二次曲线的方程化简与分类

合集下载

二次曲线方程的化简和作图

二次曲线方程的化简和作图

目录摘要 (2)关键词 (2)1引言 (2)2预备知识 (2)3二次曲线的分类 (4)4二次曲线方程的化简 (4)4.1中心二次曲线方程的化简 (4)4.2无心二次曲线方程的化简 (7)4.3线心二次曲线方程的化简 (10)参考文献 (12)英文题目 (12)英文摘要 (12)英文关键词 (12)二次曲线方程的化简与作图曾XX 2008111XXXX数学科学学院数学与应用数学专业 2008级汉班指导老师李XX摘要:二次曲线方程的化简是解析几何中的重难点之一,本文简单介绍了二次曲线方程的分类,将其分为中心、无心、线心曲线三类,并运用待定系数法与配方法相结合的方法,详细介绍了这三类曲线方程的化简,并举例进行了说明.关键词:二次曲线、方程、待定系数、化简1引言我们知道,在不同的坐标系下,同一点有不同的坐标,因而同一图形有不同的方程,方程的形式越简单,它的图形的几何性质就越明显.对于给定的图形,我们就需要选取合适的坐标系,使它的方程更简单,这就涉及到方程的化简问题.二次曲线方程的化简与作图是大学空间解析几何的重点内容之一,它也是解析几何中的一个难点.如何把二次方程代表的曲线化简并作图,以便更容易看出方程所代表的二次曲线的类型,确定曲线的性质、形状以及在坐标中的位置,这具有重要的意义。

纵观有关资料对此问题的研究与讨论,给出了以下几种二次曲线方程化简的方法:坐标变化法、主直径法、不变量与半变量法、参数法、配方法、正交配方法、因式分解法等,这些方法各有优劣。

本文经过深入分析有关二次曲线方程化简的知识,在已知二次曲线分类的基础上,通过对二次曲线化简后所得方程以及其图形形状的探索,运用待定系数法与配方法、因式分解法相结合的方法求出二次曲线方程化简过程中所要知道的未知量,从而求出简化方程,为学习二次曲线方程的化简提供了一定的指导.2预备知识定义1 在平面直角坐标系中,由二元二次方程221112221323332220a x a xy a y a x a y a +++++= (2221112220a a a ++≠) (1) 表示的曲线称为二次曲线.为了方便起见,引进下面一些记号:22111222132333(,)222F x y a x a xy a y a x a y a =+++++;1111213(,)F x y a x a y a =++; 2122223(,)F x y a x a y a =++; 3132333(,)F x y a x a y a =++;11122I a a =+;1112221122121222a a I a a a a a ==-; 1112133122223132333a a a I a a a a a a =. 定义2 把一个点对于某一坐标系的坐标变换为同一个点对于另外一个坐标系的坐标,这种变换称为坐标变换.设在直角坐标系xoy 里给定了两条互相垂直的直线1111:0l A x B y C ++=,2222:0l A x B y C ++=如果取直线1l 为新坐标的横轴''o x ,而直线2l 为纵轴''o y ,并设平面上任意点p 的旧坐标与新坐标分别是(,)x y 与''(,)x y ,则由点到直线的距离公式我们有''x y ⎧=⎪⎪⎨⎪=⎪⎩去掉绝对值便有''x y ⎧=⎪⎪⎨⎪=⎪⎩ (2)其中正负号的选取要使'x 中的x 与'y 中的y 的系数同号.3二次曲线的分类4二次曲线方程的化简4.1中心二次曲线方程的化简对于中心二次曲线方程的化简,实质上是把坐标轴变换到与二次曲线的对称轴(即主直径)重合的位置,坐标原点与曲线中心重合,因此,对中心二次曲线方程的化简,只要先求出曲线的两条互相垂直的主直径,然后以它们作为新坐标轴,作坐标变换即可化为最简单的形式.设中心二次曲线两条互相垂直的主直径分别a kx y +=与b x k y +-=1,则以主直径为新的x 轴、y 轴可以将原方程化0)1()(22=+-++--C b x ky B a kx y A的形式,这里理论上是可以求出待定系数的,但是比较麻烦,因此我们不妨从主直径入手,先求出主直径的方程,从而得出简化方程.二次曲线的特征方程为0-212=+I I λλ,其特征根为2422112,1I I I -±=λ,如果判别式04)(421222211221=+-=-=∆a a a I I ,那么2211a a =,012=a ,这时的中心曲线为圆(包括点圆、虚圆),它的特征根为一对二重根,)0(2211≠==a a λ,任何方向都是圆的渐进主方向,从而通过圆心的任何直线都是圆的主直径.如果特征方程的判别式04)(421222211221>+-=-=∆a a a I I ,那么特征根为两不等的非零实根1λ、2λ,则由特征根1λ与2λ确定的主方向分别为122211111211:)()(::a a a a Y X -=-=λλ, (3)122221121222:)()(::a a a a Y X -=-=λλ, (4) 从而曲线的主直径为0),(),(2111=+y x F Y y x F X 与0),(),(2212=+y x F Y y x F X ,从而我们可以将方程(1)化为0)],(),([)],(),([2221222111=++++C y x F Y y x F X B y x F Y y x F X A (5) 把他与方程(1)的系数作比较,从而可以求出待定系数C B A ,,的值.现在我们把直线0),(),(2111=+y x F Y y x F X 作为新坐标的x 轴,把直线0),(),(2212=+y x F Y y x F X 作为新坐标的y 轴,这里需要注意,一般我们常将斜率大于0的主直径作为新坐标的x 轴,以确保在旋转变换时,其转角θ为锐角.假设两主直径方程中,y x 、的系数分别为11B A 、与22B A 、,作变换⎪⎪⎩⎪⎪⎨⎧++=++=,,)],(),([1)],(),([121112121'22122222'y x F Y y x F X B A y y x F Y y x F X B A x (6)则二次曲线方程(1)可以化为0)()(2'21212'2222=++++C y B A B x B A A做适当变换即可得到下列五种曲线中的一种形式:[1]12222=+b y a x (椭圆);[2] 12222-=+by a x (虚椭圆);[3] 12222=-by a x (双曲线);[4] 02222=+by a x (点或者相交于实点的共轭虚直线);[5] 02222=-by a x (两相交直线).例1 化简二次曲线方程01616854822=--+++y x y xy x ,并作出它的图形.解 因为0365228135821≠===+=I I ,,所以曲线为中心二次曲线,曲线的特征方程是03613-2=+λλ,解得两特征根为,,942,1==λλ因而由公式(3)与(4)知,曲线的两个主方向为)(2-:1)84(:2:11=-=Y X 1:28-9:2:22==)(Y X曲线的两主直径为0)852(2428=-+-++y x y x )(与 0)852()428(2=-++++y x y x , 即 052=+-y x 与02=+y x .设原方程可以化为0)2()52(22=++++-C y x B y x A ,与原方程系数比较可得365954-===C B A ,,,由(6),作变换⎪⎪⎩⎪⎪⎨⎧+-=+=),52(51-),2(51''y x y y x x 则原方程可化为036942'2'=-+x y ,化为标准方程得1942'2'=+y x , 这是椭圆,图形如图一所示4.2无心二次曲线方程的化简由二次曲线的分类我们知道无心二次曲线可以化为02''132''22=+x a y a 的形式,设对任意给定的无心二次曲线方程可以表示为:0)()(2=+-+++b y kx B a ky x A的形式,展开得0)()2()2(22222=++-+++++bB A a y B aAk x Bk aA y Ak Akxy Ax ,将其待定系数与方程(1)对比,我们可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=+==,,22,22,22,33223131211a bB A a a B aAk a Bk aA a kA a A 解之得⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=+-+-+=+-=++==,,))((2)()(,2,,112122112311131211223121311112212211332122112311131211212211231213111112a A a a a a a a a a a a a a a a a b a a a a a a a B a a a a a a a a a k (7) 现在我们分别把直线0=++a ky x 与直线0=+-b y kx 作为新坐标的x 轴、y 轴,同样的,一般我们常将斜率大于0的直线作为新坐标的x 轴,以确保'x 轴与x 轴的夹角为锐角。

二次曲线方程的分类与化简

二次曲线方程的分类与化简

二次曲线方程的分类与化简§7 二次曲线方程的化简与分类一方程的化简:1 中心曲线方程的化简:对中心曲线F(x,y)=0,令O′(,)为其中心,若将坐标原点平移至O′,则新方程中将不含一次项,再选取适当的θ角,作旋转变换,还可消去方程中的交叉乘积项,最终中心曲线的方程可化简为(1)由于,∴全不为0,从而中心曲线(1)关于新系的x′,y′轴对称,即以中心曲线的二主直径作为坐标轴建立新坐标系时,则曲线的方程便简化为(1)例1:化简二次曲线方程x²-xy+y²+4x-2y=0解:所给二次曲线的二主直径为x+y+2=0 ,x-y+2=0取坐标变换公式即代入原方程有x′²+3y′²-8=0即2 无心曲线方程的化简:对无心曲线F(x,y)=0,选取适当的θ角作旋转变换,可消去方程中的交叉乘积项,即方程简化为由于∴有且仅有一为0,不妨设=0 ,再配方有作平移则方程最终简化为(2)由于∴从而无心曲线(2)关于x″轴对称,即x″轴是其一主直径,且x″州与曲线的交点是新坐标系的坐标原点。

可见以无心曲线的主直径作为x′轴,以过顶点且与主直径垂直的直线作为y′轴建立新系,则曲线的方程便简化为(2)例2:化简二次曲线方程x²+2xy+y²+2x-2y=0解:所给曲线的一主直径为x+y=-0,曲线的顶点为原点,取过顶点且与主直径垂直的直线x-y=0,并取坐标变换,为即代入原方程并化简为3 线心曲线方程的化简:对于线心曲线F(x,y)=0,取一中心(,),并作平移变换即可消去方程中的一次项,再选取适当的α角作旋转变换,还可消去交叉乘积项,最终方程简化为由于∴有且仅有一为0,不妨设,则线心曲线方程化简为(3)由于,∴曲线(3)关于x′轴对称,可见新坐标系的x′轴是其主直径,即以曲线的一主直径作为x′轴建立新坐标系,则在新系下,曲线的方程将简化为(3)例3:化简二次曲线方程 x²-2xy+y²+2x-2y=0解:可以验证所给曲线是线心曲线,其主直径为x-y+1=0 再取一与主直径垂直的直线x+y=0,作坐标变换即代入原方程并化简得总结上述化简二次曲线方程的方法,可得如下结论:选取适当坐标系,可使中心二次曲线的方程的化简为无心二次曲线的方程的化简为线心二次曲线的方程的化简为二二次曲线的分类:1°对于中心曲线,其方程可化简为(I)当,令A=,B=,则(I)为 Ax²+By²=1若A,B>0,令A= ,B=,则(I)为[1] ——椭圆若A,B<0,令A=-,B=-,则(I)为[2] ————虚椭圆若A>0,B<0,令A=,B=-,则(I)为[3] ————双曲线同理当A<0,B>0时,也是双曲线当时,令A=,B=,则(I)为[4] ————一点同理,若A,B<0,则(I)也为一点若A>0,B<0,令A=,B=-,则(I)为[5] —————二相交直线同理若A<0,B>0,则(I)也为二相交直线。

二次曲线方程化简与分类的矩阵表示

二次曲线方程化简与分类的矩阵表示

二次曲线方程化简与分类的矩阵表示冯福存【摘要】利用二次曲线的方程与实对称矩阵的对应关系及矩阵的秩是合同变换的不变量,通过合同变换和二次曲线的特征向量的几何含义,引出并证明了三个新的定理,讨论了二次曲线的化简与分类.最后结合实例,说明三个定理在二次曲线方程化简和作图中的具体应用.【期刊名称】《宁夏师范学院学报》【年(卷),期】2016(037)003【总页数】7页(P37-43)【关键词】二次曲线;实对称矩阵;合同变换;化简;分类【作者】冯福存【作者单位】宁夏师范学院数学与计算机科学学院,宁夏固原756000【正文语种】中文【中图分类】O151.21平面二次曲线的化简、作图与分类不仅是大学本科阶段空间解析几何研究的主要内容之一,而且对中学圆锥曲线内容的教学有非常重要的指导作用.如何把二次曲线的方程进行化简、做出二次曲线的图形并对二次曲线进行分类具有重要的教学和研究价值.目前,各种教材[1-3]及相关文献资料[4-6]给出了二次曲线化简的四种方法:坐标变换法;主直径、主方向法;不变量与半不变量法;因式分解法.这四种方法中前两种是纯几何的方法,便于作图但化简过程太复杂,需要掌握的量较多;后两种方法是纯代数的方法,能快速的将二次曲线化为最简形式,但不易作图.本文通过深入分析二次曲线的相关知识点,挖掘其深刻的几何背景,运用代数与几何相结合的方法,得出一种既易于二次曲线的方程化简又易于作图和分类的简便方法,以便为学生的自主性学习和教师的研究型教学提供一定的指导和参考.平面二次曲线的方程为定义1 二次型的矩阵的秩称为二次型的秩,二次曲线的矩阵的秩称为二次曲线的秩.定义2 设X=(x1,x2,…,xn)T∈Rn,Y=(y1,y2,…,yn)T∈Rn,若存在C∈Rn×n,使得X=CY,称为由X到Y的一个线性变换.若r(C)=n,则称线性变换X=CY是可逆的.需要注意的是此定义中的X,Y的分量xi,yi(i=1,2,…,n)若任意取值,则该定义可认为是一个线性变换,但若某一个xi或yi是确定的实数,则该定义只能是变换而不一定是线性变换.定义3 A,B∈Rn×n,若存在C∈Rn×n,且r(C)=n,使得B=CTAC成立,称A与B合同.定义4 若有可逆的变换X=CY使得A,B∈Rn×n满足B=CTAC,则称变换X=CY 为合同变换.由以上定义可知,合同矩阵具有相同的秩.定义5[7] Rn中的变换φ若保持任意两个向量间的距离不变,即定理1[8] 数域P上任意一个二次型都可以经过非退化的线性替换变成平方和的形式.定理2[8] 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵P,使PTAP=P-1AP成对角形.定理3 对称矩阵只能合同于对称矩阵.证明设A与B合同,且A为对称矩阵,那么存在可逆矩阵C使得B=CTAC,则BT=(CTAC)T=CTATC=CTAC=B,故合同变换将对称矩阵变为对称矩阵.定理4[7] Rn中的等距变换有以下性质:1)两个等距变换的乘积仍是等距变换;2)φ是等距变换,且φ(0)=0,则φ是正交变换.反之亦然;3)任一等距变换可唯一的分解为一个正交变换与一个平移变换之积;4)等距变换是可逆的,逆也是等距变换.因为X,Y∈Rn,若r(C)=n,从几何角度看,变换X=CY可看做n维向量空间中的一个坐标变换,若C为正交矩阵,变换X=CY可看作右手直角坐标系下的旋转变换,若C为等距变换所对应的矩阵,变换X=CY可看作一个旋转变换与一个平移变换的复合.平面二次曲线的方程化简的本质就是适当的选择直角坐标系使得方程形式最简单,而坐标系的建立就是确定坐标轴的方向和原点的位置.由解析几何[1]的理论知当二次曲线的对称轴与其主方向一致时,方程形式可以大大简化.因此建立坐标系时让坐标轴与二次曲线的主方向一致,再取一个合适的点为原点,这时二次曲线的方程为最简形式.主方向的本质是二次曲线的特征值所对应的特征向量.二次曲线的特征值就是二次曲线的矩阵的特征值,而二次曲线的矩阵为实对称矩阵,这样对二次曲线的方程化简与分类的讨论,其本质就是对二次曲线的矩阵的化简和最简形式的讨论,这样便可将几何问题的讨论转化为矩阵问题.而矩阵化简的本质是利用可逆变换将矩阵化为对角形(若不能化为对角形退而求其次化为准对角形),因为对角形是最简单的矩阵,而在变换的过程中,矩阵的秩是可逆变换的不变量.因此,可以利用二次型(3)的秩和二次曲线(1)的秩的关系来对二次曲线的方程进行化简与分类.因为平面二次曲线(1)的矩阵是一个三阶实对称矩阵,若把平面上任一点的坐标(x,y)写成其齐次坐标(x,y,1),则(2)可看做关于变量为x,y,1的二次型,令X=(x,y,1),用矩阵乘积的表示形式(2)式可写为有了前面的理论分析,下面可以通过与A的秩的关系化简和分类二次曲线,并绘制二次曲线的图形.定理5 当(A)<3时,二次曲线(1)的最简形式为λ1x′2+λ2y′2=0,所做的坐标变换为其中λ1,λ2为A的特征值,P∈R2×2为正交矩阵,δ∈R2×1表示的点在二次曲线(1)上.证明由A∈R2×2是二次型(3)的矩阵,设λ1,λ2为A的特征值,利用二次型理论知存在正交矩阵P∈R2×2,使得.又为对称矩阵,且)=r(A)<3,可知合同于,由分块矩阵理论可知存在向量δ∈R2×1,有可逆矩阵使得可知Aδ+b=0,f(δ)=0,说明以δ为坐标的点在二次曲线上(1).此时所做的合同变换为,即定理6 当(A)+1时,二次曲线(1)的最简形式为λ1x′2+λ2y′2+c1=0,所做的坐标变换为其中c1≠0,λ1,λ2为A的特征值,P∈R2×2为正交矩阵,δ∈R2×1表示的点不在二次曲线(1)上.证明由定理5的证明可知λ1,λ2为A的特征值,P∈R2×2为正交矩阵,由为对称矩阵,且)=r(A)+1,可知合同于,此时c1≠0,否则)=r(A),由分块矩阵理论可知存在向量δ∈R2×1,有可逆矩阵使得可知Aδ+b=0,且f(δ)=c1≠0,说明以δ为坐标的点不在二次曲线(1)上.由定理5的证明可知二次曲线(1)的方程化简为λ1x′2+λ2y′2+c1=0所做的坐标变换为定理7 当(A)+2时,二次曲线(1)的最简形式为λ1x′2+2c1y′=0,所做的坐标变换为其中c1≠0,λ1为A的特征值,P∈R2×2为正交矩阵,δ∈R2×1表示的点在二次曲线(1)上.证明因为讨论的是二次曲线,r(A)≥1,又是三阶方阵,)≤3,所以对于本命题所讨论的情况只能是)=3.这时A的特征根肯定有一个为零,一个不为零,不妨设λ1≠0,由定理5的证明和定理3可知此时二次曲线(1)的矩阵合同于,且c1≠0,否则)=r(A)=1.这时有正交矩阵P与向量δ∈R2×1,使得由分块矩阵理论可知此时f(δ)=0,说明以δ为坐标的点在二次曲线(1)上.由定理5的证明可知,变成所做的坐标变换为+δ.如果按照的秩可将二次曲线分为:退化二次曲线和非退化二次曲线.退化二次曲线当时,表示两条相交直线;当时,表示两条重合直线;当时,表示两条平行直线.非退化二次曲线)=3)当时,表示椭圆;当时,表示双曲线;当r(A)=1时,表示抛物线.如果按照A的秩可将二次曲线分为:中心二次曲线≠0,即r(A)=2)和非中心二次曲线=0,即r(A)=1).中心二次曲线,即r(A)=2)当时,表示椭圆;当=0时,表示相交虚直线;当时,表示双曲线;当=0时,表示相交实直线.非中心二次曲线,即r(A)=1)无心二次曲线:,表示抛物线;线心二次曲线:当)=r(A)=1时,表示两条重合直线;当时,表示两条平行直线.例化简二次曲线的方程x2-xy+y2+2x-4y=0,并画出几何图形.解.特征多项式为得特征根为,由Aδ+b=0,解得所以合同于,故二次曲线的方程的简化形式为y′2-4=0.可判断二次曲线为椭圆.若要绘制此椭圆的图形,由特征根可计算得正交矩阵,所以二次曲线化为最简形的坐标变换为。

§2 二次曲线的类型概要

§2 二次曲线的类型概要

二次曲面的方程(2.1)可表示成 :
A A T
T
. a44

F ( x, y, z ) (
Φ(x,y,z)可以表示为:
A 1) T . a44 1
T
(2.3)
( x, y, z ) A
记:
1 ( x, y, z ) a11 x a12 y a13 z,
'
(2) (3) (4) (5) (6) (7) (8)
虚椭圆:
x2 y2 交于一实点的二虚直线: 2 2 0, a b x2 y2 双曲线: 2 2 1 0, a b x2 y2 两条相交直线: 2 0, 2 a b
(1) a34 0
,再作移轴:
1 x 2 2 y 2 2a34 z 0.
7°12
(2.9)
0, 则同于形式:
x2 y2 2 2z. 2 a b
椭圆抛物面
8°12 0, 则同于形式: x2 y2 2 2z. 2 a b
双曲抛物面
a34 0, a 0, 则(2.8)变为: ' 1 x 2 2 y 2 a44 0. (2.10) ' , 9° 1 2 同号但与 a 44 异号 ,则同于形式:
定理2.1
a11a22a34 0;
(3) a11 x 2 a22 y 2 a44 0,
2 a x (4) 11 2a24 y 0,
a11a22 0;
a11a24 0;
a11 0;
(5) 二次曲面总共有17种曲面. 类似于空间二次曲面的讨论,读者自行研究平 面上的二次曲线方程有如下结论。记平面上的二次曲 线方程为 :

一般二次曲线的化简与分类

一般二次曲线的化简与分类

例 化简二次曲线方程下x2+4xy+4y2+12x-y+1=0 ,写出坐标变换公式并画出它的图形。
解 由于I2=1×4-22=0,曲线是非中心型的,应先转轴后移轴。 1、设旋转角为θ,则有
得 tan =-1/2 或 tan =2 取 tan =2(若取 tan =-1/2 ,同样可将原方程化简),则有:
解 因为I2=<0,所给的二次曲线是双曲型的.
中心方程组
2x3y100,
解得中心坐标为 (- 2,2) .作移轴3变x换2y100.
原方程化为
再作转轴变换 , 得旋转角为 .故转轴变换为
x x 2,
y
y
2,
x23xyy210
cot2θ 1310 x
1 ( x y ), 2
4
y
1 ( x y ). 2
4、转轴变换公式 :
x
2 x 5
1 y , 5
y
1
x
2
y .
y y"
y'
5
5
代入,可将方程化简为
x"
标准方程是 6x2 y2 12 O'
这是一个椭圆,如图所示.
2
2
O"
x'
x2 y12 1 作图要中点坐:标要系比O-较xy准平确移地到画(2,出1)成新O旧'-坐x'y标',再系把和坐曲标线系的O图'-形x'y,'必旋须转掌角握得好O比"-x例"y、".在新新旧坐原O 标点系的O位"-置x"以y"及中坐根标据轴椭的圆旋的转标角准.本方x 题程

学位论文-—二次曲线的方程化简、作图及分类教学与应用数学

学位论文-—二次曲线的方程化简、作图及分类教学与应用数学

本科毕业论文题目:二次曲线的方程化简、作图及分类学院:数学与计算机科学学院班级:数学与应用数学2007级5班姓名:曹振佐指导教师:李秀兰职称:教授完成日期: 2011 年 5 月 18 日二次曲线的方程化简、作图及分类摘要:本文给出二次曲线的几种化简方法,其中对合同变换法化简中心二次曲线作了一点探讨.从二次曲线的由不变量所表示的简化方程出发给出了二次曲线作图的一种新方法,从而弥补了通过计算不变量只知简化方程而无法在原坐标系下画出二次曲线图形的缺陷. 特别地我们利用了二次曲线的主直径为新坐标系作坐标变换来化简一般二次曲线的方程,从而使二次曲线的几何理论和代数理论自然地联系在一起,使得一般二次曲线的方程化简、作图以及根据二次曲线标准方程的度量分类也就比较简捷地一起完成了.关键词:坐标变换;不变量;主直径;主方向;合同交换目录1 引言 (4)2预备知识 (4)3 二次曲线的方程的化简 (5)3.1用坐标变换化简二次曲线 (5)3.1.1 化简缺少xy项的二次曲线 (5)3.1.1.1 利用坐标轴平移化简缺少xy项的二次曲线 (5)3.1.1.2 利用配方通过移轴化简缺少xy项的二次曲线 (6)3.1.2 利用转轴化简含有xy项的二次曲线 (6)3.1.3 一般二次曲线方程的化简 (7)3.1.3.1 中心曲线的化简 (7)3.1.3.2 非中心二次曲线的化简 (8)3.2通过主直径,主方向化简二次曲线 (8)3.2.1 中心曲线的化简 (9)3.2.2 无心曲线的化简 (9)3.2.3 线心曲线的化简 (10)3.3用不变量、半不变量化简二次曲线 (11)3.3.1 中心曲线的化简 (11)3.3.2 无心曲线的化简 (11)3.3.3 线心曲线的化简 (12)3.4正交变换化简二次曲线 (12)3.5合同变换法化简有心二次曲线 (13)4 二次曲线的方程的作图 (15)4.1中心二次曲线的作图方法 (15)4.2无心二次曲线的作图方法 (16)4.3线心二次曲线的作图方法 (18)5 二次曲线的方程分类 (18)5.1二次曲线的分类 (18)参考文献 (19)1 引言我们展开一般二次曲线的几何理论的研究,讨论一般二次曲线的渐近方向、中心、渐近线、切线、直径与主直径等重要概念与性质,也导出了二次曲线按不同角度的分类和作图.平面上的二次曲线的理论与空间的二次曲线的理论有着十分相识的地方.而平面的情况毕竟要比空间的情况简单得多,因此我们先对一般二次曲线的理论有了比较深入的了解后,再进一步学习空间的一般二次曲线的而理论将不会感到费力而它只是一种自然的推广.有二次曲线方程的系数构成的不变量321I I I ,,以及1K 完全可以画出二次曲线的形状大小,因此研究二次曲线的不变量也就成为解析几何的一个十分重要的中心问题.在这样的意义下,不变量也就最深刻地反映方程与曲线的关系,它也把我们对数形结合的问题提高到一个新的认识.2 预备知识在平面直角坐标系xy O -上,由二元一次方程022233231322212211=+++++a y a x a y a a x a )1(所表示的曲线,叫做二次曲线.我们讨论二次曲线的几何性质以及二次曲线方程的化简,最后对二次曲线进行分类和作图.为了方便起见,我们引进下面一些记号:33231322212211222),(a y a x a y a xy a x a y x F +++++≡ ,1312111),(a y a x a y x F ++≡ , 2322122),(a y a x a y x F ++≡ , 3323133),(a y a x a y x F ++≡ , 222122112),(y a xy a x a y x ++≡Φ , 这样我们容易验证,下面的恒等式成立),(),(),(),(321y x F y x yF y x xF y x F ++≡ ,)1(式也就可以写成),(),(),(),(321y x F y x yF y x xF y x F ++≡ . 我们把),(y x F 的系数所排成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=332313232212131211a a a a a a a a a A叫做二次曲线)(1的矩阵.),(y x Φ的系数所排成的矩阵 ⎥⎦⎤⎢⎣⎡=22121211*a a a aA 叫做),(y x Φ的矩阵.显然二次曲线)1(的矩阵A 的第一、第二与第三行(或列)的元素分别是),(),,(),,(321y x F y x F y x F 的系数.下面我们引用加个符号22111a a +=I ,221212112a a a a =I ,3323132322121312113a a a a a a a a a =I ,33232322331313111a a a a a a a a+=K .这里的1I 是矩阵*A 的主对角元素的和,2I 是矩阵*A 的行列式,3I 是矩阵A 的行列式.3 二次曲线的方程的化简 3.1 用坐标变换化简二次曲线 3.1.1 化简缺少xy 项的二次曲线3.1.1.1 利用坐标轴平移化简缺少xy 项的二次曲线方法 将坐标原点移至二次曲线的中心,在新方程中可以消去一次项.中心),(00y x 的坐标00,y x 由中心方程组⎩⎨⎧=++=++,0,0232212131211a y a x a a y a x a )2( 给出. 这样将变换公式 ⎪⎩⎪⎨⎧+=+=,,0'0'y y y x x x 代入原方程,即可化简原二次曲线. 例1 化简二次曲线方程01162422=+--+y x y x .解 二次曲线的系数矩阵 101048181A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 因为 0440012≠==I ,所以 此曲线是中心二次曲线.由中心方程组)2(得⎩⎨⎧=-=-,084,01y x解 2,100==y x .可得 变换公式 ⎪⎩⎪⎨⎧+=+=,2,1''y y x x 代入原方程, 整理得 016422=-'+'y x .(椭圆) 3.1.1.2 利用配方通过移轴化简缺少xy 项的二次曲线例2 化简二次曲线方程010*********=++-+y x y x .解 将方程的左端配方,得: 036)2(9)5(422=-++-y x .令 ⎪⎩⎪⎨⎧+=-=,2,5''y y x x可得 变换公式 ⎪⎩⎪⎨⎧-=+=,2,5''y y x x 于是方程化为0369422=-'+'y x .(椭圆) 3.1.2 利用转轴化简含有xy 项的二次曲线方法 转轴化简二次曲线方程,只要是旋转适当的角度,就可使方程中的乘积项消去,而由公式12221122cot a a a -=α )3( 给出. 然后将变换公式 ⎪⎩⎪⎨⎧+=-=,cos sin ,sin cos ''''ααααy x y y x x 代入原方程. 例3 化简二次曲线方程080609241622=+++-y x y xy x .解 这里242,9,16122211-===a a a .由)3(得 247249162cot -=--=α,257)247(12472cos 2-=-+-=α, 542257122cos 1sin =+=-=αα, 532257122cos 1cos =-=+=αα, 所以 转轴公式为 ⎪⎪⎩⎪⎪⎨⎧+=+=-=-=),34(51cos sin ),43(51sin cos ''''''''y x y x y y x y x x αααα代入原方程,整理得'2'4x y -=.(抛物线) 3.1.3 一般二次曲线方程的化简 3.1.3.1 中心曲线的化简方法 一般采用先移轴后转轴较为简便. 例4 化简二次曲线方程021*******=+-++-y x y xy x .解 因为 0541232312≠-=--=I 即此曲线为中心曲线. 先移轴,由中心方程组得 ⎪⎪⎩⎪⎪⎨⎧=-+-=+-,0523,0523y x y x解得 ⎩⎨⎧=-=.2,200y x故移轴公式为 ⎪⎩⎪⎨⎧+=-=,2,2''y y x x 代入原方程,整理得0132'''2'=++-y y x x . )4(对方程)4(进行转轴 1,1,23,133'22'12'11'==-==a a a a .031122cot 12'22'11'=-=-=a a a α , 即 4πα=. 故转轴公式为 ⎪⎪⎩⎪⎪⎨⎧+=-=),(22),(22''''''''''y x y y x x 代入方程)4( 整理得最简方程为 0125212''2''=++-y x .(双曲线) 3.1.3.2 非中心二次曲线的化简方法 一般采用先转轴后移轴进行化简 例5 化简二次曲线方程0168222=+++-y y xy x .解 因为 01111112=-=--=I , 所以此曲线是非中心曲线.先进行转轴 02112cot =-=α , 即 4πα=. 故转轴公式为 ⎪⎪⎩⎪⎪⎨⎧+=-=),(22),(22''''y x y y x x 代入原方程,得 01624242''2'=++-y x y . )5( 对)5(进行移轴( 实质配方),得:)23(22)2('2'-=+x y .令 ⎪⎩⎪⎨⎧-=+=,23,2''''''x x y y 则变换公式为 ⎪⎩⎪⎨⎧+=-=,23,2''''''x x y y 则原方程化简为 ''2''22x y =.(抛物线) 3.2 通过主直径,主方向化简二次曲线方法 一坐标轴与二次曲线主方向平行,则化简后二次曲线方程中不含xy 项.3.2.1 中心曲线的化简方法 取它唯一一对相互垂直的主直径为坐标轴建立坐标系,即原点是曲线的中心.例6 化简二次曲线方程0122422=++++-y x y xy x .解 因为 2111=+=I , 0312212≠-=--=I ,所以 此曲线是中心曲线.其特征方程为0322=--λλ,因此两特征根为11-=λ, 32=λ.由11-=λ, 32=λ分别对应的两个主方向为1:1:11=Y X ,1:1:22-=Y X . 由两主方向决定的主直径分别为02=-+y x 和0=-y x 取二主直径为新坐标系轴, 得⎪⎪⎩⎪⎪⎨⎧--=-+=,2,22''y x y y x x 解得⎪⎪⎩⎪⎪⎨⎧++=+-=,1)(22,1)(22''''y x y y x x 代入原方程,化简得 132'2'=-y x .(双曲线)3.2.2 无心曲线的化简方法 取它的唯一的一个主直径为x 轴,过顶点垂直于主直径的直线为y 轴建立坐标系(顶点为坐标原点)例7 化简二次曲线方程0168222=+-+-x y xy x .解 这里0,4,1,1,12313221211=-==-==a a a a a .因为231322121211a a a a a a ≠= ,所以 此曲线是无心曲线. 因为 0,221==I I .其特征方程为022=-λλ,因此两特征根为0,221==λλ.对应于21=λ的非渐近主方向为1:1:11-=Y X .取主直径为 02=--y x 为新坐标系'x 轴,主直径与曲线的交点即顶点为)21,25(过顶点且以非渐近主方向11:Y X 为方向的直线方程为)25(21--=-x y 即03=-+y x .则变换公式为⎪⎪⎩⎪⎪⎨⎧---=-+=,22,23''y x y y x x 解得⎪⎪⎩⎪⎪⎨⎧++=+-=,21)(22,25)(22''''y x y y x x 代入原方程,整理得 '2'22x y =.(抛物线) 3.2.3 线心曲线的化简方法 取它的中心直线为x 轴,任取垂直它的直线为y 轴,建立坐标系. 例8 化简二次曲线方程0322222=--++-y x y xy x .解 因为,231322121211a a a a a a ==所以此曲线是线心曲线. 唯一的主直径为 01=+-y x .取主直径为新系的'x 轴,取任一垂直它的直线如0=+y x 为'y 轴,这时变换公式为⎪⎪⎩⎪⎪⎨⎧---=+=,21,2''y x y y x x 解得⎪⎪⎩⎪⎪⎨⎧++=--=,21)(22,21)(22''''y x y y x x 代入原方程,得22'±=y .(两条平行直线) 3.3 用不变量、半不变量化简二次曲线 3.3.1 中心曲线的化简方法 用不变量、半不变量化简中心曲线,它的最简形式为0232'22'1=++I I y x λλ 例9 化简二次曲线方程0121252522=--++y x y xy x .解 ,288,24,10321-===I I I 特征方程为024102=+-λλ.因此两特征根为.4,621==λλ可知最简形式为 024288462'2=-++y x‘. 即 1322'2'=+y x .(椭圆)3.3.2 无心曲线的化简方法 用不变量,半不变量化简无心曲线,它的最简形式为02'132'1=-±x I I y I . 例10 化简二次曲线方程048222=+-++x y xy x .解 因为 01644011411,01111,2321≠-=--====I I I . 它的最简形式为 0216222'=--±‘x y . 即 022'2'=±x y .(抛物线) 3.3.3 线心曲线的化简方法 用不变量、半不变量化简线心曲线,它的最简形式为:0112'1=+I K y I 例11 化简二次曲线方程0322222=-++++y x y xy x .解 这里,231322121211a a a a a a == 即此曲线是线心曲线. 831113111,211-=-+-==K I . 所以 它的最简形式为:02822'=-+y . 即 2'±=y .(两条平行的直线) 3.4 正交变换化简二次曲线方法 任意实二次型AX X x x ax x x f T i j i ijn ==∑∑==n1n1j 21),,( ,都可以用正交变换QY X =化为平方和2222211n n y y y f λλλ+++= . 这里),2,1(n i i =λ是A 的全部特征根.例12 化简二次曲线方程024241222=+-++y x y xy x .解 上式中所有二次项构成实二次型2212),(y xy x y x f ++=.它的系数矩阵⎥⎦⎤⎢⎣⎡=1661A .特征矩阵)5)(7(1661)(+-=----=A -E =λλλλλλf . 即 A 的特征根为 5,721-==λλ.当5,721-==λλ时,A 的特征向量分别为)1,1(),1,1(21-==αα单位化得)21,21(),21,21(21-==ββ.以21,ββ为列向量,作正交矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21212121Q , 正交变换为 ⎪⎪⎩⎪⎪⎨⎧+=-=,2121,2121''''y x y y x x代入原方程,得 0857'2''=+-y y x .配方得 0516)45(572''=+--y x . 令⎪⎩⎪⎨⎧-==,45,''''''y y x x 则坐标交换为⎪⎪⎩⎪⎪⎨⎧--=+-=,5222121,5222121''''''''y x y y x x 得标准方程为516572''2''-=-y x .(双曲线)3.5 合同变换法化简有心二次曲线方法 对矩阵A 作合同变换,即⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡333231232221131211321.........000000c c c c c c c c c d d d E A . 所作变换为⎪⎩⎪⎨⎧++=++=,,23'22'2113'12'11c y c x c y c y c x c x 这样)1(式就化简成0),(32'22'1=++≡d y d x d y x F例13 化简二次曲线方程021*******=+-++-y x y xy x .解 系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=215551235231A . 因为451232312-=--=I ,所以 此曲线为中心曲线.10510031001555552500004242341555200152104225521333121001015222010012010010001001001001A E ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢--⎢⎥⎢⎥⎢⎥⎢-⎢⎥⎢⎥⎡⎤⎢⎥⎢=→→→⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎢⎥⎢⎥-⎢⎥⎢-⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎥⎥⎥⎥⎥⎥⎥⎥. 这样经变换⎪⎩⎪⎨⎧+=-+=,2,223'''y y y x x 使原方程化为 01452'2'=+-y x .(双曲线) 检验 把变换⎪⎩⎪⎨⎧+=-+=,2,223'''y y y x x 代入原方程,并整理得01452'2'=+-y x . 经检验,此方法对中心曲线是成立的. 4 二次曲线的方程的作图 4.1 中心二次曲线的作图方法对中心二次曲线0),(:=y x F C 利用不变量可将其简化方程表为0232'22'1=++I I y x λλ. )6( 其中21,λλ是曲线C 的两特征根,且'',y x 轴分别沿1λ和2λ对应的主方向.因此x '轴关于原坐标系中x 轴的倾角α满足2212112111tan a a a a X Y -=-==λλα. 可见要从中心二次曲线C 的简化方程)6(作出其图形,只需以过C 的中心),(00'y x O 且与原坐标系中x 轴的倾角为α直线作为'x 轴,建立直角坐标系'''y x O -,然后在该坐标系下作出)6(所表示的曲线即可.例14 求二次曲线042226565:22=-+-+-y x y xy x C 的简化方程,并作出其图形.解 因为 不变量128,16,10321-===I I I . 所以解特征方程 016102=+-λλ. 即得曲线C 的两特征根,8,221==λλ且由823-=I I .得曲线的简化方程为 08822'2'=-+y x .即 142'2'=+y x (椭圆)另外通过解中心方程组⎪⎩⎪⎨⎧=++-=--,0253,02335y x y x 可得曲线的中心 )241,243('O . 过'O 作与x 轴的倾角41arctan πα==的直线 22--y x ,并以此作为'x 轴建立直角坐标系'''y x O -,且在该坐标系下作出方程142'2'=+y x (椭圆)所表示的曲线,如图1所示.4.2 对无心二次曲线0),(:C =y x F ,由于2211,a a 同号,不妨设它们均非负.利用不变量可将其简化方程为012'1312'=-±x I I I y 其中±号可任选, 这里不妨取-号, 即简化方程为 012'1312'=--x I I I y )7( 不难验证新坐标系的'x 轴是该二次曲线的对称轴(主直径),原点O '是曲线的顶点(主直径与曲线的交点).对任意点P ,若设其在旧、新坐标系的坐标为),(y x 和),(''y x ,则数),(y x F 与012'1312'=-±x I I I y 至多差一个正数倍,所以若主直径上某一点)0,(x P (或),0(y P )的坐标使0)0,(<x F (或0),0(<y F )则向量P O '便指向'x 轴的正向(因'x 轴正向上的点)0,(x P 使'1312'12x I I I y -±为负), 否则,便指向'x 轴的负向.可见要从简化方程)7(画出无心二次曲线0),(:C =y x F 的图形,只需先求出曲线的主直径和顶点),(00'y x O ,并选取主直径上一点)0,(x P (或),0(y P )若0)0,(<x F (或0),0(<y F ),则以O '作为原点,以向量P O '的正向作为'x 轴正向建立直角坐标系'''y x O -;若0)0,(>x F (或0),0(>y F )则以O '作为原点,以向量O P '的正向作为'x 轴正向建立直角坐标系'''y x O -,并在该坐标系下作出方程)7(所表示的曲线即可.例15 求二次曲线0256102:22=+--+-y x y xy x C 的简化方程,并作出其图形. 解 对所给二次曲线0),(:=y x F C 由于231322121211a a a a a a ≠=. 所以 曲线是无心的.因为 曲线的不变量6402321-===I I I ,,,所以曲线的简化方程为 024'2'=-x y . )8(又曲线的主直径为01=--y x ,顶点为)1,2('O .取主直径上一点)0,1(P ,由于0)0,1(>F ,所以只需以'O 作为原点,以向量O P '的正向作为'x 轴正向建立直角坐标系'''y x O -并在该坐标系下作出方程)8(所表示的曲线即可,如图2所示.4.3 线心二次曲线的作图方法对线心二次曲线0),(:C =y x F 利用不变量可将其简化方程表为02112'=+I K y . (9)不难验证新坐标系的'x 轴是该二次曲线的对称轴(主直径),所以若曲线的不变量01=K ,则要作出曲线的图形,只需作出主直径即可;若01<K ,只需作出与主直径0131211=++a y a x a 平行的二直线012211211131211=+-±++a a I K a y a x a 即可.例16 求二次曲线03222:22=--++-y x y xy x C 的简化方程,并作出其图形. 解 对所给二次曲线0),(:=y x F C 由于231322121211a a a a a a ==. 所以曲线是线心的.因为二次曲线的不变量802321-===I I I ,,,又曲线的主直径为01=+-y x ,所以只需在原坐标系下作出直线021=±+-y x ,即为要作的曲线的图形,如图3所示.5 5.1 二次曲线的分类通过适当地选取坐标系,二次曲线的方程总可以写成下面九中标准方程的一种形式:[1]12222=+by a x (椭圆);[2]12222-=+by a x (虚椭圆);[3]12222=-by a x (双曲线);[4]02222=+b y a x (点或称两相交于实点的共轭虚直线);[5]02222=-by a x (两相交直线);[6]px y 22=(抛物线); [7]22a y =(两条平行直线); [8]22a y -=(两平行共轭虚直线); [9]02=y (两重合直线);参考文献:[1]吕林根,许子道.解析几何[M].第4版.北京:高等教育出版社,2006.[2]甘浪舟.利用不变量化简二次曲线方程的作图问题[J].安庆师范学院学报,2004,10(2):45-47.[3]吕林根.解析几何学习指导书[M]北京:高等教育出版社,2006.[4]廖民勋.二次曲线方程的化简及作图[J].广西师院学报(自然科学版),1997,14(2):76-81. [5]傅朝金.中心二次曲线化简的一种新方法及推广[J].湖北师范学院学报(自然科学版),2001,21(2):72-74.[6]苏婷.二次曲线方程化简[J].陕西师范大学继续教育学报,2006(23):247-249. [7]林梦雷.二次曲线方程的化简[J].漳州师范学院学报,1999,12(1):22-26.[8]席高文,刘晓君.二次曲线方程分类与化简的新方法[J].许昌师专学报,2001,20(20):6 -13. [9]Wen K T.Ways for the simplification of the Binary Curve Equation[J].Journal of Bijie Teachers College,1995,(2):66-71.[10] Qu J,Xi F Y.The simplification of the Binary Curve Equation by ParameterFunctions[J].High School Mathematics Teaching,1994,24-25.Second Curve Equation ReductionMapping And ClassificationAbstract:In this paper, we give the conic simplified methods, including several for contract transformation method for simplified center a bit conic are discussed . From the conic by not variable simplified equation said conic mapping is given a new method . Offsetting the knows only through calculating invariant simplified equation and can't in the original coordinate draw the second curve graphics defects. Specifically we use the quadratic curves for the new coordinate the Lord made diameter of coordinate transformation to the simplified general quadric curve equation. Thus the geometry of the conic theory and algebra theory naturally relates in together, generally makes the second curve equation according to the simplified, mapping and the metric standard equationconic classification also is briefly finish together.Key Words: Coordinate transformation; invarient; Lord diameter; Main directions; Contract exchange本科毕业论文题目:逼近法的相关研究学院:数学与计算机科学学院班级:数学与应用数学2007级5班姓名:晁燕萍指导教师:许芝卉职称:副教授完成日期: 2011 年 5 月 20 日逼近法的相关研究摘要:逼近法是在各个学科中应用极广泛的分析论证方法,本文就逼近法中最重要的几种方法加以论述,即二分逼近法、逐次逼近法和逐步逼近法,主要结合实例,介绍其分析论证的思想与方法.逼近法的应用和用法是非常广泛而多样的,最简明直观的是二分逼近法,它和实数连续性的配合运用,是分析论证微积分学中许多重要定理和基础问题的有力工具.逐次逼近法在各学科中也有广泛应用,本文就泛函分析中不动点的有关知识加以说明,此外,介绍了逐步逼近法在微分方程及其初等数论中的重要应用.关键词:逼近; 二分逼近; 逐次逼近; 逐步逼近目录1引言 (1)2二分逼近法 (1)1.2二分逼近法的典型证明方式 (1)2.2二分逼近法在数学分析中的应用 (2)3逐次逼近法以及在泛函分析中的应用 (3)4逐步逼近法 (5)1.4逐步逼近法在微分方程中的应用 (5)2.4一次同余式组的逐步逼近解法 (9)1.2.4用剩余定理求解的方法 (9)2.2.4逐步逼近法 (10)3.2.4两种解法计算量的比较 (12)参考文献 (13)1 引言逼近法是数学分析中贯穿全局的基本方法,它遵循着这样一个简朴实用的原则,以简御繁,以“已知”去研讨“未知”.作为一个分析论证方法,它是这个原则的具体化、数量化.譬如,任一个无理数,都可用有理数去无限逼近它,使误差可以到任意小.又如,数列{}n a 以A 为极限,其意即为用n a a a ,,,21 去逐步逼近常数A.再如,从几何上看定积分,曲边梯形的面积是通过一系列阶梯形逼近计算而得到的.可见,数学的研讨分析中普遍地渗透着逼近法的思想.不只如此,在泛函分析、微分方程和初等数论中也有非常广泛的应用, .以下主要就二分逼近法、逐次逼近法和逐步逼近法在不同学科中的应用加以论述.2 二分逼近法1.2 二分逼近法的典型证明方式二分逼近法在定理或问题分析论证中的思想是:欲找一个具有某一性质p 的实数,则可以从一个具有相应性质*P 的闭区间出发,逐次二等分,得到一个始终保持*P 的闭区间列,以这些闭区间的两个端点值分别形成左右两个夹逼数列,将具有性质p 的实数“夹逼”出来,而实数的连续性则确保了此数的存在,使这种逼近不至于“逼”空.现将二分逼近法典型证明方式说明于下1)确定一个闭区间使其具有某一性质*P .(*P 由性质p 决定)2)逐次二等分得到闭区间列[]{}m m B A ,,则所有的闭区间都具有性质*P ,且1221B B B A A A m m ≤≤≤≤≤≤≤≤(亦可写成:[][][][] ⊃⊃⊃⊃⊃m m B A B A B A B A ,,,,332211) 从而得到左右夹逼数列{}m A 与{}m B 满足:()021l i m l i m =-=-∞→∞→m m m m m m m A B A B 3)由实数的连续性得到实数k ,属于所有的闭区间,使k 满足:()i 具有性质p .这是由于k 属于所有的闭区间,被{}m A 与{}m B 左右夹逼,不妨形象的表示为:m m B k A ←→ ∞→m因而, k 的任意小的邻域内()εε+-k k ,都包含[]m m B A ,(m 足够大),于是()εε+-k k ,具有*P ,故k 具有性质p .()ii k 是唯一的.事实上,若k 不唯一,设k k '≠,且满足m m B k A ←→,m m B k A ←'→,则对任何m , m m A k B k >'<,,得到m m A B k k -≤'-,而()0lim =-∞→m m m A B ,故k k '=,即k 唯一.2.2 二分逼近法在数学分析中的应用例1 设在[]b a ,上连续的单调递增函数()x f 满足:b b f a a f <>)(,)(,则存在),(b a c ∈,使()c c f =.证明 令11,B b A a ==,将[]11,B A 二等分,分点为211B A +, 若221111B A B A f +=⎪⎭⎫ ⎝⎛+,则命题结论成立. 若221111B A B A f +>⎪⎭⎫ ⎝⎛+,则取[]22111,,2B A B B A =⎥⎦⎤⎢⎣⎡+, 若221111B A B A f +<⎪⎭⎫ ⎝⎛+,则取[]22111,2,B A B A A =⎥⎦⎤⎢⎣⎡+. 逐次二等分区间,一般的对于区间[]m m B A ,,若22m m m m B A B A f +=⎪⎭⎫ ⎝⎛+,则命题结论成立; 否则,若22m m m m B A B A f +>⎪⎭⎫ ⎝⎛+,则取[]11,,2++=⎥⎦⎤⎢⎣⎡+m m m m m B A B B A , 若22m m m m B A B A f +<⎪⎭⎫ ⎝⎛+,则取[]11,2,++=⎥⎦⎤⎢⎣⎡+m m m m m B A B A A . 从而得到两个夹逼数列{}m A 与{}m B 满足:()i1221B B B A A A m m ≤≤≤≤≤≤≤≤且 ()0l i m=-∞→m m m A B()ii ()()m m m m B B f A A f <>,于是可知存在实数c ,使()∞→←→m B c A m m ,由于()x f 单增,所以()()()m m B f c f A f ≤≤,即:()()()m m m m B B f c f A f A <≤≤< 令()c c f m =∞→,上述证明中,所求的数c 具有的性质p :()c c f =,而构造的闭区间[]{}m m B A ,具有性 质*P ,则确定为()()m m m m B B f A A f <>,,从而得到夹逼数列{},m A {}m B 将c “逼出”.在不同问题的论证中性质p 与相应的*P 是具体的,在不同的情况下,必须紧扣实 际加以明确,这是正确应用二分逼近法成功论证的关键.二分逼近法是微积分学中许多基本定理证明的重要工具,是逼近法的最简明的形式之一,然而,逼近法的应用却更为广泛,在泛函分析,微分方程等数学分支中也都是一种有效的论证方法.下面通过介绍另一种逼近法来进一步体会这种方法的思想.3 逐次逼近法以及在泛函分析中的应用逐次逼近法,是从一个粗糙的近似解出发,使用某个固定公式逐次加工,使之逐步精确化以得到满足精度要求的近似解.例2 在完备度量空间中,压缩映射必有唯一不动点.证明 设()d X X ,=是完备的度量空间,T :X →X 是压缩映射, 即对于任意X y x ∈,,不等式()()y x d Ty Tx d ,,θ≤成立,其中θ是满足不等式10<≤θ的常数.先证映射T 有不动点.构造X 中的序列{}n x .任取X x ∈0,并令()010201201,,,x T Tx x x T Tx T Tx x Tx x n n n =======- () 2,1=n , 我们证明{}n x 是X 中的基本点列,事实上,()()()()00101021,,,,Tx x d x x d Tx Tx d x x d θθ=≤=()()()()0022112132,,,,Tx x d x x d Tx Tx d x x d θθ≤≤=……… 一般地,可以证明()()001,,Tx x d x x d n n n θ≤+ () ,3,2,1=n于是,对自然数n 与k n +,由广义三角不等式得()()()()n n k n k n k n k n n k n x x d x x d x x d x x d ,,,,1211+-+-+-++++++≤()()0021,Tx x d n k n k n θθθ+++≤-+-+()00,1Tx x d kn n θθθ--=+ ()00,1Tx x d nθθ-≤对任何给定的0>ε,只有n 充分大,则()εθθ<-01,1x x d n因而{}n x 是柯西序列.又因X 是完备的,柯西序列{}n x 是收敛的, 即存在X x ∈,使x x n n =∞→lim ,再由于T 是压缩映射,必为连续映射, 于是.在n n Tx x =+1中,令∞→n ,得到x x T =即x 是不动点.再证唯一性.若x 不唯一,设不动点x x ≠',则x x T '=', 于是存在10<≤θ使()()()x x d x T x T d x x d '='=',,,θ则必有()0,='x x d ,故x x '=,则T 有唯一的不动点.上述证明中,为找出不动点,我们利用压缩映射在完备空间中构造了一个柯西序列去逼近极限点,并证明极限点即为不动点,从而完成了将不动点“逼出”的过程.4 逐步逼近法逐步逼近法也是逼近法中较为重要的一种论证方法,在各学科中都有广泛的应用.诸如在论证常微分方程解的存在唯一性定理、二项分布的一种新的计算方法、以及在初等数论中关于一次同余式组的解法都起到非常重要的作用.此外,逐步逼近法在破解技术难题------袁隆平科技创新方面起到了举足轻重的作用.1.4 逐步逼近法在微分方程中的应用在微分方程研究中,对于一阶或高阶的,显或隐的方程组的等各类方程,能求得精确解得并不多,因而方程的近似解又十分重要的实际意义的,而解的存在和唯一则是求近似解的前提和理论基础,且论证方法还提供了如何求近似解的途径.我们不妨以一阶微分方程解的存在唯一性定理的证明再次体会逼近法的思想.由于定理证明过程较长,我们以突出逼近法思想为重点来简叙其过程. 1) 现在先简单叙述一下运用逐步逼近法证明定理的主要思想. 首先证明求微分方程的初值问题的解等价于求积分方程()dx y x f y y xx ⎰+=0,0的连续解,再证明积分方程的解的存在唯一性.任取一个连续函数()x 0ϕ代入上面积分方程右端的y ,就得到函数()()()dx x x f y x xx ⎰+=0001,ϕϕ显然()x 1ϕ也是连续函数,如果()x 1ϕ=()x 0ϕ,那么()x 0ϕ就是积分方程的解,否则,我们又把()x 1ϕ代入积分方程右端的y ,得到()()()dx x x f y x xx ⎰+=0102,ϕϕ如果()x 2ϕ=()x 1ϕ,那么()x 1ϕ就是积分方程的解,否则,我们继续这个步骤,一般地,作函数()()()dx x x f y x xx n n ⎰-+=010,ϕϕ ()1这样就得到连续函数序列()()() ,,,,10x x x n ϕϕϕ如果()()x x n n ϕϕ=+1,那么()x n ϕ就是积分方程的解.如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数()x ϕ,即()()x x n n ϕϕ=∞→lim存在,因而对()1式取极限时,就得到()()()dx x x f y x xx n n n n ⎰-∞→∞→+=010,lim lim ϕϕ()()dx x x f y xx n n ⎰-∞→+=010,lim ϕ()()dx x x f y xx ⎰+=0,0ϕ,即()()()dx x x f y x xx⎰+=0,0ϕϕ,这就是说,()x ϕ是积分方程的解.这种一步一步地求出方程的解的方法就称为逐步逼近法.2)一阶微分方程解的存在唯一性定理:设()b a f ,在R 上连续且满足利普希茨条件,则方程()y x f dxdy,= ()1 存在唯一解()x y ϕ=,定义于区间h x x ≤-0上,连续且满足初始条件()00y x =ϕ ()2这里()()y a f M Mba h Ry x ,max ,,min ,∈=⎪⎭⎫⎝⎛=证明 在区间h x x ≤-0上构造一个连续的函数序列(){}x n ϕ 以()x 0ϕ代入方程()1得 ()()x x f dxdy0,ϕ= ()3 则()()()dx x x f y x xx ⎰+=0001,ϕϕ是()3的且满足条件()2的解 再以()x 1ϕ代入方程()1得()()x x f dxdy1,ϕ= ()4则()()()dx x x f y x xx ⎰+=0102,ϕϕ是()4的且满足条件()2的解 一般地,继续这一步骤得到()()()dx x x f y x xx n n ⎰-+=010,ϕϕ是方程()()x x f dxdyn 1,-=ϕ 的且满足条件()2的解,从而得到函数序列(){}x n ϕ,可以证明该序列存在极限函数()x ϕ,从而有:()()()dx x x f y x xx ⎰+=0,0ϕϕ是()1的且满足条件()2的解.虽然我们对定理证明只给给予一个简单的叙述,但还是可以体会出逼近法思想在证明中所发挥的关键作用,然而逼近法的作用不仅仅是证明,它还提供了求近似解的途径.以下通过几个实例来体会逼近法在近似计算中的应用.例3 用皮卡逼近法求微分方程1=dxdy过点()1,1的解. 解 这里()1,1,1,00===y x y x f()()()⎰⎰+=+=-xx x n n d d f y x 11011,0ςςςϕςϕ ()1(),10=x ϕ代入()1 可得()x x =1ϕ()()x x 01ϕϕ≠,把()x 1ϕ代入()1可得 ()x x =2ϕ,故()()x x 12ϕϕ=,由逐步逼近法 ()x x =1ϕ是微分方程1=dxdy,过点()1,1的解. 例4 用皮卡逼近法求微分方程y dxdy=过点()1,0的解 解 这里()1,0,,00===y x y y x f()()()()⎰⎰--+=+=xn x x n n d d f y x 01101,0ςςϕςςϕςϕ ()1(),10=x ϕ代入()1 可得()x d x x+=+=⎰1101ςϕ()1!21)1(1202++=++=⎰x x d x xςςϕ()1!21!31)1!21(123203+++=+++=⎰x x x d x x ςςςϕ……由数学归纳法可得:()().1!11!11!11+++-+=-x x n x n x n n n ϕ显然()()x x n n ϕϕ≠+1 () ,3,2,1=n∑∞=0!n n n x 的n 项部分和函数为()x nϕ,可得幂级数∑∞=0!n n n x 的和函数是xe 在()+∞∞-,上 ()xn n e x =∴∞→ϕlim ()+∞<<∞-x由逐步逼近法有x e y = 是微分方程y dxdy=,过点()1,0的解. 例5 对于无法用初等积分法求通解的黎卡提方程22y x dxdy+=,我们可用逼近法求出满足初始条件()000=ϕ的近似解.解 ()00=x ϕ()()()33202021x dx x dx x x x xx==+=⎰⎰ϕϕ()()633)9()(730622122x x dx x x dx x x x xx+=+=+=⎰⎰ϕϕ ()()dxx x x x dx x x x xx⎰⎰+++=+=01410622223)396918929()(ϕϕ5953520792633151173x x x x +++=随着求解次数的增加,近似解()x n ϕ与真正解将越来越接近,因此在允许误差范围内可求出令人满意的解.上面我们结合不同数学分支中的实例,来体会逼近法的思想,尽管构造逼近序列的元素与方法各不相同,但其指导思想却是共同的,那就是用“已知的”、“简”的序列去逼近“未知的”“繁”的,从而达到我们的认识目的.正确领会逼近的思想,提高以逼近思想为指导的分析论证能力,将有助于我们深化对数学知识的认识,也将有助于我们提高数学分析运用能力和解决问题的能力.2.4 一次同余式组的逐步逼近解法用剩余定理求解一次同余式组是一种传统的方法,其缺点是兼容性差,计算量大.笔者将工程实践中的逐步逼近法引入传统的代数理论中,从而使一次同余式组的求解过程的兼容性大大增强,即一次同余式组增加几个条件时只需增加少量计算,而不必像对待一个新问题那样从头算起.设k m m m ,,,21 为两两互质的正整数,k b b b ,,,21 为整数.即求一次同余式组 1b x ≡ ()1mod m2b x ≡ ()2m o d m ()1k b x ≡ ()k mm o d的通解.它的最小正整数解,定义为一次同余式组()1的解.1.2.4 用剩余定理求解的方法令()k j m M M m M j j ki j ,2,1,1===∏=由于k m m m ,,,21 两两互质,故j M 与j m 也互质,故存在2个正整数j n 和()k j N j ,,2,1 =,满足1=+j j j j N M n m ()2 故j j j j j j j n m b b N M b -=从而有()∑∑∑+=-==+-+=kj i iiij j j jj i iiik i iiiNM b n m b bN M b N M b 1111于是j ki iiib NM b ≡∑=1()j m m o d对于任意整数l 有∏∑==+=ki i ki i i i m l N M b x 11()3此为式()1的通解.若∑==ki i i i N M b x 1()M m o d 为通解中的最小正整数解则为式()1的解,若同余式组()1增加了第1+k 个式子,则上述计算过程都需要重复计算,计算量较大.2.2.4 逐步逼近法)1 逐步逼近解法的构思设想一次同余式组i b x ≡ )(m o d i mk i ,,2,1 = 为k 个条件,称i b x ≡ ()i m m o d 为第i 个条件. 显然,对于任意整数1l ,111m l b x += ()4 满足第1个条件1b x ≡ )(m o d 1m逐步逼近法的构思是,选择适当的整数1l ,使式()4在满足第1个条件的同时满足第2个条件.如果存在一个整数1l 使式()4同时满足第1,第2个条件,则进一步假设211111m m l m l b x ++= ()5 对于任意整数2l ,显然式()5同时满足第1,第2个条件,只要适当选择整数2l ,使之再满足第3个条件,……,如此一步一步逼近,直至选择适当121,,,-k l l l ,使∏-=-++++=111212111k i i k m l m m l m l b x ()6满足所有k 个条件,则通解为∏∏=-=-+++++=ki ik i i k m l m l m m l m l b x 1111212111式中l 为任意整数.是()6如果为最小整数解,则为解.)2 逐步逼近解法的理论证明。

一般二次曲线的化简与分类

一般二次曲线的化简与分类
比较方程系数,得平移变换下曲线方程系数的变化规律: (1) 二次项系数不变; (2) 一次项系数变为F1(x0,y0), F2(x0,y0); (3) 常数项变为F(x0,y0).
若取新坐标原点O (x0,y0)满足方程
• 则在新坐标系下,方程中将无一次项,曲线对称于原点,点 (x0,y0)就是曲线的对称中心。如果对称中心是唯一的,称为 曲线的中心。此时方程称为中心方程。
2、作旋转变换,消去交叉项,同时消去1个二次项; 3、对转轴后的方程“配方”,先配二次项,再配一次项; 4、令“配方”后的括号内分别为x''和 y'' (相当于作平移变 换),得到曲线的标准方程。 5、将平移变换代入旋转变换,得到直角坐标变换公式。
6、作出新旧坐标系O-xy,O'-x'y'和O''-x''y'' ,在新坐标系下
注:本题转轴时若取tanθ=-2,
则可得cos =1/51/2,sin = -2/51/2 ,所得的转轴公式是
得到的标准方程为
,
图形相对于原坐标系的位置不变。此时Ox轴的正向恰好是 图中y 轴的反向。
例 化简二次曲线方程x2-3xy+y2+10x-10y+21=0,写出坐标变换 公式并作出它的图形.
将移轴公式代入转轴公式,得坐标变换公式为
x
1 (x 2 y) 1 ,
5
5
y
1
(2x y) 2 .
作图要点5 :坐标系O5-xy旋转角tanθ=2成O'-x'y',再把坐标系
O'-x'y' 平移,得到O"-x"y".在新坐标系O"-x"y" 中可根据抛物

二次曲线方程的化简与分类

二次曲线方程的化简与分类

二次曲线方程是指以二次项和常数项的多项式形式构成的曲线。

它的一般模式是,形式为$ax^2+bx+c=0$。

这里$a,b,c$是实数或复数,且$a≠0$。

一般而言,根据$ax^2+bx+c=0$中存在二次项次级导数存在不变加(减)点,这样的曲线叫做二次曲线。

根据方程的性质,可以将二次曲线分为以下几类:(1)抛物线:当$a>0$时,$ax^2+bx+c=0$为一抛物线,其两根为$x=-\frac{b}{2a}±\sqrt{\frac{b^2-4ac}{4a^2}}$,抛物线两端形状分别为拱顶和顶点,且$x_1<x_2$;(2)拉普拉斯曲线:当$a<0$时,$ax^2+bx+c=0$为一拉普拉斯曲线,其根绝无,拉普拉斯曲线两端形状分别为顶点和拱底,拉普拉斯曲线不具有实根;(3)直线:当$a=0$时,$bx+c=0$成立,这是一条直线,其根为$x=-\frac{c}{b}$,直线有一定的斜率;(4)静止:当$a,b,c$均为0时,$ax^2+bx+c=0$成立,这是一条不动线,一般由于不符合实际需求,所以不会出现。

二次曲线方程的化简仅到这四类,不能太具体。

而根据方程$ax^2+bx+c=0$的模式,可以将方程化简为$y=ax^2+bx+c$,并通过幂级数法作变换,得出其他分类,如可采用二次型$y=a(x-h)^2+k$,或一般型$y=ax^2+bxy+cy^2+dx+ey+f$,或极坐标$(r,\theta )=acos2\theta+bsin2\theta +c$。

总而言之,二次曲线方程是以二次项和常数项的多项式形式构成的曲线,可分为抛物线、拉普拉斯曲线、直线和静止;而方程的化简还可采用二次型、一般型和极坐标等方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A2 x A1x
B2 y
A22 B1 y
C2z
B2 2 C1z
A2 A22 B22
cos ,
A12B2B12 A22 B22
sin ,
(﹡)
A1 A12 B12
sin

B1 A12 B12
cos .
(*)的符号选取要使得第一式右端 x 的系数与第二式 右端 y 的系数相等,即这两项的系数是同号的.
定理2 通过适当选取坐标系,二次曲线的方
程总可以写成下面九种标准方程的一种形式:
[1]
x2 a2
y2 b2
1 (椭圆)
张 之 正 解析几何
Mathematical Science College
2.二次曲线方程的化简与分类
数学科学学院
[2]
x2 a2
y2 b2
1 (虚椭圆)
[3]
x2 a2
y2 b2
张 之 正 解析几何
Mathematical Science College
1. 平面直角坐标变换
数学科学学院
因为 x 是点 M x, y 到 Oy轴的距离,也就是 M到
l2 的距离,因此
同理
x A2 x B2 y C2 A22 B22
y A1x B1 Mathematical Science College
2.二次曲线方程的化简与分类
数学科学学院
利用转轴来消去二次曲线方程的 项,有一个几何
意义,就是把坐标轴旋转到与二次曲线的主方向平行的 位置,这是因为如果二次曲线的特征根 确定的主方向为
,那么
tan Y a12 a11 ,
2. 转轴:
数学科学学院
x xcos ysin
y
x
sin
y
cos
转轴变换规律:
1°二次项系数一般要改变.
新方程的二次系数仅与原方程的二次项系数及旋转
角有关,而与一次项系数值及常数项无关.
2°一次项系一般要改变.
3°常数项不变
张 之 正 解析几何
Mathematical Science College
2.二次曲线方程的化简和分类
数学科学学院
定理1 适当选取坐标系,二次曲线的方程总可 以化成下列三个简化方程中的一个:
( I ) a11x2 a22 y2 a33 0, a11a22 0; ( II ) a22 y2 2a13x 0, a22a13 0; (III ) a22 y2 a33 0, a22 0.
2.二次曲线方程的化简与分类
数学科学学院
在二次曲线方程(1)里, 如 果 a12 0 , 我 们 往 往 使 用 转 轴 使 新 方 程 中 的
a12 0 .为此,取 ,使得
a12 a22 a11sin cos a12 cos2 sin2 0 ,
即 a22 a11sin 2 2a12 cos 2 0 ,
x y
A2 x A1x
B2 y C2 z
A22 B22 B1 y C1z
(﹡)
A12 B12
张 之 正 解析几何
Mathematical Science College
1. 平面直角坐标变换
数学科学学院
为了使新坐标系仍然是右手坐标系,下面决定
(*)中的符号:
x y
2.二次曲线方程的化简与分类
设二次曲线的方程为
数学科学学院
F x, y a11x2 2a12xy a22 y2 2a13x 2a23y a33 0 (1)
1. 移轴: 移轴变换规律:
x y
x y
x0 y0
1°二次项系数不变;
2°一次项系数变为 2F1 x0, y0 与 2F2 x0 , y0 ; 3°常数项变为 F x0, y0 .
如果是中心曲线,坐标原点与曲线的中心重合; 如果是无心曲线,坐标原点与曲线的顶点重合; 如果是线心曲线,坐标原点可以与曲线的任何一个中 心重合.因此,二次曲线方程的化简,只要先求出曲线(1) 的主直径,然后以它作新坐标轴,作坐标变换即可.
张 之 正 解析几何
Mathematical Science College
当 x0 , y0 为二次曲线(1)的中心时,有 F1x0 , y0 0 ,
F2x0 , y0 0. 故当二次曲线(1)有中心时,作移轴,使原点
与二次曲线的中心重合,则在新坐标系下二次曲线的新方程 中一次项消失.
张 之 正 解析几何
Mathematical Science College
2.二次曲线方程的化简与分类
1 (双曲线)
[4]
x2 a2
y2 b2
0 (点或相交于实点的共轭虚直线)
[5]
x2 a2
y2 b2
0 (两相交直线)
[6] y2 2 px (抛物线)
[7] y2 a2 (两平行直线)
[8] y2 a2 (两平行共轭虚直线)
[9] y2 0 (两重合直线)
张 之 正 解析几何
Mathematical Science College
(2)
(其中α为坐标轴的旋转角)
x
逆变换公式:
y
x cos x sin
y sin y cos
x0 y0
(3)
x y
x cos y x sin
sin y cos
x0 cos y0 x0 sin
sin
y0 cos
(4)
张 之 正 解析几何
Mathematical Science College
1. 平面直角坐标变换
数学科学学院
2) 设在直角坐标系 xOy 里给定了两条相互垂直的直线
l1 : A1x B1 y C1 0
l2:A2 x B2 y C2 z 0
其中 A1 A2 B1B2 0 .如果取 l1 为新坐标系中 的横轴Ox ,而 l2 为纵轴 Oy ,并设平面上任意点 M 的 旧坐标为与新坐标分别为 x, y 与 x, y .
张 之 正 解析几何
Mathematical Science College
例题
数学科学学院
例1 已知两垂直的直线 l1 : 2x y 3 0 与 l2 : x 2 y 2 0,
取 l1为 Ox 轴,l2为 Oy 轴,求坐标变换公式.
张 之 正 解析几何
Mathematical Science College
cot 2 a11 a22

2a12
张 之 正 解析几何
Mathematical Science College
例题
数学科学学院
例2 化简二次曲线方程x2 4xy 4 y2 12x y 1 0
并画出它的图形.
例3 化简二次曲线方程 x2 xy y2 2x 4 y 0 .
并画出它的图形.
§5.6 二次曲线的方程化简与分类
数学科学学院
1. 平面直角坐标变换
1)一般坐标变换
移轴公式:
x
y
x y
x0 y0
(1)

x y
x y
x0 y0
(1)
一般坐标变换公式:
转轴公式:
x y
x x
cos sin
y sin y cos
(2)

x x cos y sin y x sin y cos
X a22
a12
2

cot 2
1 tan2
1
a12 a22
a11 a22
2 tan
2a12
2a12

a22
张 之 正 解析几何
Mathematical Science College
2.二次曲线方程的化简与分类
数学科学学院
因此,通过转轴与移轴来化简二次曲线方程的方法, 实际上是把坐标轴变换到与二次曲线的主直径(即对称轴) 重合的位置.
相关文档
最新文档