同类型单板布线策略 (48)7.3.4.规则驱动布线后期处理 (50)7.4.仿真验证 (50)8. 投板前需处理事项 (51)8.1.质量保证活动 (51)8.1.1.自检活动 (51)8.1.2.组内QA审查 (51)8.1.3.短路断路问题检查 (51)8.2.流程数据填写和文件提交 (52)8.2.1.投板流程中填写的项目 (52)8.2.2.投板流程上粘贴2个压缩文件 (53)9. 测试验证过程 (53)9.1.信号质量测试工程师具备的知识 (53)9.2.测试目的及测试内容 (53)9.3.测试方法 (53)9.3.1.示波器及探头的选择与使用 (53)9.3.2.信号波形参数定义 (55)9.3.3.测试点的选择原则 (57)9.3.4.信号质量测试应覆盖各功能块的信号 (58)9.3.5.各类信号的重点测试项目 (58)9.3.6.各类信号测试方法和注意事项 (59)10.附录 (62)10.1.测试验证过程附录 (62)10.1.1.同步总线时序测试实例参考 (62)10.1.2.示波器和探头带宽对测试信号边沿的影响 (64)10.1.3.测试探头的地回路对测试信号的影响 (65)10.1.4.高速差分眼图测试方法 (67)印制电路板(PCB)设计规范1. 范围本规范规定了我司硬件工程师在CAD/SI开发阶段参与产品的设计过程和必须遵守的设计原则。