数学(选修1-1)圆锥曲线单元综合练习卷(文)
上海上海中学东校选修1-1第二章《圆锥曲线与方程》测试题(答案解析)

一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D .22.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .53.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .44.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1B C .2D .46.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(1,C .5,43⎡⎤⎢⎥⎣⎦D .7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D8.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ的最小值是( )A .12B .27C .23D9.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞10.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A.7B.7C.7D.711.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .812.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆上,则双曲线的离心率的值为( )A.1BC.1D二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________. 14.已知点()1,2A 在抛物线()2:20C y px p =>上,过点()2,2B -的直线交抛物线C 于P ,Q 两点,若直线AP ,AQ 的斜率分别为1k ,2k ,则12k k ⨯等于___________. 15.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.16.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.17.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF △的面积为212p (O 为坐标原点). (1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.22.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.23.已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=.(1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.24.已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭,离心率为3(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值.25.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别是12(1,0),(1,0)F F -,过点1F 的直线l 与椭圆相交于AB 、两点,且2ABF 的周长为42 (1)求椭圆C 的标准方程;(2)在椭圆中有这样一个结论“已知000(,)P x y 在椭圆22221x y a b +=外 ,过0P 作椭圆的两条切线,切点分别为12,P P ,则直线12PP 的方程为00221x x y ya b+=”.现已知M 是圆223x y +=上的任意点,,MA MB 分别与椭圆C 相切于,A B ,求OAB 面积的取值范围.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6cea . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.3.C解析:C 【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a,再由双曲线的离心率公式e =即可求得双曲线的离心率. 【详解】设双曲线的渐近线方程为y kx =,其中bk a=±, 圆()2239x y -+=的圆心为()3,0C ,半径为3r =,圆心C 到直线y kx =的距离为d =,2AB =,由勾股定理可得2222AB r d ⎛⎫=+ ⎪⎝⎭,即2219+=,解得k =±ba∴=因此,该双曲线的离心率为3c e a ====. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y px p y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N k k ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ==,∵AB =,∴222(1)p k k += 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =, 故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 2m 2 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.6.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).7. B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③. ②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=c a x c,于是()22222200233-=-=b a c y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以51022e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.8.B解析:B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:在椭圆22:11612x y C +=中,4a =,23b =222c a b -,圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤,由圆的几何性质可得1PQ PT QT PT ≤+=+, 所以,899211111617PF PF PT PQPT PT PT -≥==-≥-=++++. 故选:B. 【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.9.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤.故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.10.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b+=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.e ∴===故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.11.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty ay px=+⎧⎨=⎩,整理得2220y pty pa --=,所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.12.A解析:A 【分析】先由题意求出以AB 为直径的圆的半径为2b r a=和圆心坐标得到圆的方程,然后代入左焦点坐标,利用222c a b =+化简后可得答案. 【详解】将x c =代入22221x y a b-=可得2by a =±,所以以AB 为直径的圆的半径为2b r a=,圆心为(),0c ,圆的方程为()4222ab xc y -+=,左焦点为(),0c -,因为双曲线的左焦点在圆上,所以()2240b c ac +--=,整理得242460a c c c +=-,即42610e e -+=,解得23e =+23e =-所以1e =+ 故选:A . 【点睛】关键点点睛:本题考查直线和双曲线的位置关系、点和圆的位置关系,关键点是先求出以AB 为直径的圆的半径,再根据双曲线的左焦点在圆上,得到所要求的,,a b c 等量关系即可,考查了学生的运算求解能力,逻辑推理能力.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25,58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB 的面积和短轴长得出a ,b ,c 的值,求得 1PF 的范围,再通分化简1211PF PF +为关于1PF 的函数,利用二次函数求得最值,即得取值范围. 【详解】由已知得28b =,故4b =,∵1F AB 的面积为4,∴()142a cb -=,∴2ac -=, 又()()22216a c a c a c b -=-+==,故8a c +=, ∴5a =,3c =, ∴12121211PF PF PF PF PF PF ++=()()()221111111210101021010525a PF a PF PF PF PF PF PF ====---+--+,又而1a c PF a c -≤≤+,即128PF ≤≤, ∴当15PF =时,()21525PF --+最大,为25;当12=PF 或8时,()21525PF --+最小,为16,即()211652525PF ≤--+≤,∴121011102516PF PF ≤+≤,即12211558PF PF ≤+≤. 即1211PF PF +的取值范围为25,58⎡⎤⎢⎥⎣⎦. 故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】 关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c -≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】由题意将的坐标代入抛物线的方程可得的值进而求出抛物线的方程设出直线的方程并与抛物线方程联立求出两根之和及两根之积求出直线的斜率之积化简可得定值【详解】由题意将的坐标代入抛物线的方程可得解得所 解析:4-【分析】由题意将()1,2A 的坐标代入抛物线的方程可得p 的值,进而求出抛物线的方程,设出直线PQ 的方程并与抛物线方程联立求出两根之和及两根之积,求出直线AP ,AQ 的斜率之积,化简可得定值4-. 【详解】由题意将()1,2A 的坐标代入抛物线的方程可得42p =,解得2p =, 所以抛物线的方程为24y x =; 由题意可得直线PQ 的斜率不为0,所以设直线PQ 的方程为:(2)2x m y =++,设1(P x ,1)y ,2(Q x ,2)y ,联立直线与抛物线的方程:2(2)24x m y y x =++⎧⎨=⎩,整理可得:24880y my m ---=,则124y y m +=,1288y y m =--, 由题意可得1212122212122222111144y y y y k k y y x x ----=⋅=⋅---- 1212121616164(2)(2)2()488244y y y y y y m m ====-+++++--+⨯+,所以124k k =-. 故答案为:4-. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.15.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解解析:2【分析】 设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t=,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.16.4【分析】设出的坐标写出坐标满足的关系式根据题意写出直线的方程求出的横坐标计算得出的值【详解】解:设则则所以直线的方程为令可得同理有直线的方程为令可得则故答案为:【点睛】圆锥曲线中求定值问题常见的方解析:4 【分析】设出,,M N P 的坐标,写出坐标满足的关系式.根据题意,写出直线PM ,PN 的方程,求出,A B 的横坐标,计算得出mn 的值. 【详解】解:设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭ ()2222414a c a c -==-故答案为:4 【点睛】圆锥曲线中求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.17.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故或2) 【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以e ===). 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c+=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:33⎛ ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+, 联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223b y y b x x +=-+=,由()221612220b b ∆=-->,可得b <,∴120223x x b x +==,12023y y by +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:⎛ ⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解.20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)24y x =;(2)114y x =-+. 【分析】(1)分析题意,列方程组,用待定系数法求抛物线C 的方程;(2)用“设而不求法”联立方程组,把OM ON ⊥转化为12120x x y y +=,求出斜率k ,得到直线方程 【详解】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =. (2)设()11,M x y ,()22,N x y . 联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=. 由题意可知0k ≠,则12224k x x k -+=-,1221x x k =. 因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=, 则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-. 故直线l 的方程为114y x =-+. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.22.(1)22132x y +=;(2)2y x =+或2y =+.【分析】(1)由离心率公式、将点32⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出S ==,求出k 的值得出直线l 的方程.【详解】解:(1)因为椭圆的离心率为3,所以222213b a =-=⎝⎭.①又因为椭圆经过点3,22⎛⎝⎭,所以有2291142a b+=.② 联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y +=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以2k =±或k = 所以直线l 的方程为22y x =±+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.23.(1)22121x y +=;(2)证明见解析,(-2,0).【分析】(1)根据离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=,可用待定系数法求椭圆的标准方程;(2)先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0).【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b +=由题意可得2222221(,)(,)0c a x y x c y x c y b c a⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+ 则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=, 所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线, 所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mkk m k m k k--+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0). 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)22194x y +=;(2)最大值为【分析】(1)将P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点P ⎛ ⎝⎭, 所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛⎫- ⎪ ⎪⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)2212x y +=;(2)2[3.【分析】(1)由焦点三角形的周长得a 值,结合焦点坐标可求得b ,从而得椭圆方程; (2)设00(,)M x y ,1122(,),(,)A x y B x y ,由已知得切线AB 方程,与椭圆方程联立消去y 得x 的二次方程,应用韦达定理得1212,x x x x +,由弦长公式求得弦长AB ,再求得原点到直线AB 的距离d ,,从而可得12OAB S AB d =△,用换元法(设t =得OAB S的范围,再求出00y =时三角形面积,从而可得结论.【详解】(1)由已知1c =,4a =,所以1a b ==所以椭圆C 的标准方程为2212x y +=(2)设00(,)M x y ,1122(,),(,)A x y B x y ,22003x y +=,由已知可得直线AB 方程为0012x xy y += 当00y ≠时,将直线AB 方程与椭圆C 的方程联立,消去y 整理得222000(3)4440y x x x y +--+=.所以0122043x x x y +=+,21220443y x x y -=+ .因此0||AB == 又原点O 到直线AB的距离d ==所以01||2OABS AB d ∆=⋅=.令(1,2]t =,得到21222(,2232OAB tS t t t∆=⋅=⋅∈++当00y =时,易得23OAB S ∆=. 综上:OAB面积的取值范围为2[,32. 【点睛】方法点睛:本题考查求椭圆方程,考查直线与椭圆相交中的三角形面积问题,解题方法是设而不求的思想方法,即直线与椭圆交点为1122(,),(,)x y x y ,直线方程与椭圆方程联立消元后应用韦达定理得1212,x x x x +,由此可计算弦长,然后求出原点到直线的距离后可计算三角形面积.这样可把面积用一个参数表示,求出取值范围. 26.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程. 【详解】(1)由抛物线()2:20E y px p =>可得准线方程为:2p x =-, 由抛物线的定义可得:342p ⎛⎫--= ⎪⎝⎭,解得:2p =, 所以抛物线E 的方程为24y x =, (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式相减可得()2212124y y x x -=-, 所以()()()1212124y y y y x x -+=-,因为线段AB 中点的纵坐标为1-,所以122y y +=-, 所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--, 即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程.。
(2021年整理)高中数学人教版选修1-1第二章圆锥曲线与方程单元测试卷(A)

高中数学人教版选修1-1第二章圆锥曲线与方程单元测试卷(A) 高中数学人教版选修1-1第二章圆锥曲线与方程单元测试卷(A)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学人教版选修1-1第二章圆锥曲线与方程单元测试卷(A))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学人教版选修1-1第二章圆锥曲线与方程单元测试卷(A)的全部内容。
珍贵文档第二章圆锥曲线与方程单元测试卷(A)时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.顶点在原点,且过点(-4,4)的抛物线的标准方程是()A.y2=-4x B.x2=4yC.y2=-4x或x2=4y D.y2=4x或x2=-4y2.已知两定点F1(5,0),F2(-5,0),曲线上的点P到F1,F2的距离之差的绝对值是6,则该曲线的方程为()A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D.错误!-错误!=13.3<m<5是方程错误!+错误!=1表示的图形为( )A.充分但非必要条件B.必要但非充分C.充分必要条件D.既非充分又非必要条件4.(2015·全国卷Ⅰ文)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6珍贵文档C.9 D.125.(2015·福州月考)已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线的方程为3x±4y=0,则该双曲线的标准方程为( )A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D.错误!-错误!=16.若直线mx+ny=4与圆O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆错误!+错误!=1的交点个数为( )A.至多一个B.2C.1 D.07.已知直线l过抛物线C的焦点,且与C 的对称轴垂直,l与C交于A、B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24C.36 D.488.(2015·广东理)已知双曲线C:错误!-错误!=1的离心率e=54,且其右焦点为F2(5,0),则双曲线C的方程为()A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D.错误!-错误!=19. (2015·吉林省实验中学一模)如图,F1、F2是双曲线C1:x2-错误!=1与椭圆C2的公共焦点,点A是C1、C2在第一象限的公共点,若|F1F2|=|F1A|,则C2的离心率是( )A.错误!B.错误!珍贵文档C.错误!或错误!D.错误!10.过双曲线C:错误!-错误!=1的右顶点作x 轴的垂线,与C的一条渐近线相交于A.若以C 的右焦点为圆心、半径为4的圆经过A、O两点(O为坐标原点),则双曲线C的方程为( )A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D.错误!-错误!=111.F是抛物线y2=2x的焦点,P是抛物线上任一点,A(3,1)是定点,则|PF|+|PA|的最小值是()A.2 B.7 2C.3 D.错误!12。
天津外国语大学附属外国语学校选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)

一、选择题1.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B .2C .322D .322.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤ 3.如图所示,一隧道内设有双行线公路,其截面由一个长方形的三条边和抛物线的一段构成.为保证安全,要求行驶车辆顶部(假设车顶为平顶)与隧道顶部在竖直方向上高度之差至少要有0.6m ,已知行车道总宽度7m AB =,则车辆通过隧道的限制高度为( )A .3.90mB .3.95mC .4.00mD .4.05m4.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1165.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( ) A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤ ⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦ 6.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( ) A 3B 10C 5D 107.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<8.已知直线:(1)(2)230l a x a y a +++--=经过定点P ,与抛物线24x y =交于,A B 两点,且点P 为弦AB 的中点,则直线l 的方程为( ) A .230x y +-= B .210x y -+= C .210x y -+=D .20x y +-=9.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A B C 1 D 111.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)14.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______15.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.16.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.17.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且3||3PF =,则双曲线C 的标准方程为_________. 18.已知双曲线M :22221x y a b-=(0a >,0b >),ABC 为等边三角形.若点A 在y轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC 的中位线,则双曲线M 的离心率为________.19.如图,两个离心率相等的椭圆1Γ与椭圆2Γ,焦点均在x 轴上A ,B 分别为椭圆2Γ的右顶点和上顶点,过A ,B 分别作椭圆1Γ的切线AC ,BD ,若AC 与BD 的斜率之积为57-,则椭圆1Γ的离心率为__________.20.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.三、解答题21.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,若点P 在C 上,点E 在l 上,且PEF 是边长为4的正三角形. (1)求C 的方程;(2)过F 作直线m ,交抛物线C 于A ,B 两点,若直线AB 中点的纵坐标为1-,求直线m 的方程.22.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为离心率为2. (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.23.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心,12MF F△ (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程.24.已知四点1234,1,,(1,1),(0,1)P P P P ⎛⎛- ⎝⎭⎝⎭中恰有三点在椭圆2222:1x y C a b+=上,其中0a b >>. (1)求,a b 的值;(2)若直线l 过定点(2,0)M 且与椭圆C 交于,A B 两点(l 与x 轴不重合),点B 关于x 轴的对称点为点D .探究:直线AD 是否过定点,若是,求出该定点的坐标;若不是,请说明理由.25.已知点M 是圆222:(2)(2)C x y r r -+=>与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使弦MN 的中点恰好落在y 轴上. (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,延长NO 交直线2x =-于点A ,延长NC 交曲线E 于点B ,曲线E 在点B 处的切线交y 轴于点D ,求证:AD BD ⊥.26.已知点1F 、2F 分别是椭圆C的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=.(1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=, 解得12x =,1y ∴=,∴直线AB=∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OF y =+=+=⨯⨯⨯=. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.2.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x ,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.3.B解析:B 【分析】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,求出a 的值,将 3.5x =代入抛物线方程,求出y 的值,即可得解. 【详解】设抛物线的方程为2x ay =,可知点()5,5-在该抛物线上,则255a -=,解得5a =-, 所以,抛物线的方程为25x y =-,将 3.5x =代入抛物线方程得25 3.5y -=,解得 2.45y =-,因此,车辆通过隧道的限制高度为()7 2.450.6 3.95m --=. 故选:B. 【点睛】关键点点睛:本题考查抛物线的实际应用,设出抛物线的方程,分析出抛物线上的点的坐标,求出抛物线的方程是解题的关键,同时要注意车辆限高的意义.4.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+ ⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 5.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解.【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k ++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++ 且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r,01x =,1cos 2MAD ∠=,3MAD π∠=, 所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤ ⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.6.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=, 即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以e ==故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.7.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30b a >,再由公式e =心率的取值范围.【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=, 所以,双曲线的渐近线by x a =的倾斜角α满足30α>,则123tan b PF F a >∠=, 因此,该双曲线的离心率为222222231c c a b b e a a a a +⎛⎫====+> ⎪⎝⎭故选:B. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.8.B解析:B 【分析】利用点差法求出直线斜率,即可得出直线方程. 【详解】由直线:(1)(2)230l a x a y a +++--=得(2)(23)0a x y x y +-++-= 所以20230x y x y +-=⎧⎨+-=⎩ 解得11x y =⎧⎨=⎩则()1,1P设1122(,),(,)A x y B x y ,则21122244x y x y ⎧=⎨=⎩,两式相减得121212()()4()x x x x y y -+=-, 即121212142AB y y x x k x x -+===-, 则直线方程为11(x 1)2y -=-,即210x y -+=. 故选:B. 【点睛】方法点晴:点差法是求解中点弦有关问题的常用方法.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍) 当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭,所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =,设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.11.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案. 【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y ,由题意得22x ty ay px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率c e a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.14.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y ax a =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得==d令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a ,当对称轴24102a a -≤时,在0t =处取得最小值,此时d 的最小值为=d , 当对称轴24102a a->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.15.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1 17【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=, 故双曲线C 的离心率22117c b e a a==+= 17【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.16.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:825-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tanb b BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b bBAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:82-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.17.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,23b a =,结合222c a b =+,整理求得结果.【详解】根据题意,可知23b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.18.【分析】可根据实轴为的中位线得出再根据对称性及为等边三角形表示出的坐标代入双曲线方程得到关系式求解离心率【详解】实轴长为则关于轴对称不妨设在双曲线左支则其横坐标为根据为等边三角形可得故将的坐标代入双【分析】可根据实轴为ABC 的中位线,得出BC ,再根据对称性及ABC 为等边三角形,表示出B 的坐标,代入双曲线方程,得到,a b 关系式求解离心率. 【详解】实轴长为2a ,则4BC a =,BC 关于y 轴对称不妨设B 在双曲线左支,则其横坐标为2a ,根据ABC 为等边三角形,60ABC ∠=可得B y =故()2,B a ,()2,C a -,将B 的坐标代入双曲线方程有2222431a a a b-=,则a b =,则c =故e =【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).19.【分析】由已知设圆的方程为椭圆的方程为再设出直线AC 的方程为直线BD 的方程为分别与椭圆的方程为联立整理由直线与椭圆相切的条件求得斜率再由已知得由此可求得椭圆的离心率【详解】因为两个椭圆与椭圆的离心率【分析】由已知设圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b=,再设出直线AC 的方程为()1y k x ma =-,直线BD 的方程为2+y k x mb =,分别与椭圆2Γ的方程为2222+1x y a b=联立整理,由直线与椭圆相切的条件0∆=,求得斜率,再由已知得2257b a =,由此可求得椭圆的离心率. 【详解】因为两个椭圆1Γ与椭圆2Γ的离心率相等,所以设椭圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b=,设直线AC 的方程为()1y k x ma =-,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()23422212222211+2+0b mk a x a k xm a a k b --=,因为直线AC 与椭圆2Γ相切,则()()()2222222213241142+0a k m m a a k b a b k --=-=∆,整理化简得()212221k a m b =-,设直线BD 的方程为2+y k x mb =,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()222222222222+2+0b mk a b a k xm a a x b b --=,因为直线BD 与椭圆2Γ相切,则()()()22222222222242+0a k mk a b m a a b b b -=--=∆,整理化简得()222221m kab -=,又AC 与BD 的斜率之积为57-,所以()()222212222221571m k k a b b a m -⎛⎫⋅=⋅=- ⎪-⎝⎭,整理得2257b a =,所以22222521177c b e a a ==-=-=, 所以椭圆1Γ的离心率为7,故答案为:7. 【点睛】关键点点睛:解决直线与椭圆的位置关系的问题,关键在于联立直线与椭圆的方程,运用方程的根的判别式的正负,满足直线与椭圆相交,相切,相离.20.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故或2) 【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭,所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e == 又因为1e >,所以e ===2). 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.三、解答题21.(1)24y x =;(2)220x y +-=. 【分析】(1)设l 与x 轴交于点D ,根据PEF 是边长为4的正三角形.得到PE l ⊥,60PEF EFD ∠=∠=︒,然后由||cos60p DF EF ==求解.(2)设()11,A x y ,()22,B x y ,根据点A ,B 在抛物线上,由21122244y x y x ⎧=⎨=⎩,根据线段AB 中点的纵坐标为1-,利用“点差法”求解. 【详解】(1)因为PEF 是边长为4的正三角形. 则||||PE PF =,所以PE l ⊥, 设l 与x 轴交于点D ,则60PEF EFD ∠=∠=︒,||4EF =, 所以||cos602p DF EF === 所以抛物线的方程为24y x =.(2)由(1)得抛物线C 的方程为24y x =,焦点(1,0)F , 设A ,B 两点的坐标分别为()11,A x y ,()22,B x y ,由21122244y x y x ⎧=⎨=⎩,得()121212124y y x x x x y y -=≠-+, 因为线段AB 中点的纵坐标为1-, 所以直线m 的斜率21442(1)2AB k y y ==-+-⨯=, 所以直线m 的方程为02(1)y x -=--, 即220x y +-=. 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 22.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可.【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m -=+,∴AB ==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果.23.(1)2213x y +=;(2)0x y -=或0x y +=.【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y,:l x ty =11212AF BF F AF F BSSS=+,结合基本不等式,可得答案.【详解】 (1)∵c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=.(2)()1F,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0,设直线l:x ty =2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F BSSF F y y +=-=因为2312t=≤+=,即1t=±时等号成立,所以直线l的方程为0x y-=或0x y+=.【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F A F F BS S+并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力. 24.(1)1ab⎧=⎪⎨=⎪⎩2)直线AD过定点(1,0)Q.【分析】(1)由于12,1,P P⎛⎛-⎝⎭⎝⎭关于原点对称,从而可得12,P P和4P在椭圆上,然后将这些点的坐标代入椭圆方程中可求出,a b的值;(2)由题意可知直线l的斜率存在,则设直线l为2(0)x ty t=+≠,与椭圆方程联立成方程组,消去x,得()222420t y ty+++=,再由根与系数的关系得12122242,22ty y y yt t+=-=++,而直线AD方程为()()()12211221y y x x x y x y x y++--+=,代入化简可得答案【详解】因为121,,1,22P P⎛⎫⎛--⎪⎪⎝⎭⎝⎭关于原点对称,由题意得12,P P和4P在椭圆上,将14,P P的坐标代入22221x ya b+=得:222111211a bb⎧+=⎪⎪⎨⎪=⎪⎩解得:1ab⎧=⎪⎨=⎪⎩(2)显然,l与x轴不垂直,设l的方程为:2(0)x ty t=+≠()22222242012x tyt y tyxy=+⎧⎪⇒+++=⎨+=⎪⎩设()()1122,,,A x yB x y,则()22,D x y-且12122242,22t y y y y t t +=-=++ 直线AD 方程为()()()122112210y y x x x y x y x y ++--+=令0y =,得()()122112211212121222242214ty y ty y x y x y ty y tx y y y y y y t++++===+=+=+++-, 故直线AD 过定点(1,0)Q . 【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线l 的方程为:2(0)x ty t =+≠,与椭圆方程联立方程组,消元后利用根与系数的关系可得12122242,22t y y y y t t +=-=++,进而可得AD 方程为()()()122112210y y x x x y x y x y ++--+=化简可得答案,属于中档题25.(1)28(0)y x x =>;(2)证明见解析. 【分析】(1)设(,)N x y ,利用N 在圆上及弦MN 的中点在y 轴上可得点N 的轨迹方程,也可以利用垂径定理得到点N 的轨迹方程,注意范围.(2)设()11N x y ,,()22,B x y ,直线NB 的方程为2x my =+,点B 的处的切线方程为()22y y k x x -=-,联立切线方程和抛物线方程,利用判别式为0可求切线方程,从而得到D 的坐标,求出直线ON 的方程后可得A 的坐标,再联立直线NB 的方程与抛物线的方程,利用韦达定理化简可得1AD BD k k ⋅=-,从而得到要求证的垂直关系.我们也可以设()()000,0N x y x ≠,利用导数和韦达定理可求D 的坐标,同样可得1AD BD k k ⋅=-.【详解】(1)解法一:由题意知(2,0)C ,(2,0)M r -, 设(,)N x y 是222:(2)(2)C x y r r -+=>上的任意点, 弦MN 的中点2,22r x y -+⎫⎛⎪⎝⎭恰好落在y 轴上, 202r x-+∴=,2r x ∴=+,222(2)(2)x y x ∴-+=+, 整理得28y x =,2r >,0x ∴>,∴点N 的轨迹方程为28(0)y x x =>.解法二:设(,)N x y ,弦MN 的中点为0,2y Q ⎫⎛ ⎪⎝⎭,(,0)M x -, 因为M 在x 轴的负半轴上,故0x >.()2,,2,2y CQ MN x y ⎛⎫=-= ⎪⎝⎭,。
最新人教版高中数学选修1-1《圆锥曲线与方程》单元检测3

数学人教版A1-1第二章圆锥曲线与方程单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012山东青岛一模,理10)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( )A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425C .(x -1)2+y 2=1D .x 2+(y -1)2=12.已知抛物线C 1:y =2x 2的图象与抛物线C 2的图象关于直线y =-x 对称,则抛物线C 2的准线方程是( ) A .18x =- B .12x = C .18x = D .12x =- 3.一根竹竿长2米,竖直放在广场的水平地面上,在t 1时刻测得它的影长为4米,在t 2时刻的影长为1米.这个广场上有一个球形物体,它在地面上的影子是椭圆,问在t 1,t 2这两个时刻该球形物体在地面上的两个椭圆影子的离心率之比为( )A .1∶1 1 1 D .2∶14.已知动点P 到两个定点F 1(-1,0),F 2(1,0)的距离之和为λ(λ≥1),则点P 轨迹的离心率的取值范围为( )A.⎫⎪⎪⎣⎭B.⎝⎦C.⎛ ⎝⎦D.⎫⎪⎪⎝⎭5.若一个椭圆长轴的长度、短轴的长度和焦距成等比数列,则该椭圆的离心率是( )A.12 C.25 D.156.已知P ,Q 是椭圆9x 2+16y 2=1上的两个动点,O 为坐标原点,若OP ⊥OQ ,则点O 到弦PQ 的距离必等于( ) A .1 B.34 C.15 D.1457.AB 为过椭圆22221y x a b+= (a >b >0)的中心的弦,F 1为一个焦点,则△ABF 1的最大面积是(c 为半焦距)( )A .acB .abC .bcD .b 28.已知点F ,A 分别为双曲线C :2222y x a b-=1(a >0,b >0)的左焦点、右顶点,点B (0,b )满足FB AB ⋅=0,则双曲线的离心率为()9.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=32xB .y 2=3xC .y 2=92x D .y 2=9x 10.双曲线与椭圆4x 2+y 2=64有公共焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=36二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在题中的横线上)11.抛物线y 2=4x 的焦点到准线的距离是__________.12.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =__________.13.在平面直角坐标系中,椭圆22221x y a b+=(a >b >0)的焦距为2.以O 为圆心,a 为半径作圆.过点2,0a c ⎛⎫ ⎪⎝⎭所作圆的两条切线互相垂直,则椭圆的离心率e =__________.14.(2010北京高考,文13)已知双曲线22221x y a b-=的离心率为2,焦点与椭圆221259x y +=的焦点相同,那么双曲线的焦点坐标为__________;渐近线方程为__________.15.方程2241x y t t +--=1表示曲线C ,给出以下命题: ①曲线C 不可能为圆;②若曲线C 为椭圆,则1<t <4;③若曲线C 为双曲线,则t <1或t >4;④若曲线C 为焦点在x 轴上的椭圆,则1<t <52. 其中真命题的编号是__________.(写出所有正确结论的编号)三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)点A ,B 分别是椭圆2213620x y +=的长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .求点P 的坐标.17.(15分)(2010江西高考,文21)如图,已知抛物线C 1:x 2+by =b 2经过椭圆C 2:22221x ya b+=(a>b>0)的两个焦点.(1)求椭圆C2的离心率;(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.参考答案1. 答案:C2. 答案:C 抛物线C 1:y =2x 2关于y =-x 对称的抛物线C 2的解析式为-x =2(-y )2,即y 2=12x -,故C 2的准线方程为18x =. 3. 答案:A 根据题意,球形物体的高度一定,可设为h .则t 1时刻影子椭圆的长轴长2a =2h ,短轴2b =h ,∴c 2=a 2-b 2=h 2-22344h h =,e 1=2c a h ==. t 2时刻影子椭圆的长轴长为2a =h ,短轴2b =2h , 则c 2=a 2-b 2=222341616h h h -=, ∴2222331644h c h a ==.∴e 2=c a =∴e 1∶e 2=1∶1.4. 答案:C由题意,>|F 1F 2|=2,∴点P 的轨迹是椭圆,其中a,c =1.∴e≤.故选C.5. 答案:B 由2a,2b,2c 成等比数列,所以4b 2=4ac .又b 2=a 2-c 2,则ac =a 2-c 2,两边同除以c 2,得e. 6. 答案:C 考虑弦PQ 垂直于x 轴时,OP ⊥OQ 且OP =OQ , 所以△OPQ 为等腰直角三角形.故有|x P |=|y P |,代入椭圆方程,有229161P P x x +=,解得 |x P |=15,即点O 到弦PQ 的距离为15. 7. 答案:C △ABF 1的面积为c ·|y A |,因此当|y A |最大,即|y A |=b 时,面积最大.8. 答案:D ∵FB AB ⋅ =0,∴FB ⊥AB .∴b 2=ac .又b 2=c 2-a 2,∴c 2-a 2-ac =0.两边同除以a 2,得e 2-1-e =0e. 9. 答案:B 由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCM =30°,又|AF |=3,从而322p A ⎛+ ⎝⎭,A 在抛物线上,代入抛物线方程y 2=2px ,解得32p =. 故抛物线方程为y 2=3x .10.答案:A 由4x 2+y 2=64,得2211664x y +=,c 2=64-16=48,∴c =e=. ∴双曲线中,c ′=,e ′c a '='. ∴a ′'=6,b ′2=48-36=12. ∴双曲线的方程为2213612y x -=, 即y 2-3x 2=36.11. 答案:212. 答案:2 抛物线的焦点,02p F ⎛⎫ ⎪⎝⎭,设直线方程为y =2p x -, 由22,,2y px p y x ⎧=⎪⎨=-⎪⎩得x 2-3px +24p =0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p .而|AB |=x 1+x 2+p =3p +p =8.故p =2.13.设点2,0a M c ⎛⎫ ⎪⎝⎭,两个切点分别为P ,Q . 因为|MP |=|MQ |,MP ⊥MQ ,所以四边形MPOQ 是正方形.又因为c =1,所以221a ⎛⎫ ⎪⎝⎭=2a 2. 整理,得a故e=. 14. 答案:(±4,0)±y =0 椭圆221259x y +=的焦点坐标为(±4,0),所以双曲线的焦点坐标为(±4,0),在双曲线22221x y a b-=中,c =4,e =2,则a =2,b=.0y ±=.15. 答案:③④ 当t -1=4-t ,即52t =时曲线表示圆,故①错;若C 为椭圆,则10,40,41,t t t t ->⎧⎪->⎨⎪-≠-⎩即1<t <4且t ≠52,故②错. ④显然正确,③中若曲线为双曲线,则(4-t )(t -1)<0,即t >4或t <1.故③正确. 16. 答案:分析:由题意可得点A (-6,0),B (6,0),F (4,0).设点P 的坐标为(x ,y ),由AP ⊥FP ,得AP FP ⋅=0,与点P 在椭圆上联立组成方程组,即可求解x ,y 的值,即点P 的坐标.解:由已知可得点A (-6,0),B (6,0),F (4,0).设点P 的坐标是(x ,y ), 则AP =(x +6,y ),FP=(x -4,y ), 由已知,得2221,3620(6)(4)0x y x x y ⎧⎪+=⎨⎪+-+=⎩解得x =32或x =-6. 由于y >0,所以只能取x =32,于是y, 所以点P的坐标是32⎛ ⎝⎭.17. 解:(1)因为抛物线C 1经过椭圆C 2的两个焦点F 1(-c,0),F 2(c,0),所以c 2+b ×0=b 2,即c 2=b 2.由a 2=b 2+c 2=2c 2,所以椭圆C 2的离心率e(2)由(1)可知a 2=2b 2,椭圆C 2的方程为 222212x y b b +=. 联立抛物线C 1的方程x 2+by =b 2,得2y 2-by -b 2=0,解得y =2b -或y =b (舍去),所以x=,即,2b M ⎛⎫- ⎪ ⎪⎝⎭,,2b N ⎫-⎪⎪⎝⎭. 所以△QMN 的重心坐标为(1,0).因为重心在C 1上 ,所以12+b ×0=b 2,得b =1.则a 2=2.所以抛物线C 1的方程为x 2+y =1,椭圆C 2的方程为22x +y 2=1.。
最新人教版高中数学选修一第三单元《圆锥曲线的方程》测试卷(答案解析)

一、填空题1.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为______.2.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率1,23e ⎛∈⎝⎭,则C 的长轴长的取值范围是_____________. 3.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.4.已知椭圆22:143x y C +=过焦点F 的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若2AF FB =,则直线l 的斜率k 的值为__________.5.已知点P 为抛物线C :24y x =上的动点,抛物线C 的焦点为F ,且点()3,1A ,则PA PF +的最小值为_______.6.已知椭圆()2222:10x y C a b a b +=>>的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、,满足tan tan 1αβ+=,则直线PA 的斜率为__________.7.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,O 为坐标原点.过点F 的直线240x y +-=与椭圆的交点为Q (点Q 在x 轴上方),且||||OF OQ =,则椭圆C 的离心率为_____.8.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.9.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.10.设12,F F 分别是椭圆22=1169x y +的两个焦点,点P 在椭圆上,若线段1PF 的中点在y轴上,则12||||PF PF =______. 11.已知抛物线C :24y x =的焦点为F ,直线l:10x -=与C 交于P 、Q (P 在x 轴上方)两点,若PF FQ λ=,则实数λ的值为_______12.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若222AF F C =,则椭圆的离心率为__________.13.已知直线y kx m =+与双曲线22221(0,0)x y a b a b-=>>的两条渐近线交于A B 、两点,与1yx k交于点N ,若N 为AB 的中点,则双曲线的离心率等于____. 二、解答题14.已知m R ∈,且0m >,设p :()00,x ∃∈+∞,()()2012x m m =--;q :方程2213x y m m +=-表示双曲线. (1)若p q ∧为真,求m 的取值范围;(2)判断04m <<是q 的什么条件,并说明理由.15.在①01PF x =+,②0022y x ==,③PF x ⊥轴时,2PF =这三个条件中任选一个,补充在下面的问题中,并回答.问题:已知抛物线2:3(0)C y px p =>的焦点为F ,点()00,P x y 在抛物线C 上,且______,(1)求抛物线C 的标准方程;(2)若直线:20l x y --=与抛物线C 交于A ,B 两点,求ABF 的面积.16.在平面直角坐标系xOy 中,已知圆()22:21F x y -+=,动圆M 与直线:1l x =-相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C ,求曲线C 的方程;(2)已知()2,0A -,曲线C 上一点P满足PA ,求PAF ∠的大小.17.对于椭圆22221(0)x y a b a b+=>>,有如下性质:若点()00,P x y 是椭圆外一点,PA ,PB 是椭圆的两条切线,则切点A ,B 所在直线的方程是00221x x y ya b+=,可利用此结论解答下列问题.已知椭圆C :22143x y +=和点(4,)()P t t R ∈,过点P 作椭圆C 的两条切线,切点是A ,B ,记点A ,B 到直线PO (O 是坐标原点)的距离是1d ,2d .(1)当3t =时,求线段AB 的长; (2)求12||AB d d +的最大值. 18.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值.19.已知椭圆E :()222210x y a b a b +=>>6,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标.20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且椭圆上的点到焦点的最长距离为12+(1)求椭圆C 的方程;(2)过点(0,2)P 的直线l (不过原点O )与椭圆C 交于两点A 、B ,M 为线段AB 的中点. (i )证明:直线OM 与l 的斜率乘积为定值; (ii )求OAB 面积的最大值及此时l 的斜率.21.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点33,P ⎭在C 上. (1)求椭圆C 的方程;(2)设1F ,2F 分别是椭圆C 的左,右焦点,过2F 的直线l 与椭圆C 交于不同的两点A ,B ,求1F AB 面积的最大值.22.已知圆22:(2)1M x y +-=,动圆P 与圆M 外切,且与直线1y =-相切. (1)求动圆圆心P 的轨迹C 的方程.(2)若直线:2l y kx =+与曲线C 交于A ,B 两点,分别过A ,B 作曲线C 的切线,交于点Q .证明:Q 在一定直线上.23.已知圆2222:1(0)x y C a b a b +=>>的离心率为2,过(,0)(02)A n n <<的直线l 与椭圆C 相交于P ,Q 两点,当1n =,l x ⊥轴时,||PQ =(1)求椭圆C 的标准方程;(2)若l 不垂直于坐标轴,且在x 轴上存在一点(,0)B m ,使得PBA QBA ∠=∠成立,求m 的取值范围.24.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程. 25.求符合下列条件的双曲线的标准方程:(1)焦点在x 轴上,中心为坐标原点焦距为6,实轴长为4;(2)焦点在x 轴上,中心为坐标原点,渐近线方程为y x =±,且过点(1)-.26.已知曲线()()222240.a x by b a b R Γ--+-=∈:,下面给出的三个问题,从中任选出一个问题,然后对选择的问题进行求解.①若42a b ==,,写出曲线的方程,指出曲线的名称,并求出该曲线的对称轴方程、顶点坐标、焦点坐标、及x y 、的取值范围;②若32a b ==,,写出曲线的方程,并求经过点(-1,0)且与曲线Γ只有一个公共点的直线方程;③若3a =,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论b 如何变化,这两点都不在曲线Γ上.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】作出图形设过椭圆右焦点且垂直于长轴的弦为计算出再利用椭圆的定义可得出关于的等式进而可求得椭圆的离心率的值【详解】如下图所示设椭圆的左右焦点分别为设过椭圆右焦点且垂直于长轴的弦为则由勾股定理可【分析】作出图形,设过椭圆右焦点2F且垂直于长轴的弦为AB,计算出1AF,再利用椭圆的定义可得出关于a、c的等式,进而可求得椭圆的离心率的值.【详解】如下图所示,设椭圆()222210x ya ba b+=>>的左、右焦点分别为1F、2F,设过椭圆右焦点2F且垂直于长轴的弦为AB,则2AB c=,212AF AB c==,由勾股定理可得2212125AF AF F F c=+=,由椭圆的定义可得122AF AF a+=52c c a+=,所以,该椭圆的离心率为()()251512515151cea====++-.51-.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.【分析】用分离常数法求得函数的对称中心代入椭圆方程得的关系变形后得然后由的范围得出的范围【详解】因为可化为所以曲线的对称中心为把代入方程得整理得因为所以从而故答案为:【点睛】关键点点睛:本题考查求椭解析:21109⎛⎝⎭【分析】用分离常数法求得函数的对称中心,代入椭圆方程得,a b 的关系,变形后得221911a e=+-,然后由e 的范围得出2a 的范围. 【详解】因为31x y x =-可化为111393y x =+⎛⎫- ⎪⎝⎭,所以曲线31x y x =-的对称中心为11,33⎛⎫⎪⎝⎭,把11,33⎛⎫ ⎪⎝⎭代入方程22221x y a b +=,得2211199a b +=,整理得22222221911a c a a c e-==+--.因为1,23e ⎛⎫∈ ⎪ ⎪⎝⎭,所以2759,32a ⎛⎫∈ ⎪⎝⎭,从而2,93a ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:93⎛ ⎝⎭.【点睛】关键点点睛:本题考查求椭圆长轴长的范围.解题关键是建立长半轴长a 与离心率e 的关系式,求出函数对称中心代入椭圆方程,利用222b a c =-进行转化是是解题的基本方法.3.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△,∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.4.【分析】由题可得联立直线与椭圆利用韦达定理建立关系即可求出【详解】由题点A 位于轴上方且则直线l 的斜率存在且不为0设则可得设直线l 方程为联立直线与椭圆可得解得则直线的斜率为故答案为:【点睛】方法点睛:解析:2±【分析】由题可得122y y -=,联立直线与椭圆,利用韦达定理建立关系即可求出. 【详解】由题,点A 位于x 轴上方且2AF FB =,则直线l 的斜率存在且不为0,()1,0F ,设()()1122,,,A x y B x y ,则可得122y y -=,设直线l 方程为1x ty =+,联立直线与椭圆221431x y x ty ⎧+=⎪⎨⎪=+⎩可得()2234690t y ty ++-=, 122122634934t y y t y y t ⎧+=-⎪⎪+∴⎨-⎪=⎪+⎩,2222269,23434t y y t t -∴=-=++,2226923434t t t -⎛⎫∴-= ⎪++⎝⎭,解得t =则直线的斜率为2±.故答案为:. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.5.4【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求取得最小进而可推断出当三点共线时最小答案可得【详解】抛物线的准线为设点在准线上的射影为如图则根据抛物线的定义可知要求取得最小值即解析:4 【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知||||PF PD =进而把问题转化为求||||PA PD +取得最小,进而可推断出当D ,P ,A 三点共线时||||PA PD +最小,答案可得. 【详解】抛物线2:4C y x =的准线为1x =-. 设点P 在准线上的射影为D ,如图,则根据抛物线的定义可知||||PF PD =,要求||||PA PF +取得最小值,即求||||PA PD +取得最小. 当D ,P ,A 三点共线时,||||PA PD +最小,为3(1)4--=. 故答案为:4. 【点睛】关键点点睛:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.6.或【分析】设出点坐标求得的表达式求得代入直线的斜率公式可得答案【详解】依题意设则即化简得由于是椭圆的左右顶点所以所以所以所以或所以当时当时所以直线的斜率为或故答案为:或【点睛】本小题主要考查椭圆的几2+112- 【分析】设出P 点坐标,求得tan +tan αβ的表达式,求得00x y ,,代入直线的斜率公式可得答案. 【详解】依题意2311,,22c b b a b a a a ⎛⎫==-== ⎪⎝⎭.设()()000,0P x y x ≠,则2200221x y a b +=,即22002214x y a a+=,化简得222004y x a -=-. 由于,A B 是椭圆的左右顶点,所以()(),0,,0A a B a -,所以tan +tan αβ0000+y y x a x a =+-0000022200022142x y x y xx ay y ===-=--,所以002x y =-,所以00x y ⎧=⎪⎪⎨⎪=⎪⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当004x y a ⎧=⎪⎪⎨⎪=⎪⎩时,tanα002y x a ===+,当0024x a y a ⎧=⎪⎪⎨⎪=-⎪⎩时,0012y x a -===+,所以直线PA的斜率为2或,故答案为:2或12. 【点睛】本小题主要考查椭圆的几何性质,直线的斜率公式,关键在于求得点P 的坐标,属于中档题.7.【分析】转化条件为设点列方程可得点结合椭圆定义可得再由离心率的公式即可得解【详解】因为点在直线上所以椭圆左焦点设点则解得或(舍去)所以点所以即所以椭圆的离心率故答案为:【点睛】关键点点睛:解决本题的解析:3【分析】转化条件为()2,0F ,设点(),24Q x x -+,列方程可得点68,55Q ⎛⎫ ⎪⎝⎭,结合椭圆定义可得a ,再由离心率的公式即可得解. 【详解】因为点F 在直线240x y +-=上,所以()2,0F ,椭圆左焦点()12,0F -,设点(),24Q x x -+,则2OQ OF ===,解得65x =或2x =(舍去), 所以点68,55Q ⎛⎫⎪⎝⎭,所以125a QF QF =+==,即5a =,所以椭圆的离心率c e a ===故答案为:3. 【点睛】关键点点睛:解决本题的关键是求出点Q 的坐标,再结合椭圆的定义、离心率公式即可得解.8.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a . 由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =,则43c e a ==. 故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.9.【分析】根据题意作出图示求解出的长度然后根据椭圆的定义得到之间的关系即可求解出离心率【详解】如图因为为正三角形所以所以是直角三角形因为所以所以所以因为所以即所以故答案为:【点睛】本题考查根据几何关系 解析:31-【分析】根据题意作出图示,求解出12,PF PF 的长度,然后根据椭圆的定义得到,a c 之间的关系即可求解出离心率. 【详解】如图,因为2POF 为正三角形,所以12||||||OF OP OF ==,所以12F PF ∆是直角三角形. 因为2160PF F ∠=,21||2F F c =,所以2||PF c =,所以22212122122cos60PF PF F F PF F F =+-⋅⋅︒,所以13PF c =, 因为21||||2PF PF a +=,所以32c c a +=, 即3131ca ,所以31e =-.故答案为:31-.【点睛】本题考查根据几何关系以及椭圆的定义求解椭圆的离心率,难度一般.求解离心率的问题,如果涉及到特殊几何图形,一定要注意借助图形本身的性质去求解问题.10.【分析】先设P 点中点再求焦点再根据线段的中点在轴上求出P 点坐标再利用焦半径公式即可得的长则可解【详解】设中点由题意得由线段的中点在轴上则有代入中得P 点坐标为或根据焦半径公式可得∴故答案为:【点睛】考解析:239【分析】先设P 点,中点,再求焦点12,F F ,再根据线段1PF 的中点在y 轴上,求出P 点坐标,再利用焦半径公式即可得12||,||PF PF 的长,则12||||PF PF 可解. 【详解】设(,)p p P x y ,中点(0,)m n .由题意得12(F F ,4a =,e =由线段1PF 的中点在y 轴上,则有02p x +=,p x =22=1169x y +中得P 点坐标为9()4或9()4-根据焦半径公式可得,12239||,||44PF PF ==, ∴12||23||9PF PF =. 故答案为:239. 【点睛】考查椭圆的焦半径公式, 解题关键要求出P 点坐标.11.【分析】先求出再求出和最后建立方程求即可【详解】解:由题意联立方程组解得或因为P 在x 轴上方所以因为抛物线C 的方程为所以所以因为所以解得:故答案为:【点睛】本题考查直线与抛物线的位置关系抛物线的几何性解析:5+【分析】先求出(5P +、(526,Q -、(1,0)F,再求出(4PF =---和(4FQ =-,最后建立方程求λ即可.【详解】解:由题意联立方程组2410y x x ⎧=⎪⎨--=⎪⎩,解得5x y ⎧=+⎪⎨=⎪⎩5x y ⎧=-⎪⎨=⎪⎩因为P 在x轴上方,所以(5P +、(5Q -, 因为抛物线C 的方程为24y x =,所以(1,0)F ,所以(426,PF =---,(4FQ =- 因为PF FQ λ=,所以(4(4λ---=-,解得:2223526 2223λ--==+-,故答案为:526+【点睛】本题考查直线与抛物线的位置关系、抛物线的几何性质、利用共线向量求参数,是中档题12.【分析】过点作轴垂直为由三角形相似得到点的坐标代入椭圆方程变形求椭圆的离心率【详解】设过点作轴垂直为代入椭圆方程得解得:故答案为:【点睛】本题考查椭圆的性质重点考查数形结合分析问题的能力本题的关键是解析:5【分析】过点C作CD x⊥轴,垂直为D,由三角形相似得到点C的坐标,代入椭圆方程,变形求椭圆的离心率.【详解】()1,0F c-,()2,0F c设2,bA ca⎛⎫- ⎪⎝⎭,过点C作CD x⊥轴,垂直为D,122Rt AF F Rt CDF,22112212DF F CCDAF F F AF∴===,22,2bC ca⎛⎫∴-⎪⎝⎭,代入椭圆方程得222222222441144c b c a ca a a a-+=⇒+=,解得:5cea==.5【点睛】本题考查椭圆的性质,重点考查数形结合分析问题的能力,本题的关键是利用三角形相似求得点C的坐标,属于中档题型.13.【分析】由题意联立方程组可得由中点的性质可得化简后利用即可得解【详解】由题意双曲线的两条渐近线为则同理联立为的中点即整理得故答案为:【点睛】本题考查了双曲线的性质和离心率的求解考查了直线交点的问题和【分析】由题意联立方程组可得A am x ka b -=+、B amx b ka=-、21N km x k =-,由中点的性质可得2A B N x x x +=,化简后利用e =即可得解. 【详解】由题意双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,则A y kx mam x b ka b y x a =+⎧-⎪⇒=⎨+=-⎪⎩,同理B am x b ka =-, 联立211N y kx mkm x k y x k =+⎧⎪⇒=⎨-=⎪⎩, N 为AB 的中点,∴2A B N x x x +=,即221am am mkb ka b ka k -+=+--, 整理得221b a =,∴e ==. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了直线交点的问题和运算能力,属于中档题.二、解答题14.(1)()()0,12,3m ∈⋃;(2)04m <<是q 的必要不充分条件;答案见解析. 【分析】(1)分别求出命题,p q 为真时参数m 的范围,求出它们的交集可得; (2)根据集合的包含关系可得. 【详解】解:(1)若p 为真,则()()0120m m m >⎧⎨-->⎩,即01m <<或2m >.若q 为真,则(3)0m m -<,即03m <<. ∴当p q ∧为真时,()()0,12,3m ∈⋃. (2)易知()()0,30,4,故04m <<是q 的必要不充分条件. 【点睛】结论点睛:本题考查由复合命题的真假求参数范围,考查充分必要条件的判断,需要掌握复合命题的真值表,充分必要条件与集合包含之间的关系. 命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.15.(1)任选一个条件,抛物线方程都为24y x =;(2) 【分析】(1)选①:由抛物线的性质可得02pPF x =+,即可求出p ;选②:由题将点P 代入抛物线即可求出p ;选③:由题可得222p pPF p =+==; (2)联立直线与抛物线方程,利用弦长公式求出AB ,利用点到直线距离公式求出高,即可得出面积. 【详解】解:(1)若选①:由抛物线的性质可得02p PF x =+ 因为01PF x =+,所以0012px x +=+,解得2p =. 故抛物线C 的标准方程为24y x =. 若选②:因为0022y x ==所以002,1y x ==,因为点()00,P x y 在抛物线C 上,所以2002y px =,即24p =,解得2p =, 故抛物线C 的标准方程为24y x =. 若选③:因为PF x ⊥轴,所以22p pPF p =+=, 因为2PF =,所以2p =.故抛物线C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y 由(1)可知(1,0)F .联立2204x y y x--=⎧⎨=⎩,整理得2480y y --=,则1212124,8,y y y y y y +==--===故12AB y y =-==因为点F 到直线l 的距离d ==,所以ABF 的面积为11222AB d ⋅=⨯= 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.16.(1)28y x =;(2)π4PAF ∠=. 【分析】(1)方法一,利用直线与圆的位置关系,以及圆与圆的位置关系,转化为抛物线的定义求曲线方程;方法二,利用等量关系,直接建立关于(),x y 的方程;(2)方法一,利用条件求点P 的坐标,再求PA k ;方法二,利用抛物线的定义,转化PF 为点P 到准线的距离,利用几何关系求PAF ∠的大小. 【详解】解:(1)设(),M x y ,圆M 的半径为r . 由题意知,1MF r =+,M 到直线l 的距离为r . 方法一:点M 到点()2,0F 的距离等于M 到定直线2x =-的距离,根据抛物线的定义知,曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线. 故曲线C 的方程为28y x =. 方法二:因为1MF r ==+,1x r +=,1x >-,2x =+,化简得28y x =,故曲线C 的方程为28y x =.(2)方法一:设()00,P x y,由PA ,得()()22220000222x y x y ⎡⎤++=-+⎣⎦,又2008y x =,解得02x =,故()42,P ±,所以1PA k =±,从而π4PAF ∠=. 方法二:过点P 向直线2x =-作垂线,垂足为Q . 由抛物线定义知,PQPF =,所以PA =,在APQ 中,因为π2PQA ∠=,所以sin PQ QAP PA ∠==, 从而π4QAP ∠=,故π4PAF ∠=. 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 17.(1)247;(2)12. 【分析】(1)由已知结论求出直线AB 的方程,联立方程,得韦达定理,利用弦长公式即可求得AB 的长;(2)将12||AB d d +表示为关于t 的函数,再利用换元法与分离常数法两种方法分别求出最值. 【详解】 (1)解当3t =时,直线AB 方程为1x y +=,联立,得27880x x --=. 设()11,A x y ,()22,B x y ,则1287x x +=,1287x x =-.则1224||7AB x =-==. (2)解直线AB :13t x y +=,即13tx y =-+,直线OP :4t y x =. 设()11,A x y ,()22,B x y,则12||AB y y =-,12d d +===记12||AB m d d=+,则12||AB m d d ==+,接下来介绍求最值的不同方法. 法1:常规换元法 令212s t =+,12s ≥,则222222(3)(4)12121114949112244848s s s s m s s s s s -++-⎛⎫===-++=--+≤ ⎪⎝⎭m ≤,当24s 即t =±12||AB d d +的最大值是12.法2:分离常数法422242422514412414424144t t t m t t t t ++==+++++,显然0t =时不取得最大值, 则222149111444824m t t=+≤+=++,m ≤ 当t =±12||AB d d +. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.18.(Ⅰ)22143x y +=;(Ⅱ)247;(Ⅲ)12||S S -【分析】(Ⅰ)根据椭圆的几何性质求出,a b 可得结果; (Ⅱ)联立直线与椭圆,根据弦长公式可求得结果;(Ⅲ)设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立直线l 与椭圆M 的方程,利用韦达定理求出12y y +,12||S S -=212||34t t +,变形后利用基本不等式可求得最大值.【详解】(Ⅰ)因为椭圆的焦点为()1,0F -,所以1c =且23b =,所以222314a b c =+=+=,所以椭圆M 方程为22143x y +=.(Ⅱ)因为直线l 的倾斜角为45,所以斜率为1,直线l 的方程为1y x =+,联立221143y x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得27880x x +-=,设11(,)C x y ,22(,)D x y , 则1287x x +=-,1287x x =-,所以||CD =247=. (Ⅲ)由(Ⅰ)知(2,0),(2,0)A B -,设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 并整理得22(34)690t y ty +--=,则122634ty y t +=+,123934y y t =-+0<,所以12,y y 异号, 所以121211|||4||4|||22S S y y -=⨯-⨯⨯122||||||y y =-122||y y =+212||34t t =+ 1243||||t t =+≤==当且仅当||3t =时,等号成立.所以12||S S -. 【点睛】关键点点睛:第(Ⅲ)问中将三角形面积用,C D 两点的纵坐标表示,并利用韦达定理和基本不等式解决是解题关键.19.(1)2213x y +=;(2)证明见解析;定点10,2⎛⎫- ⎪⎝⎭.【分析】(1)运用离心率公式和基本量a ,b ,c 的关系,以及点满足椭圆方程,解方程可得椭圆方程;(2)由已知可得直线l 的斜率存在,设直线l 的方程为()1y kx t t =+≠,与椭圆方程联立,整理得()()222136310kxktx t +++-=.由0AP AQ ⋅=,利用根与系数的关系求得t值,从而可证明直线l 过定点10,2⎛⎫- ⎪⎝⎭. 【详解】(1)解:椭圆E :()222210x y a b a b +=>>,且过点31,22⎛⎫ ⎪⎝⎭,可得c e a ==,222a c b -=,且2291144a b +=,解得a =1b =,c =则椭圆方程为2213x y +=.(2)证明:由0AP AQ ⋅=,可知AP AQ ⊥,从而直线l 与x 轴不垂直, 故可设直线l 的方程为()1y kx t t =+≠,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩,整理得()()222136310k x ktx t +++-=. 设()11,P x y ,()22,Q x y ,则122613kt x x k -+=+,()21223113t x x k-=+,()* 由()()222(6)413310kt k t∆=-+⨯->,得2231k t >-,由0AP AQ ⋅=,得()()1122,1,1AP AQ x y x y ⋅=-⋅-()()2212121(1)(1)0k x x k t x x t =++-++-=,将()*代入,得12t =-, 所以直线l 过定点10,2⎛⎫- ⎪⎝⎭.【点睛】本题主要考查椭圆方程的求法,直线与椭圆的综合,及定点问题,解题时要认真审题,注意函数与方程思想的合理运用. (1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.20.(1)2212x y +=;(2)(i )证明见解析;(ii )OAB面积的最大值是2,此时l的斜率为2±. 【分析】(1)根据离心率为22,且椭圆上的点到焦点的最长距离为12+,由1222a cca⎧+=+⎪⎨=⎪⎩求解.(2)(i)设直线l为:2y kx=+,与椭圆方程联立,利用韦达定理求得M的坐标,进而求得OMk验证即可.(ii)由(i)求得弦长AB和点O到直线l的距离,由三角形面积公式12OABS d AB=⨯⨯求解.【详解】(1)由题意得122a cca⎧+=+⎪⎨=⎪⎩,解得21ac⎧=⎪⎨=⎪⎩,∴22a=,2221b a c=-=,∴椭圆C的方程为2212xy+=.(2)(i)设直线l为:2y kx=+,1122(,),(,),(,)M MA x yB x y M x y,由题意得22212y kxxy=+⎧⎪⎨+=⎪⎩,∴22(12)860k x kx+++=,∴28(23)0k∆=->,即232k>由韦达定理得:22121286,1212kx x x xk k-+==++∴2412Mkxk=-+,22212M My kxk=+=+∴12MOMMykx k==-,,∴12OMk k⋅=-∴直线OM与l的斜率乘积为定值(ii)由(i)可知:12AB x=-==,又点O到直线l的距离d=∴1122OABS d AB=⨯⨯==t=,则0t>,∴24442OABSt tt==≤=++,当且仅当2t=时等号成立,此时2k=±,且满足0∆>,∴OAB面积的最大值是2,此时l的斜率为2±【点睛】方法点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.(1)22143x y+=;(2)最大值为3.【分析】(1)根据离心率为12以及过定点P⎭,列方程即可得解;(2)设()11,A x y,()22,B x y,根据题意知,直线l的斜率不为零,可设直线l的方程为1x my=+和22143x y+=联立可得()2234690m y my++-=,结合韦达定理带入面积公式,即可得解.【详解】(1)依题意有22222123314caa b ca b⎧=⎪⎪=+⎨⎪⎪+=⎩,解得2,1.abc=⎧⎪=⎨⎪=⎩,故椭圆C的方程为22143x y+=.(2)设()11,A x y,()22,B x y,根据题意知,直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221431x y x my ⎧+=⎪⎨⎪=+⎩,得()2234690m y my ++-= ()()22636340m m ∆=++>,m ∈R ,由韦达定理得122634m y y m -+=+,122934y y m -=+, ∴112212121234F ABS F F y y y y m =-=-==+△,令t =,则1t ≥,∴121241313F AB t S t t t==++△.令()13f t t t=+,则当1t ≥时,()f t 单调递增, ∴()()413f t f ≥=,13F AB S ≤△,即当1t =,0m =时,1F ABS 的最大值为3.【点睛】本题考查了直线和椭圆的位置关系,考查了椭圆中面积的最值问题,考查了韦达定理的应用,有一定的计算量,属于中档题. 本题的关键有:(1)韦达定理的应用,韦达定理是联系各个变量之间关系的桥梁,是解决直线和圆锥曲线问题的最重要的方法;(2)计算能力和计算技巧,计算能力和计算技巧是解决解析几何问题的基础. 22.(1)28x y =,(2)证明见解析 【分析】(1)由题意可得P 到直线2y =-的距离等于P 到()0,2M 的距离,则由抛物线的定义可求得点P 的轨迹C 的方程;(2)设211,8x A x ⎛⎫ ⎪⎝⎭,222,8x B x ⎛⎫ ⎪⎝⎭,()00,Q x y ,直线与抛物线联立方程组,消去y ,再利用根据与系数的关系可得128x x k +=,1216x x =-,再利用导数求出切线AQ ,BQ 的方程,从而可得12028x x y ==- 【详解】(1)解:设P 到直线1y =-的距离为d , 则1d PM =-,所以P 到直线2y =-的距离等于P 到()0,2M 的距离, 由抛物线的定义可知,P 的轨迹C 的方程为28x y =.(2)证明:设211,8x A x ⎛⎫ ⎪⎝⎭,222,8x B x ⎛⎫ ⎪⎝⎭,()00,Q x y ,联立方程组28,2,x y y kx ⎧=⎨=+⎩,得28160x kx --=,则128x x k +=,1216x x =-,264640k ∆=+>.由28x y =,得28x y =,所以4x y '=,所以切线AQ 的方程为21148x x y x =-,①同理切线BQ 的方程为22248x x y x =-,②由①2x ⨯-②1x ⨯,得12028x x y ==-, 所以点Q 在直线上2y =-. 【点睛】关键点点睛:此题考查轨迹方程的求法,考查直线与抛物线的位置关系,解题的关键是求出切线AQ 的方程为21148x x y x =-,切线BQ 的方程为22248x x y x =-,从而可求出其交点从坐标,考查计算能力,属于中档题23.(1)2214x y +=;(2)(2,)+∞.【分析】(1)根据条件构建方程求解即可(2)设直线l 的方程为()y k x n =-,()11,P x y ,()22,Q x y ,联立直线与椭圆的方程消元,然后韦达定理可得221224414k n x x k -=+,2122814k nx x k +=+,然后由PBA QBA ∠=∠,得0PB QBk k +=,即12120y y x m x m+=--,即()12122()20x x m n x x mn -+++=,然后得出4m n=即可. 【详解】解:(1)椭圆的半焦距为c.根据题意,得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得24a =,21b =. 所以椭圆C 的标准方程为2214x y +=.(2)由l 不垂直于坐标轴知,直线l 的斜率存在,且不为0,设直线l 的方程为()y k x n =-,0k ≠联立2214()x y y k x n ⎧+=⎪⎨⎪=-⎩,消去y 可得()22222148440k x k nx k n +-+-=.设()11,P x y ,()22,Q x y ,易知12x x ≠,且12,x x 均不等于m .由根与系数的关系,得221224414k n x x k -=+,2122814k nx x k+=+. 由PBA QBA ∠=∠, 得0PB QB k k +=,所以12120y y x m x m+=--. 所以()()()1221121202()20y x m y x m x x m n x x mn -+-=⇔-+++=,所以222224482()201414k n k nm n mn k k-⨯-++=++整理可得4mn =,即4m n =. 因为02n <<,所以(2,)m ∈+∞.【点睛】关键点点睛:解题关键是找到关于,,a b c 的等量关系.本题中直线方程代入椭圆方程整理后应用韦达定理求出12x x +,12x x ,由PBA QBA ∠=∠, 得0PB QB k k +=,然后表示出0PB QB k k +=得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.24.(1)2212516x y +=;(2)3225890x y +-=.【分析】(1)由题可得22a b 9-=3=,求出,a b 即得椭圆方程; (2)利用点差法可求直线斜率,即可得出直线方程. 【详解】(1)设椭圆M 的方程为22221(0)x y a b a b+=>>,则22a b 9-=,。
北师大版高二数学选修1-1圆锥曲线方程测试题及答案

高二数学选修1-1圆锥曲线方程检测题姓名:_________班级:________ 得分:________一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点()10,3F -,()20,3F ,动点(),P x y 满足条件a PF PF =+21(a>)0,则动点P 的轨迹是( ).A. 椭圆B. 线段C. 不存在D.椭圆或线段或不存在2、抛物线21y x m = 的焦点坐标为( ) . A .⎪⎭⎫ ⎝⎛0,41m B . 10,4m ⎛⎫ ⎪⎝⎭ C . ,04m ⎛⎫ ⎪⎝⎭ D .0,4m ⎛⎫⎪⎝⎭3、双曲线221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14-B .4-C .4D .144、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21,则该双曲线的离心率e 为( ) (A )5 (B )5 (C )25 (D )45 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2(C )5(D )56、若椭圆13222=++y m x 的焦点在x 轴上,且离心率e=21,则m 的值为( )(A )2(B )2 (C )-2(D )±27、过原点的直线l 与双曲线42x -32y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23,+∞) C.[-23,23] D.(-∞,-23]∪[23,+∞)8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线B. 抛物线C.双曲线D. 圆9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( )(A )(43π,π) (B )(4π,43π) (C )(2π,π) (D )(2π,43π)10、 F 1、F 2是双曲线116922=-y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32,则∠F 1PF 2是( )(A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能BA 1C 111、与椭圆1251622=+y x 共焦点,且过点(-2,10)的双曲线方程为( )(A )14522=-x y (B )14522=-y x (C )13522=-x y (D )13522=-y x12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程是( )A .B .C .D .二、填空题:本大题共4小题,每小题4分,共16分.13、已知双曲线的渐近线方程为y=±34x,则此双曲线的离心率为________.14.在抛物线 上有一点 ,它到焦点的距离是20,则 点的坐标是_________.15.抛物线上的一点到 轴的距离为12,则与焦点间的距离=______..16、椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a,焦距为2c,静放在点A 的小球(小球的半径忽略不计)从点A 沿直线出发,经椭圆壁反射后第一次回到点A 时,小球经过的路程是_____________.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分15分)椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为3,求此椭圆的标准方程。
(易错题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)(4)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B .5 C .3 D .6 2.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( ) A .2B .51-C .1D .52-3.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE 与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤4.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( ) A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦5.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 6.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =D .y =7.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C S SS+=,则a 的值为( )A .9B .11C .17D .198.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1e <<B .eC .e >D .1e <<9.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( ) A .2y x =±B .3y x =±C .12y x =±D .13y x =±10.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦11.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( )A .25B .100C .9D .3612.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.15.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______. 16.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.18.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且||PF =,则双曲线C 的标准方程为_________. 三、解答题21.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.22.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.23.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值. 24.已知抛物线28y x =的焦点为F ,且A 是抛物线上一点. (1)若4AF =求点A 的坐标;(2)直线l :y x m =+与抛物线交于两个不同的点P ,Q ,若OP OQ ⊥,求实数m 的值.25.已知点3(1,)-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为32. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.26.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+,又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.3.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.4.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.5.B解析:B 【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.6.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-, 即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故3==ce a, 故双曲线C 的渐近线方程为2y x = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.7.C解析:C【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n +=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=, 所以,双曲线的渐近线b y x a =的倾斜角α满足30α>,则123tan b PF F a >∠= 因此,该双曲线的离心率为222222231c c a b b e a a a a +⎛⎫====+> ⎪⎝⎭. 故选:B. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=, 又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.11.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=,所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MFMF a '-=,不能混淆. 12.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线解析:【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭, 2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.15.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 16.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大,抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=, 264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228xy ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可. 【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAOCFO a c ∠=∠=,根据离心率可求出223b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.20.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,2b a =,结合222c a b =+,整理求得结果.【详解】根据题意,可知2b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.三、解答题21.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析. 【分析】(1)分析得出2AF x ⊥轴,进而可得出12122tan F F F AF AF ∠=,设122F AF θ∠=,求出tan θ的值,可得出直线l 的斜率,进而可得出直线l 的方程;(2)假设椭圆E 上存在关于直线l 对称的相异两点()11,M x y 、()22,N x y ,进而可设直线MN 的方程为2xy t =-+,与椭圆E 的方程联立,列出韦达定理,求出线段MN 的中点P 的坐标,根据点P 在直线l 上,求出t 的值,可得出点P 的坐标,由此可得出结论.【详解】(1)在椭圆E 中,4a =,23b =,2c =,则()12,0F -、()22,0F ,因为222311612+=,即点A 在椭圆E 上,且2AF x ⊥轴,121224tan 3F F F AF AF ∠==,设122F AF θ∠=,则22tan 4tan 21tan 3θθθ==-,整理可得22tan 3tan 20θθ+-=, 易知θ为锐角,则tan 0θ>,解得1tan 2θ=, 设直线l 的倾斜角为α,则sin cos 12tan tan 22sin tan cos 2πθπθαθπθθθ⎛⎫- ⎪⎛⎫⎝⎭=-==== ⎪⎛⎫⎝⎭- ⎪⎝⎭,因此,直线l 的方程为()322y x -=-,即210x y --=;(2)假设椭圆E 上是否存在关于直线l 对称的相异两点()11,M x y 、()22,N x y , 则直线MN 的斜率为12-,设直线MN 的方程为2xy t =-+, 联立22123448y x t x y ⎧=-+⎪⎨⎪+=⎩,整理可得22120x tx t -+-=, 由韦达定理可得12x x t +=,则()121213222y y x x t t +=-++=, 所以,线段MN 的中点为3,24t t P ⎛⎫⎪⎝⎭,点P 在直线l 上,所以,32110244t t t⨯--=-=,解得4t =, 所以点()2,3P ,此时,点P 与点A 重合,不合乎题意. 因此,椭圆E 上不存在关于直线l 对称的相异两点. 【点睛】思路点睛:圆锥曲线中的探索性问题求解思路如下: 第一步:假设结论存在.第二步:结合已知条件进行推理求解.第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范. 22.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =, 联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=, 由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1-,半径为152, 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴22621133a ab b ⎧=⎪==⇒⎨=⎪⎩ 椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥ ⎪----⎝⎭⎣⎦()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241************121244105122210512212k k k k k k k k k k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)点A 的坐标为()()2,4,2,4-;(2)8-. 【分析】(1)由4AF =根据焦半径公式求出点A 的横坐标,再代入抛物线方程求得纵坐标;(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,利用韦达定理,结合向量垂直的坐标表示,列方程可求实数m 的值. 【详解】(1)设()00,A x y ,042p AF x =+=,22p=,02x ∴=所以20082164y y =⨯=⇒=±,∴点A 的坐标为()()2,4,2,4-.(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,设()11,P x y ,()22,Q x y ,则1282x x m +=-,212x x m =,121228y y x x m ∴+=++=,()()()2121212128y y x m x m x x m x x m m =++=+++=,又OP OQ ⊥,0OP OQ ∴⋅=,2121280x x y y m m ∴+=+=,0m ∴=或8m =-,经检验,当0m =时,直线与抛物线交点中有一点与原点O 重合:不符合题意,当8m =-时,2(24)4640∆=--⨯>,符合题意. 综上,实数m 的值为8-. 【点睛】方法点睛:解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.25.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314ab +=,又椭圆的离心率为2,∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k +=-+,1221214x x k ⋅=+, 由COB ∠为锐角, ∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.26.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)122843km x x k ∴+=-+,212241243m x x k -=+ 由ACD BCD ∠=∠得0AC BC k k +=31,2C ⎫⎛ ⎪⎝⎭,121212123333222201111y y kx m kx m x x x x --+-+-∴+=+=---- ()1212322302kx x m k x x m ⎫⎛∴+--+-+= ⎪⎝⎭22241238223043243m km k m k m k k -⎛⎫⎛⎫∴⋅+----+= ⎪⎪++⎝⎭⎝⎭整理得:(63)(223)0k k m -+-=2230k m ∴+-=或630k -=当2230k m +-=时,直线AB 过定点31,2C ⎛⎫⎪⎝⎭,不合题意 630k ∴-=,12k =,∴直线AB 的斜率是定值12另解:设直线AB 的方程为3(1)12m x n y ⎫⎛-+-= ⎪⎝⎭椭圆E 的方程即:22333[(1)1]41222x y ⎡⎤⎫⎛-++-+= ⎪⎢⎥⎝⎭⎣⎦即:22334126(1)3(1)022y y x x ⎫⎫⎛⎛-+-+-+-= ⎪ ⎪⎝⎝⎭⎭联立得:233(412)(126)22n y m n y ⎫⎫⎛⎛+-++- ⎪ ⎪⎝⎝⎭⎭2(1)(63)(1)0x m x -++-=即23322(412)(126)(63)011y y n m n m x x ⎛⎫-- ⎪+++++= ⎪-- ⎪⎝⎭ ∴由ACD BCD ∠=∠得121233(126)22011(412)AC BCy y m n k k x x n --++=+=-=--+即:2n m =- ∴直线AB 的斜率为12m n -=,是定值. 【点睛】(1)待定系数法可以求二次曲线的标准方程;。
上海民办兰生复旦中学选修1-1第二章《圆锥曲线与方程》测试卷(包含答案解析)
一、选择题1.平面直角坐标系xOy 中,直线:(2)(0)l y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若2FA FB =,则点A 到y 轴的距离为( ) A .3B .4C .5D .62.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .63.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 4.若1F ,2F 是双曲线22221(0,0)y xa b a b-=>>与椭圆2251162x y +=的共同焦点,点P 是两曲线的一个交点,且12PF F △为等腰三角形,则该双曲线的渐近线方程是( )A .y =±B .4y x =±C .y x =D .y x = 5.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1166.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .47.若椭圆22221(0)x y a b a b +=>>的离心率为3,则213a b +的最小值为( )A B .3C .2D8.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,P 是双曲线C 右支上一点,若|PF 1|+|PF 2|=4a ,且∠F 1PF 2=60°,则双曲线C 的渐近线方程是( )A 0y ±=B .20x =C .320x y ±=D .230x y ±=9.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .12y x =±D .13y x =±10.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B 27+C .53D .211.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞12.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A 6B 7C 42D 27二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x py p =>交于A 、B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为___________. 16.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________. 17.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.18.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1163F B =,124F F =,则截口BAC 所在椭圆的离心率为______.19.已知P 为椭圆22143x y +=上一点,1F 、2F 是焦点,1260F PF ∠=︒,则12F PF S =△______.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.23.已知点A 、B 坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-. (1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.24.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心,12MF F△. (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程.25.已知椭圆2222:1(0)x y E a b a b +=>>的左右顶点分别为A ,B ,离心率为2,且过点2D ⎭. (1)求椭圆E 的标准方程;(2)过点()4,0P 作与x 轴不重合的直线l 与椭圆E 相交于M ,N 两点(N 在P ,M 之间).证明:直线MB 与直线NA 的交点的横坐标是定值.26.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意画出图形,抛物线的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N ,根据抛物线的定义和已知条件可得点B 为AP 的中点,进而可得点B 的横坐标为1,则26AM BN ==从 而可求出答案 【详解】解:设抛物线2:8C y x =的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,如图过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N , 因为2FA FB =,所以2AM BN =, 所以点B 为AP 的中点,连接OB ,则12OB AF =, 所以OB BF =,所以点B 的横坐标为1, 所以26AM BN ==, 所以点A 到y 轴的距离为4, 故选:B【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查抛物线的定义的应用,解题的关键是根据题意画出图形,灵活运用抛物线的定义,考查计算能力,属于中档题2.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.3.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线250x y -+=过点F ,可得()5,0F - 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a == 故选:D 【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.B解析:B 【分析】由题意可得双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,由12PF F △为等腰三角形,所以2126PF F F ==,从而可求得1221064PF a PF =-=-=,再利用双曲线的定义可求得在双曲线中1a=,b =,进而可求出双曲线的渐近线方程 【详解】解:因为椭圆2251162x y +=的焦点坐标为(0,3),所以双曲线22221(0,0)y x a b a b-=>>中223,9c a b =+=,设点P 为两曲线在第一象限的交点,由于在椭圆中,12PF F △为等腰三角形,所以2126PF F F ==, 所以1221064PF a PF =-=-=,在双曲线中,212642a PF PF =-=-=,所以1a =,代入229a b +=,得b =,所以该双曲线的渐近线方程为4a y x x b =±==±, 故选:B 【点睛】关键点点睛:此题考查椭圆、双曲线的定义的应用,解题的关键由12PF F △为等腰三角形和椭圆的定义求出21,PF PF 的值,属于中档题5.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 6.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.7.C解析:C 【分析】22和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>的离心率为223,即23c a =,即223c =,又由222a b c =+,可得2219b a =,即3a b =所以22191132333a b b b b b ++==+≥=,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.8.C解析:C 【分析】利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理找出a,c 的等量关系,从而可求a,b 的比值,即可得出双曲线C 的渐近线方程. 【详解】解:因为F 1、F 2是双曲线的左、右焦点,点P 在双曲线右支上, 所以由双曲线定义可得|PF 1|-|PF 2|=2a , 又知|PF 1|+|PF 2|=4a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理可得222121212||||||cos60=2||||PF PF F F PF PF +-⋅,即222(3)41=232a a c a a +-⨯⨯,所以3a 2=10a 2-4c 2,即4c 2=7a2,又知b 2+a 2=c 2,所以223=4b a ,所以双曲线C 的渐近线方程为2y x =±20y ±=.故选:C. 【点睛】关键点点睛:利用双曲线的定义和已知即可得出|PF 1|,|PF 2|,再利用余弦定理解三角形是解答本题的关键.9.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.11.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤. 故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.12.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b +=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.224442747c e a -∴=== 故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25,58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB 的面积和短轴长得出a ,b ,c 的值,求得 1PF 的范围,再通分化简1211PF PF +为关于1PF 的函数,利用二次函数求得最值,即得取值范围. 【详解】由已知得28b =,故4b =,∵1F AB 的面积为4,∴()142a cb -=,∴2ac -=, 又()()22216a c a c a c b -=-+==,故8a c +=, ∴5a =,3c =,∴12121211PF PF PF PF PF PF ++=()()()221111111210101021010525a PF a PF PF PF PF PF PF ====---+--+,又而1a c PF a c -≤≤+,即128PF ≤≤,∴当15PF =时,()21525PF --+最大,为25;当12=PF 或8时,()21525PF --+最小,为16,即()211652525PF ≤--+≤,∴121011102516PF PF ≤+≤,即12211558PF PF ≤+≤. 即1211PF PF +的取值范围为25,58⎡⎤⎢⎥⎣⎦. 故答案为:25,58⎡⎤⎢⎥⎣⎦. 【点睛】 关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c -≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解解析:7【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN,所以1212MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ中NQ =,因为//NQ BA ,所以MNQ ∠为12,AB F F的夹角,所以12cos ,QN AB F F MN <>===故答案为:217【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.【分析】设点利用抛物线的定义得出可计算得出再利用点差法可得出可求出的值由此可得出双曲线的渐近线方程【详解】设点由抛物线的定义可得由可得直线的斜率为由两式作差得即所以可得因此该双曲线的渐近线方程为故答 解析:22y x =±【分析】设点()11,A x y 、()22,B x y ,利用抛物线的定义得出12y y p +=,可计算得出122ABx x k p +=,再利用点差法可得出2121222AB x x x x b k a p p++=⋅=,可求出b a 的值,由此可得出双曲线的渐近线方程. 【详解】设点()11,A x y 、()22,B x y ,由抛物线的定义可得12p AF y =+,22pBF y =+, 2pOF =,由4AF BF OF +=可得122y y p p ++=,12y y p ∴+=, 直线AB 的斜率为221212121212222ABx x y y x x p p k x x x x p--+===--,由22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差得22221212220x x y y a b ---=, 即()()()()1212121222x x x x y y y y a b -+-+=,所以,22121212122212122ABy y x x x x x x b b k x x a y y a p p -+++==⋅=⋅=-+,2212b a ∴=,可得b a =,因此,该双曲线的渐近线方程为2y x =±.故答案为:2y x =±. 【点睛】方法点睛:求双曲线的渐近线方程的方法:(1)定义法:直接利用a 、b 求得比值,则焦点在x 轴上时,渐近线方程为b y x a=±,焦点在y 轴上时,渐近线方程为ay x b=±; (2)构造齐次式:利用已知条件结合222a b c =+,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写出渐近线方程即可.16.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大,抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=, 264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228xy ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.17.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b a c =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221b e a=-; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.18.【分析】取焦点在轴建立平面直角坐标系由题意及椭圆性质有为椭圆通径得结合及解出代入离心率公式计算即可【详解】解:取焦点在轴建立平面直角坐标系由及椭圆性质可得为椭圆通径所以又解得所以截口所在椭圆的离心率解析:13【分析】取焦点在x 轴建立平面直角坐标系,由题意及椭圆性质有BC 为椭圆通径,得2163b a =,结合24c =及222a b c =+解出,,a b c 代入离心率公式计算即可.【详解】解:取焦点在x 轴建立平面直角坐标系,由12BC F F ⊥及椭圆性质可得,BC 为椭圆通径,所以21163b F B a ==,1224F Fc ==又222a b c =+,解得6,2,a c b ===所以截口BAC 所在椭圆的离心率为13故答案为:13【点睛】求椭圆的离心率或其范围的方法:(1)求,,a b c 的值,由22222221c a b b a a a-==-直接求e ; (2)列出含有,,a b c 的齐次方程(或不等式),借助于222a b c =+消去b ,然后转化成关于e 的方程(或不等式)求解.19.【分析】利用余弦定理以及椭圆的定义可得再由三角形面积公式计算可得结果【详解】由已知得所以从而在中即①由椭圆的定义得即②由①②得所以故答案为:【点睛】方法点睛:本题考查椭圆的定义考查余弦定理的应用三角【分析】利用余弦定理以及椭圆的定义可得124PF PF ⋅=,再由三角形面积公式计算可得结果. 【详解】由已知得2a =,b =1c ==,从而1222F F c ==,在12F PF △中,2221212122cos60F F PF PF PF PF ︒=+-⋅,即2212124PF PF PF PF =+-⋅,① 由椭圆的定义得124PF PF +=, 即221212162PF PF PF PF +=+⋅,② 由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ︒=⋅=△【点睛】方法点睛:本题考查椭圆的定义,考查余弦定理的应用、三角形面积公式,对于焦点三角形面积问题,一是结合余弦定理和面积公式,二是利用椭圆定义可得解,考查逻辑思维能力和运算求解能力,属于常考题.20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0),当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p ,﹣p ), 所以|AB |=2p =4,所以p =2. (2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0, 所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1,所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2, 所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1).【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法.22.(1)22122y x -=;(2)8. 【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -= (2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-.与抛物线方程联立,得214y x y x =-⎧⎨=⎩, 消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=.由抛物线的定义可知,12||628AB x x p =++=+=.所以,线段AB 的长是8.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.23.(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【分析】(1)首先设点(),P x y ,利用12PA PB k k ⋅=-,转化为关于,x y 的方程;(2)方法一,首先由椭圆的对称性可知定点必在x 轴上,设:2MN x my =-,与椭圆方程联立,由根与系数的关系得到()1212my y y y =-+,并求出直线ND 的方程,求与x 轴的交点;方法二,直线:2MN x my =-与椭圆方程联立后,利用求根公式求得两个交点的纵坐标,再代入直线ND 的方程,化简,求定点的坐标.【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P的轨迹方程为221(84x y x +=≠±. (2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上,由题意得直线MN 的斜率不为0,设:2MN x my =-, 与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+, ∴()1212my y y y =-+, 2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=--- ()1211212121221y y y my y y y y y y -+++=-=-=--, 3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-, 与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++222244(4)2222m m x m m m my --++++++=+224)3)2222x x m m my my ++++==++ ∴3x =-时0y =,∴直线ND 过定点()3,0-.【点睛】关键点点睛:本题考查椭圆中直线过定点问题,第一个关键是首先判断定点在x 轴上,方法一的关键是利用根与系数的关系得到()1212my y y y =-+,再代回直线方程求交点,方法二的关键是变形,化简.24.(1)2213x y +=;(2)0x y -=或0x y +=. 【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y,:l x ty =+11212AF B F F A F F B S S S =+,结合基本不等式,可得答案.【详解】(1)∵3c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=. (2)()1F,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0, 设直线l:x ty =+2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F B S S F F y y+=-=23t+,12=≤=,即1t =±时等号成立,所以直线l 的方程为0x y --=或0x y +=.【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F A F F B S S +并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力.25.(1)2214x y +=;(2)证明见解析. 【分析】(1)待定系数法求椭圆标准方程;(2)用“设而不求法”表示出M 、N ,,从而表示出直线MB ,NA , 证明直线MB 与直线NA 的交点的横坐标是定值.【详解】(1)因为c e a ==12b a =椭圆过点2D ⎫⎪⎪⎭, 所以2221142b b +=, 所以2a =,1b =,所以椭圆E 的方程为2214x y += (2)设直线:4l x my =+,设()11,M x y ,()22,N x y 联立22414x my x y =+⎧⎪⎨+=⎪⎩得:()2248120m y my +++= 2161920m ∆=->,m >m <-由韦达定理得:12284m y y m -+=+,122124y y m =+ 由题意得:直线11:(2)2y MB y x x =--,直线22:(2)2y NA y x x =++ 所以()()12212(2)2(2)y x x y x x +-=-+即()()12112212121262262x my y y my y y my y y y my y +--=+++整理得()()121221622226x y y my y y y -=++,即()()121221622326x y y y y y y -=-+++⎡⎤⎣⎦即()()12126262x y y y y -=-若213y y =,则1m =±,此时2161920m ∆=-<,所以12620y y -≠所以1x =【点睛】(1)待定系数法是求二次曲线的标准方程的常用方法;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.26.(1)1p =;(2)【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案.【详解】(1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y , 联立22y x =与y x t =+得2220y y t -+=, 480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以 ()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-,则122y y +=,124y y =-,所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.。
学探诊测试题及答案-选修1-1
学习探究诊断 数学选修1-1(文科)测试卷及参考答案 单元测试一 常用逻辑用语一、选择题1.下列全称命题中真命题的个数为( ) ①末位数是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等; ③正四面体中相邻两侧面为全等的三角形. (A )1个(B )2个(C )3个(D )0个2.下列特称命题中,真命题的个数是( ) ①x R ∃∈,0x ≤;②至少有一个整数,它既不是合数也不是素数; ③{}x x x ∃∈是无理数,2x 是无理数. (A )0个(B )1个(C )2个(D )3个3.设M ,N 是两个集合,则“M N ≠∅U ”是“M N ≠∅I ”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件4.设a ,b 是向量,命题“若a b =-,则a b =”的逆命题是( ) (A )若a b ≠-,则a b ≠ (B )若a b =-,则a b ≠ (C )若a b ≠,则a b ≠-(D )若a b =,则a b =-5.“1x >”是“1x >”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分又不必要条件6.已知实数1a >,命题p :函数212log (2)y x x a =++的定义域为R ,命题:1q x <是x a <的充分不必要条件,则( )(A )p 或q 为真命题 (B )p 且q 为假命题 (C )p ⌝且q 为真命题(D )p ⌝或q ⌝为真命题二、填空题7.命题“若0xy =,则0x =”的逆否命题是_______________.8.设1e ,1e 是两个不共线的向量,则向量12()b e e R λλ=+∈与向量122a e e =-共线的充要条件是__________.9.圆220x y Dx Ey F ++++=与x 轴相切的一个充分不必要条件是__________.10.已知下列五个命题:①“若x ,y 互为倒数,则1xy =”的否命题;②“若1m ≤,则方程220x x m -+=有实数根”的逆否命题; ③“素数都是奇数”的否定;④“菱形的对角线互相垂直”的逆命题; ⑤“全等三角形的面积相等”的逆命题. 其中所有的真命题的序号为__________. 三、解答题11.已知}{44P x a x a =-<<+,{}2430Q x x x =-+<且x P ∈是x Q ∈的必要条件,求实数a 的取值范围.12.命题p :对任意实数x ,有0x a ->或0x b -≤,其中a ,b 是常数. (1)写出命题p 的否定;(2)实数a ,b 满足什么条件时,命题p 的否定为真?13.设函数()f x x x a b =-+,其中,a b R ∈. 求证:()f x 为奇函数的充要条件是220a b +=.14.已知命题:51p x a ->和2:2310q x x -+>,请选取适当的实数a 的值,构造命题:“若p 则q ”,并使得构造的命题为真命题,而其逆命题为假命题,并说明为什么这一命题是符合要求的命题.单元测试二 圆锥曲线与方程(一)一、选择题1.抛物线22x y =的焦点坐标是( )(A )(1,0) (B )(0,1) (C )1(0,)2(D )1(,0)22.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则此曲线方程为( )(A )221412x y -= (B)221124x y -= (C )221106x y -= (D)221610x y -=3.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )(A )13(B )3(C )12(D )24.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )(A )2-(B )2(C )4-(D )45.已知(1,0)A -,(1,0)B ,动点P 满足2PA PB +=,则点P 的轨迹方程是( )(A )221x y +=(B )0y =(C )0y =,[1,1]x ∈-(D )22143x y +=6.若20m a <<,则双曲线22221x y a m b m -=-+与22221x y a b-=有( )(A )共同的离心率 (B )共同的渐近线 (C )共同的焦点 (D )共同的顶点二、填空题7.已知双曲线222210x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为____.8.如果一个椭圆是双曲线221169x y -=的焦点为顶点、顶点为焦点,那么这个椭圆的方程是__________.9.设1A ,2A 为椭圆2222:1(0)x yC a b a b+=>>的长轴的两个顶点,若其两个焦点将线段12A A 三等分,设c =则a ,b ,c 的大小关系是____.10.抛物线22y px =上一点(4,)A m 到其焦点的距离为5,则p m +=____.三、解答题11.已知点(2,0)M -,(2,0)N ,点P 满足条件PM PN +=求动点P 的轨迹W 的方程及其离心率.12.已知双曲线2212y x -=与点(1,2)P ,过点P 且斜率为1的直线l 与双曲线相交于A ,B两点,求证:点P 是线段AB 的中点.13.设F 为抛物线2:2(0)C y px p =>的焦点,点P 为抛物线C 上一点,若点P 到点F 的距离等于点P 到直线:1l x =-的距离. (1)求抛物线C 的方程;(2)设过点(3,2)且斜率为1的直线1l 与抛物线C 相交于A ,B 两点,求AB .14.已知曲线C 的方程为22(4)1()kx k y k k R +-=+∈.(1)若曲线C 是椭圆,求实数k 的取值范围;(2)若曲线C 是双曲线,且有一条渐近线的倾斜角是60︒,求此双曲线的方程.单元测试三 圆锥曲线与方程(二)一、选择题1.抛物线24(0)y ax a =<的焦点坐标是( )(A )(,0)a(B )(,0)a - (C )(0,)a (D )(0,)a -2.双曲线2214x y k-=的离心率(1,2)e ∈,则实数k 的取值范围是( )(A )(0,)+∞(B )(0,12)(C )(0,3)(D )(12,60)3.以双曲线221412x y -=-的焦点为顶点,顶点为焦点的椭圆方程为( )(A )2211612x y +=(B )2211216x y +=(C )221164x y +=(D )221416x y +=4.双曲线221mx y +=的虚轴长是实轴长的2倍,则m 等于( )(A )14-(B )4-(C )4(D )145.一动圆圆心在抛物线24x y =上,过点(0,1)且恒与直线l 相切,则直线l 的方程为( )(A )1x = (B )116x =(C )1y =- (D )116y =-6.若动点(),x y 在曲线2221(0)4x y b b+=>上变化,则22x y +的最大值为( )(A )24,(04)42, (b 4)b b b ⎧+<<⎪⎨⎪≥⎩(B )24,(02)42, (b 2)b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b二、填空题7.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点,且过点(2,4)P ,则该抛物线的方程为__________.8.一座抛物线形拱桥,高水位时,拱顶离水面2m ,水面宽4m ,当水面下降1m 后,水面宽____m .9.已知1F ,2F 为椭圆的焦点,等边三角形12AF F 两边的中点M 、N 在椭圆上,如图所示,则椭圆的离心率为__________.10.已知双曲线22:149x y C -=,给出以下四个命题,其中真命题的序号是_______________.①双曲线C 的渐近方程是32y x =±; ②直线312y x =+与双曲线有且仅有一个交点; ③双曲线C 与22194y x -=有相同的渐近线;④双曲线C 的焦点到一条渐近线的距离为3. 三、解答题11.已知顶点在原点,焦点在x 轴上的抛物线截直线21y x =+所得的弦长为15,求抛物线的方程.12.已知点M (2,0)-,N (2,0),点P 满足PM PN -= (1)求动点P 的轨迹W 的方程;(2)若以PM 为直径的圆过点N ,求点P 的坐标.13.设双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,求双曲线C 的离心率的取值范围.14.已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的一个动点,M 是曲线C的右顶点,定点A 的坐标为(2,0).(1)若点M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围.单元测试四 导数(一)一、选择题1.函数2()f x ax c =+在区间()0,+∞内单调递增,则实数,a c 应满足( )(A )0a <且0c =(B )0a >且0c ≠ (C )0a >且c 为任意实数(D )0a <且c 为任意实数2.设函数cos xy e x =⋅,则y '等于( )(A )cos x e x ⋅(B )sin x e x -⋅(C )cos sin x x e x e x ⋅+⋅(D )cos sin x x e x e x ⋅-⋅3.函数2()(1)(1)f x x x =+-的单调递减区间是( )(A )1(1,)3-(B )1(1,)3--(C )11(,)(,)33-∞-+∞U(D )1(,1)(,)3-∞-+∞U4.若函数()sin xf x e x =,则此图象在(,())22f ππ处切线的倾斜角为( ) (A )0(B )锐角(C )2π(D )钝角5.函数()2cos f x x x =+在[0,]2π上取最大值时的x 值为( ) (A )0(B )6π (C )4π (D )2π 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标 系中,不可能正确的是( )二、填空题7.曲线ln y x =在与x 轴交点处的切线方程为_______________. 8.函数1xy x =+,则y '=_______________. 9.xy x e =-在R 上的最大值是_______________.10.已知函数3()128f x x x =-+在区间[3,3]-上的最大值、最小值分别为,M m ,则M m -=_______________.三、解答题11.已知函数3()3f x x x =-.(1)求函数()f x 在3[3,]2-上的最大值和最小值;(2)过点()2,6P -作曲线()y f x =的切线,求此切线的方程.12.求函数()ln f x x x =的最小值.13.设曲线(0)x y e x =<在点(,)tM t e 处的切线l 与x 轴、y 轴所围成的三角形面积为()S t .(1)求切线l 的方程; (2)求()S t 的最大值.14.已知函数32()(,)f x x ax b a b R =-++∈.(1)若1a =,函数()f x 的图象能否总在直线y b =的下方?说明理由; (2)若函数()f x 在()0,2上是增函数,求a 的取值范围;(3)设123,,x x x 为方程()0f x =的三个根,且1(1,0)x ∈-,2(0,1)x ∈,3(,1)x ∈-∞-U (1,)+∞,求证:1a >.单元测试五 导数(二)一、选择题1.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )(A )430x y --= (B )450x y +-= (C )430x y -+=(D )430x y ++=2.已知函数()()y f x x R =∈上任一点()()00,x f x 处的切线斜率200(2)(1)k x x =-+,则该函数的单调递减区间为( ) (A )[1,)-+∞(B )(,2]-∞ (C )(,1)-∞-和(1,2)(D )[2,)+∞3.可导函数()f x 在0x 处的导数0()0f x '=是()f x 在0x 处取得极值的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件4.函数2()(2)1f x x a x a =+-+-是偶函数,则曲线()y f x =在1x =处的切线方程是( ) (A )2y x = (B )24y x =-+(C )y x =-(D )2y x =-+5.设函数()y f x =的图象如图所示,则函数()y f x '=的图象可能是( )6.曲线sin y x x =在点(,)22ππ-处的切线与x 轴,直线x =π所围成的三角形的面积为( ) (A )22π(B ) 2π(C )22π(D )21(2)2+π 二、填空题 7.曲线3123y x =--在点5(1,)3--处的切线的倾斜角为__________. 8.已知抛物线22y x bx c =-++在点(2,1)-处与直线3y x =-相切,则b c +=__________. 9.函数31()3f x x x =-+在2(,10)a a -上有最大值,则实数a 的取值范围是__________. 10.曲线1y x=和2y x =在它们的交点处的两条切线与x 轴所围成的三角形的面积是__________. 三、解答题 11.已知3211()(1)(1)32f x x a x ax a =-++≠.求()f x 的单调区间.12.设k R ∈,函数2()(2)xf x x x k e =++的图象在0x =处的切线过点(1,4).(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间.13.设函数321()2()3f x x x ax a R =-+∈在其图象上一点(2,)A m 处切线的斜率为1-. (1)求函数()f x 的解析式;(2)求函数()f x 在区间(1,)b b -内的极值.14.设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值.数学选修1-1综合检测题一、选择题1.有且只有一个公共点是直线和抛物线相切的( ) (A )充要条件(B )充分不必要条件 (C )必要不充分条件(D )既不充分也不必要条件2.已知两条不同的直线,m n ,两个不同的平面,αβ.给出下面四个命题: ①,m n m n αα⊥⇒⊥P ; ②,,m n m n αβαβ⊂⊂⇒P P ; ③,m n m n αα⇒P P P ;④,,m n m n αβαβ⊥⇒⊥P P .其中正确命题的序号是( ) (A )①③(B )②④(C )①④(D )②③3.若双曲线221x y -=右支上一点(,)P a b 到直线x y =,则a b +的值等于( ) (A )12-(B )12(C )2-(D )24.已知点P 是以12,F F 为焦点的椭圆22221(0)x ya b a b+=>>上一点,若120PF PF ⋅=u u u r u u u u r , 121tan 2PF F ∠=,则椭圆的离心率为( ) (A )12(B )23(C )13(D )5 5.二次函数()y f x =的图象过原点,且它的导函数()y f x '=的图象是过第一、二、三象限的一条直线,则函数()y f x =的图象的顶点在( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限6.若函数()e sin xf x x =,则此函数图象在点()()4,4f 处的切线的倾斜角为( )(A )2π(B )0(C )钝角 (D )锐角7.如图是某条公共汽车线路收支差额y 与乘客量x 的图象(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格.下面给出四个图象(图2).其中说法正确的是( )(A )图1反映了建议(2),图3反映了建议(1) (B )图1反映了建议(1),图3反映了建议(2) (C )图2反映了建议(1),图4反映了建议(2). (D )图4反映了建议(1),图2反映了建议(2)8.过()0,3作直线l ,若l 与双曲线22143x y -=只有一个公共点,则这样的直线l 共有( )(A )1条(B )2条(C )3条(D )4条9.已知3()691f x x x =++,若()(1)2f a f a +->,则实数a 的取值范围为( )(A )1(,)2+∞(B )(,1)-∞(C )(0,)+∞(D )(0,1)10.设12,F F 分别是双曲线2219yx -=的左、右焦点,若点P 在双曲线上,且120PF PF ⋅=u u u r u u u u r ,则12PF PF +u u u r u u u u r等于( )(A(B )(C(D )二、填空题11.已知:2,:(2)0p a q a a ≤-≤,则p ⌝是q ⌝的_______________条件. 12.321(2)33y x bx b x =++++在R 上不是单调函数,则实数b 的取值范围为__________. 13.已知点(2,4)A -及焦点为F 的抛物线22x y =,在这条抛物线上求一点P ,使得PA PF +的值最小,则点P 的坐标为__________.14.已知椭圆22212x y +=,A 是x 轴正半轴上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3,则点A 的坐标为__________. 三、解答题15.已知:p 不等式222x x m -+>恒成立,:()(52)xq f x m =--是减函数,“若p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围.16.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,且124F F =,一条渐近线的倾斜角为60︒.(1)求双曲线C 的方程和离心率;(2)若点P 在双曲线C 的右支上,且12PF F ∆的周长为16,求点P 的坐标.17.设圆22(1)25x y ++=的圆心为,(1,0)C A 是圆内一定点,Q 为圆周上任意一点,AQ 的垂直平分线与直线CQ 交于点M ,求点M 的轨迹方程.18.已知函数3()3f x x x =-.(1)求函数()f x 的极值;(2)求正数a ,使得()f x 在[],a a -上的值域为[],a a -.19.已知函数321()(,)3f x x x ax b a b R =-+++∈. (1)若3a =,试确定函数()f x 的单调区间;(2)若函数()f x 在其图象上任意一点00(,())x f x 处切线的斜率都小于22a ,求a 的取值范围.20.已知椭圆的中心在原点,焦点在x 轴上,一个顶点的坐标为(0,1)A -,且其右焦点到直线0x y -+=的距离为3.(1)求椭圆方程;(2)是否存在斜率为(0)k k ≠的直线l ,使l 与已知曲线交于不同的两点M ,N ,且有 AM AN =,若存在,求出k 的范围;若不存在,请说明理由.测试卷参考答案 单元测试一 常用逻辑用语一、选择题1.C2.D 点拨:①x R ∃∈,0x ≤显然正确,②“1”既不是合数,也不是素数,正确,③π是无理数,而2π仍然是无理数,正确,故选D.3.B 点拨:韦恩图易知“M N ≠∅U ”⇒“M N ≠∅I ”,且“M N ≠∅I ”⇒ “M N ≠∅U ”.4.D5.A 点拨:因“1x >”⇒“1x >”,反之“1x >”⇒“1x >或1x <-”,不一定有“1x >”.6.A 点拨:命题p :当1a >时,440a ∆=-<,即220x x a ++>恒成立,故函数212log (2)y x x a =++的定义域为R ,即命题p 是真命题;命题q :当1a >时111x x x a <⇔-<<⇒<但x a ⇒<11x -<<,即1x <是x a <的充分不必要条件,故命题q 也是真命题,故得命题p 或q 是真命题,因而选A. 二、填空题7.若0x ≠,则0xy ≠. 8.12λ=-点拨:b a P ,则121λ=-,所以12λ=-. 9.0D =,0E ≠,0F = 点拨:答案不唯一,只需一个即可.10.①②③ 点拨:①原命题的逆命题是:若:1xy =,则,x y 互为倒数,为真,故否命题为真; ②易知原命题为真,故其逆否命题为真;③“素数都是奇数”的否定是有在素数不是奇数, 例如2,是素数,但不是奇数,故“素数都是奇数”的否定为真, 三、解答题11.解:因为{}{}44,13P x a x a Q x x =-<<+=<<,又因为x P ∈是x Q ∈的必要条件,所以x Q x P ∈⇒∈,即Q P ⊆,所以41,5,43,1,a a a a -≤≤⎧⎧⇒⎨⎨+≥≥-⎩⎩即15a -≤≤. 12.解:(1)命题p 的否定:对某些实数x ,有0x a -≤且0x b ->,其中,a b 是常数. (2)要使命题p 的否定为真,就是要使关于x 的不等式组0x a x b -≤⎧⎨->⎩的解集不为空集.通过画数轴可以看出:,a b 应满足的条件是b a <.13.证明:充分性:若220a b +=,则0a b ==,所以()f x x x =.因为()f x x x -=--=()x x f x -=-对一切x R ∈恒成立.所以()f x 是奇函数.必要性:若()f x 是奇函数,则对一切x R ∈,()()f x f x -=-恒成立, 即x x a b x x a b ---+=---. 令0x =得b b =-,所以0b =,令x a =得20a a =,所以0a =,即220a b +=. 14.解:p :即51x a -<-或51x a ->,所以15a x -<或15a x +>.2:2310q x x -+>,所以12x <或1x >.令4a =,则3:5p x <-或1x >,此时,p q q ⇒⇒p .故可选取的一个实数是4a =,此时可构造命题:若514x ->,则22310x x -+>.由以上过程可知这一命题为真命题,但它的逆命题为假命题.单元测试二 圆锥曲线与方程(一)一、选择题1.C2.A3.D4.D5.C6.C 二、填空题7.53 8.221259x y += 9.a b c >> 10.6或-2 三、解答题11.解:由椭圆定义,知动点P 的轨迹是以,M N 为焦点的椭圆,且2c =,a =,所以2224b a c =-=.所以,轨迹W 的方程为22184x y +=.这个椭圆的离心率为c a =. 12.证明:直线l 的方程为21(1)y x -=⨯-,即1y x =+,联立方程221,1,2y x y x =+⎧⎪⎨-=⎪⎩消去y ,得2230x x --=,设11(,)A x y ,22(,y )B x ,则13x =,21x =-, 所以14y =,20y =,故点(3,4)A ,(1,0)B -. 所以AB 的中点坐标为(1,2),即中点为P .13.解:(1)由抛物线定义知:抛物线C 的准线方程为1x =-. Q 抛物线方程为标准方程,12p∴=,即2p =, ∴抛物线C 的标准方程是24y x =.(2)直线:21(3)AB y x -=⨯-,即1y x =-,设11(,)A x y ,22(,)B x y ,解方程组24,1,y x y x ⎧=⎨=-⎩消去y ,得2610x x -+=, 126x x ∴+=,121x x ⋅=,AB ∴==8==.(注:也可先求出,A B 两点的坐标,再求AB .) 14.解:(1)因为曲线C 是椭圆,所以方程22(4)1kx k y k +-=+,可化为221114x y k k k k+=++-,则10,10,411,4k k k kk k k k +⎧>⎪⎪+⎪>⎨-⎪++⎪≠⎪-⎩解得02k <<,或24k <<.(2)因为曲线C 是双曲线, 所以,当焦点在x 轴上时,有110,04k k k k++>->- ① 因为有一条渐近线的倾斜角是60︒,所以214(tan 60)1k k k k+--=︒+ ②由①②,得6k =,此时双曲线方程为2217762x y -=; 同理,当焦点在y 轴上,知无解.所以双曲线方程为2217762x y -=.单元测试三 圆锥曲线与方程(二)一、选择题1.A 点拨:因为24y ax =,0a <,开口向左,所以焦点坐标为(,0)a ,故选A.2.B点拨:由题意2,a b c ===,所以2c e a ==,所以122<<,所以24<<,解得(0,12)k ∈.3.D 点拨:双曲线221124y x -=的焦点为(0,4)±,顶点为(0,±,所以所求椭圆的4a =,c =,则24b =,故求椭圆方程为221416x y +=. 4.A 点拨:因为曲线221mx y +=是双曲线,所以0m <,排除C,D,将14m =-,代入已知 方程,变为2214x y -=,虚轴长为4,而实轴长为2,满足题意,故选A.5.C 点拨:由抛物线定义可知直线l 为抛物线的准线,所以为1y =-.6.A 点拨:2222222424(1)2()444y b b x y y y b b +=-+=-⋅-++.因为b y b -≤≤,所以当204b b <<,即04b <<时22x y +有最大值244b +;当24b b ≥,即4b ≥,y b =时22x y+取得最大值2b ,故选A. 二、填空题7.28y x = 点拨:设抛物线方程为22y px =,过(2,4)P ,所以164p =,所以4p =,所以方程为28y x =.8. 点拨:依题意可设抛物线方程为22(0)x py p =->.将点(2,2)-代入,222(2)p =--,所以1p =,所以22x y =-,当3y =-时26x =,所以x =,水面宽为9.1 点拨:连接2MF ,则等边三角形12AF F 中,11212MF F F c ==,212MF F ==,由定义知122MF MF a +=,即c +=10.①②③④ 点拨:由渐近线的定义结合图形易判断四个命题全对. 三、解答题11.解:依题意:设抛物线方程为22y ax =,将21y x =+代入,得242(2)10x a x --+=,由韦达定理,得12122(2)2,421,4a a x x x x --⎧+==⎪⎪⎨⎪⋅=⎪⎩==所以6a =或2-.即所求的抛物线方程为212y x =或24y x =-.12.解:(1)由双曲线定义知,动点P 在以,M N 为焦点的双曲线的右支,且2c =,a = 所以2222b c a=-=.所以轨迹W 的方程为221(22x y x -=≥.(2)由题意PN MN ⊥,所以点P 横坐标2P x =,因为P 在轨迹W 上,所以22122P Px y -=,解得P y =所以(2,P .13.解:由C 与l 相交于两个不同点,故知方程组2221,1x y a x y ⎧-=⎪⎨⎪+=⎩有两组不同的实根,消去y 并整理得2222(1)220a x a x a -+-=.所以242210,48(1)0,a a a a ⎧-≠⎪⎨+->⎪⎩解得0a<<且1a ≠.双曲线的离心率e a ==因为0a <<且1a ≠,所以e >,且e ≠即离心率e的取值范围为)+∞U .14.解:(1)由题意,得2m =,椭圆方程为2214x y +=,c ==∴左、右焦点坐标为(,0).(2)3m =,椭圆方程为2219x y +=,设(,)P x y ,则222222891(2)(2)1()9942x PA x y x x =-+=-+-=-+,其中33x -≤≤,∴当94x =时,min 2PA =;当3x =-时,max 5PA =. (3)设动点(,)P x y ,则2222222222222124(2)(2)1()5()11x m m m PA x y x x m x m m m m m -=-+=-+-=--+-≤≤--,Q 当x m =时,PA 取最小值,且2210m m ->,2221mm m ∴≥-且1m >,解得11m <≤单元测试四 导数(一)一、选择题1.C2.D3.A4.B5.B6.D 二、填空题7.10x y --= 8.21(1)x + 9.1- 10.32三、解答题11.解:(1)2()3(1)3(1)(1)f x x x x '=-=+-Q ,∴当[3,1)x ∈--或3(,]2x ∈时,()0f x '>, 3[3,1),(1,]2∴--为函数()f x 的单调增区间;而当(1,1)x ∈-时,()0f x '<,[1,1]∴-为()f x 的单调减区间. 又(3)18f -=-Q ,(1)2f -=,(1)2f =-,39()28f =-, ∴当3x =-时,min ()18f x =-;当1x =-时,max ()2f x =. (2)设切点为3000(,3)Q x x x -,则所求切线方程为320000(3)3(1)()y x x x x x --=--, 由于切线过点320000(2,6),6(3)3(1)(2)P x x x x -∴---=--, 解得00x =或03x =,所以切线方程为3y x =-或1824(3)y x -=-, 即30x y +=或24540x y --=.12.解:已知函数的定义域是(0,),()ln 1f x x '+∞=+, 由()0f x '=,得1,x x e=变化时,()f x '的变化情况如下表:所以,()f x 在(0,)e上单调递减,在(,)e+∞上单调递增. 所以,函数的最小值为1111()ln f e e e e==-. 13.解:(1)因为()()x xf x e e ''==,所以切线l 的斜率为e t , 故切线l 的方程为()t ty e e x t -=-. 即e (1)0t tx y e t ---=.(2)令0y =,得1x t =-,令0x =得(1)ty e t =-,其中0t <.211()|1||(1)|(1)22t t S t t e t e t =--=-, 从而211()(1)(1)(1)22t t S t e t e t t '=-=-+, 因为当(,1)t ∈-∞-时,()0S t '>;当(1,0)t ∈-时,()0S t '<; 所以()S t 的最大值为2(1)S e-=. 14.(1)解:当1a =时,32()f x x x b =-++,(1)2f b b -=+>因为(1)2f b b -=+>,所以,函数()f x 的图象不能总在直线y b =的下方.(2)解:由题意,得2()32f x x ax '=-+,令()0f x '=,解得0x =或23x a =, 当0a <时,由()0f x '>,解得203a x <<, 所以()f x 在2(,0)3a 上是增函数,与题意不符,舍去;当0a =时,由2()30f x x '=-≤,与题意不符,舍去;当0a >时,由()0f x '>,解得203x a <<, 所以()f x 在2(0,)3a 上是增函数, 又()f x 在(0,2)上是增函数, 所以223a ≥,解得3a ≥, 综上,a 的取值范围为[3,)+∞.(3)证明:因为方程32()0f x x ax b =-++=最多只有3个根,由题意,得在区间(1,0)-内仅有一根, 所以(1)(0)(1)0f f b a b -⋅=++<① 同理(0)(1)(1)0f f b a b ⋅=-++<② 当0b >时,由①得10a b ++<,即1a b <--, 由②得10a b -++<,即1a b <-+,因为11b b --<-+,所以11a b <--<-,即1a <-; 当0b <时,由①得10a b ++>,即1a b >--, 由②得10a b -++>,即1a b >-+,因为11b b --<-+,所以11a b >-+>,即1a >;当0b =时,因为(0)0f =,所以()0f x =有一根0,这与题意不符. 综上,1a >.注:在第(3)问中,得到①②后,可以在坐标平面aOb 内,用线性规划方法解,单元测试五 导数(二)一、选择题1.A 点拨:考查斜率与导数及直线方程基本知识.因为34y x '=,由4y '=得1x =.而1x =时1y =,故l 的方程为430x y --=.2.B 点拨:由导数几何意义知,在(,2]-∞上()0f x '<,故单调递减.3.B4.A 点拨:考查利用导数确定切线方程.由()f x 为偶函数得2a =,即2()1f x x =+,从而(1)2f '=,切点(1,2),所以切线为2y x =.5.D 点拨:由()y f x =图象知有两个极值点,第一个是极大值点,第二个是极小值点,由极 值意义知,选D.6.A 点拨:sin y x x =在(,)22ππ-处切线为y x =-,所围成的三角形面积为22π.二、填空题7. 135︒ 点拨:1|1x y =-'=-,所以1k =-,即倾斜角为135︒.8.-2 点拨:2y |1x ='=,所以9b =,因为(2,1)-在抛物线上,所以11c =-.9.[2,1)- 点拨:由于2()1f x x '=-+,易知在(,1)-∞-上递减,在[1,1]-上递增,在(1,)+∞上递减.故函数在2(,10)a a -上存在最大值条件为21,101,(1)().a a f f a <⎧⎪->⎨⎪≥⎩所以21a -≤<. 10.34点拨:如图,易求2,1AP BP k k ==-.所以1(,0),(2,0)2A B ,故34ABP S =V . 三、解答题11.解:2()(1)(1)()f x x a x a x x a '=-++=--.当1a >时,令()0f x '>,得(,1)-∞和(,)a +∞为单调递增区间. 令()0f x '<,得(1,)a 为单调递减区间.当1a <时,令()0f x '>,得(,)a -∞和(1,)+∞为单调递增区间. 令()0f x '<,得(,1)a 为单调递减区间.12.解:(1)22()(22)(2)(42)x x xf x x e x x k e x x k e '=++++=+++,所以(0)2f k '=+,又因为(0)f k =,所以2()(2)xf x x x k e =++在0x =处的切线方程为(2)y k x k =++,因为点(1,4)在此切线上,代入切线方程解得1k =,所以函数2()(21)xf x x x e =++.(2)2()(43)xf x x x e '=++,令()0f x '=,得3x =-或1x =-.当x 变化时,()f x 和()f x '的变化情况如下表:所以函数()f x 的单调递增区间为(,3)-∞-,(1,)-+∞,单调递减区间为(3,1)--13.(1)解:函数()f x 的导数2()4f x x x a '=-+.由题意,得(2)41f a '=-+=-, 所以3a =, 故321()233f x x x x =-+. (2)解:由(1)知2()43f x x x '=-+, 由2()430f x x x '=-+=,得1x =,或3x =.当x 变化时, (),()f x f x '的变化情况如下表:当11b -<,且1b >时,函数()f x ,在1x =时,有极大值43,此时函数无极小值; 当13b -<,且3b >时,函数()f x 在3x =时,有极小值0,此时函数无极大值; 当11b -≥,且3b ≤时,函数()f x 无极值.故当(,1][2,3][4,)b ∈-∞+∞U U 时,函数()f x 无极值; 当(1,2)b ∈时,函数()f x 在1x =时,有极大值43,此时函数无极小值; 当(3,4)b ∈时,函数()f x 在3x =时,有极小值0,此时函数无极大值.14.证明:因为2()ln ,0f x ax b x ab =+≠,所以()f x 的定义域为(0,)+∞.22()2b ax bf x ax x x+'=+=.当0ab >时,如果0,0,()0a b f x '>>>,()f x 在(0,)+∞上单调递增; 如果0,0,()0a b f x '<<<,()f x 在(0,)+∞上单调递减, 所以当0ab >,函数()f x 没有极值点, 当0ab <时,()f x '= 令()0f x '=,将1(0,)x =+∞(舍去),2(0,)x =+∞. 当0,0a b ><时,(),()f x f x '随x 的变化情况如下表:从上表可看出,函数()f x 有且只有一个极小值点,极小值为[1ln()]22b bf a=---. 当0,0a b <>时,()f x ',()f x 随x 的变化情况如下表:函数()f x 有且只有一个极大值点,极大值点为[1ln()]22b bf a=---. 综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若0,0a b ><时,函数()f x 有且只有一个极小值点,极小值为[1ln()]22bb a---.若0,0a b <>时,函数()f x 有且只有一个极大值点,极大值为[1ln()]22b b a---. 数学选修1-1综合检测题一、选择题1.C 点拨:与抛物线只有一个交点的直线除了切线外,还有与对称轴平行的宜线及对称轴.2.C 点拨:对于②,在两平行平面内的直线有两种位置关系:平行或异面;对于③,平行线中有一条与平面平行,则另一条可能与平面平行,也可能在平面内,本题主要考查空间想象能力和逻辑推想能力。
高中数学选修1-1(北师版)第二章圆锥曲线与方程2.4(与最新教材完全匹配)知识点总结含同步练习题及答案
− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − 1 2 2 2 √ |AB| = √(x1 − x2 ) + (y 1 − y 2 ) = 1 + k |x1 − x2 | = √1 + |y 1 − y 2 | ;其中 k2 − − − − − − − − − − − − − − − − |x1 − x2 | 和 |y 1 − y 2 | 可由两根差公式 |x1 − x2 | = √(x1 + x2 )2 − 4x1 x2 , − − − − − − − − − −− − − − − |y 1 − y 2 | = √(y 1 + y 2 )2 − 4y 1 y 2 得到.
y2 x2 √2 ,且短轴一个端点到左焦点 F 的距 + = 1(a > b > 0) 的离心率为 2 2 a2 b 离是 √2 ,经过点 F 且不垂直于 x 轴的直线 l 交椭圆 C 与点 A ,B 两点,点 O 为坐标原
由 |AB| =
4√3 (k2 + 1) 2 + 3k2
.
3√3 ,解得 k2 = 2 ,即 k = ±√2 . 2 所以直线 l AB :√2 x − y + √2 = 0 或 √2 x + y + √2 = 0. y2 x2 √6 ,右焦点为 (2√2 , 0) ,斜率为 1 + = 1 (a > b > 0) 的离心率为 2 2 3 a b 的直线 l 与椭圆 G 交与 A ,B 两点,以 AB 为底边作等腰三角形,顶点为 P (−3, 2) . (1)求椭圆 G 的方程; △P AB
因为 AB 是等腰 △P AB 的底边,所以 P E ⊥ AB . 所以 P E 的斜率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(选修1-1)圆锥曲线单元综合练习卷(文)
时间:120分钟 满分150分
一、选择题:(每题5分,共60分)
1.0c是方程 cyax22 表示椭圆或双曲线的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.不充分不必要条件
2.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为 ( )
A.(1, 0) B.(2, 0) C.(3, 0) D.(-1, 0)
3.直线y = x +1被椭圆x 2+2y 2=4所截得的弦的中点坐标是( )
A.(31, -32) B.(-32, 31) C.(21, -31) D.(-31,21 )
4.一抛物线形拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m,则水面宽为( )
A.6m B. 26m C.4.5m D.9m
5. 已知椭圆15922yx上的一点P到左焦点的距离是34,那么点P到椭圆的右准线的距离是( )
A.2 B.6 C.7 D.143
6.曲线225x+29y=1与曲线225kx+29ky=1(k<9 )的( )
A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等
7.已知椭圆25x+2my=1的离心率e=105,则m的值为( ) A.3 B. 253或 3 C. 5 D. 5153或15
8.已知椭圆C的中心在原点,左焦点F1,右焦点F2均在x轴上,A为椭圆的右顶点,B为椭圆短轴的端点,P是椭圆
上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率等于( ) A.12 B.22 C.13 D.55
9.方程02nymx与)0(122nmnymx的曲线在同一坐标系中的示意图应是( )
A B C D
10.椭圆225x+29y=1上一点M到左焦点1F的距离为2,N是M1F的中点,,则2ON等于 ( )
A. 3 B . 4 C. 8 D.16
11.与曲线1492422yx共焦点,而与曲线1643622yx共渐近线的双曲线方程为( )
A.191622xy B.191622yx C.116922xy D.116922yx
12.若椭圆)1(122mymx与双曲线)0(122nynx有相同的焦点F1、F2,P是两曲线的一个交点,则
21
PFF
的面积是( ) A.4 B.2 C.1 D.12
二.填空题(每题5分,共20分)
13.11422tytx表示双曲线,则实数t的取值范围是 .
14.双曲线42x-2y+64=0上一点P到它的一个焦点的距离等于1,则点P到另一个焦点的距离等于 .
15.斜率为1的直线经过抛物线2y=4x的焦点,且与抛物线相交于A,B两点,则AB等于 .
16. 设x,y∈R,在直角坐标平面内,a=(x,y+2), b= (x,y-2),且a+b=8,则点M(x , y)的轨迹方程是 .
三.解答题:(共6小题,其中17题10分,其余各题均12分,共70分)
17.已知双曲线与椭圆1244922yx共焦点,且以xy34为渐近线,求双曲线方程.(10分)
18.抛物线的焦点F在x轴上,直线3y与抛物线相交于A,,5AF求抛物线的标准方程.(12分)
19.椭圆的中心是原点O,它的短轴长为22,相应于焦点F(c,0)(0c)的准 线l与x轴相交于点A,|OF|=2|FA|,
过点A的直线与椭圆相交于P、Q两点.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)若0OQOP,求直线PQ的方程;(12分)
20.已知椭圆的中心在原点O,焦点在坐标轴上,直线y = x +1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=210,求椭
圆的方程.(12分)
21.一炮弹在A处的东偏北60°的某处爆炸,在A处测到爆炸信号的时间比在B处早4秒,已知A在B的正东方、相距
6千米, P为爆炸地点,(该信号的传播速度为每秒1千米)求A、P两地的距离.(12分)
22.已知双曲线方程为2219xy,过左焦点作倾斜角为6的直线交双曲线于A、B两点
(1)求弦AB的长(2)求左焦点F1到AB中点M的长。(12分)
圆锥曲线单元练习卷(文)参考答案
一.选择题(本大题共12小题,每小题5分,共60分)
题号
1 2 3 4 5 6 7 8 9 10 11 12
答案 B A B B C D B D A C A C 二.填空题(本大题共4小题,每小题5分,20分) 13.t>4或t<1 14. 17 15. 8 16. 212x+216x=1 三.解答题(共6小题,其中17题10分,其余各题均12分,共70分) 17.(10分) [解析]:由椭圆1244922yx5c. 设双曲线方程为12222byax,则253422baab16922ba 故所求双曲线方程为116922yx 18.(12分)解:设所求焦点在x轴上的抛物线标准方程为:,3,,022mAppxy则由抛物线的定义得,25FmAF又,232pm=-.9,1PP故所求抛物线方程为.18,222xyxy或 19.(12分) [解析]:(1)由已知由题意,可设椭圆的方程为)2(12222ayax.由已知得).(2,2222ccacca解得2,6ca所以椭圆的方程为12622yx,离心率36e.(Ⅱ)解:由(1)可得A(3,0).设直线PQ的方程为)3(xky.由方程组)3(,12622xkyyx得062718)13(2222kxkxk依题意0)32(122k,得3636k.设),(),,(2211yxQyxP,则13182221kkxx, ① 136272221kkxx. ② 由直线PQ的方程得)3(),3(2211xkyxky.于是 ]9)(3[)3)(3(2121221221xxxxkxxkyy. ③ ∵0OQOP,∴02121yyxx. ④. 由①②③④得152k,从而)36,36(55k. 所以直线PQ的方程为035yx或035yx. 20.(12分)[解析]:设所求椭圆的方程为12222byax,依题意,点P(11,yx)、Q(22,yx)的坐标 满足方程组112222xybyax 解之并整理得0)1(2)(222222baxaxba 或0)1(2)(222222abybyba 所以222212baaxx,222221)1(babaxx ① 222212babyy,222221)1(baabyy ② 由OP⊥OQ02121yyxx22222baba ③ 又由|PQ|=2102212212)()(yyxxPQ=25
2122121221
4)(4)(yyyyxxxx
=25
2122121221
4)(4)(yyyyxxxx
=25 ④
由①②③④可得:048324bb32222bb或
23222aa或
故所求椭圆方程为123222yx,或122322yx
21.(12分) [解析]:以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,则A(3,0)、B(-3,0)
3,5,2614||||cbaPAPB
15422yxP是双曲线
右支上的一点 ∵P在A的东偏北60°方向,
∴360tanAPk. ∴线段AP所在的直线方程为)3(3xy
解方程组00)3(315422yxxyyx 358yx得 ,即P点的坐标为(8,35)
∴A、P两地的距离为22)350()83(AP=10(千米).
22.(12分)解: a=3,b=1,c=10,ABl:y=31(x+10)即x=3y-10.
将其代入x2-9y2-9=0.得6y2+230y-1=0,
y1+y2=-306,∴My-3012
.∴|AB|212361(3)2yy|F1M|=2)1(1||kyyFM=3012×31=306.
O
x
y
A
B
P
O
P
Q
x
y