沉降观测及基坑变形监测方案
基坑回填沉降观测方案

广深港客运专线ZH-3 标段深圳北站站房范围内基坑回填沉降观测实施方案编制:复核:审核:中铁二局广深港客运专线ZH-3 标项目部二○一○年一月站房范围内基坑回填沉降监测方案1.观测目的站房范围内地铁五号线、新区大道、平南铁路既有线、平南铁路新线、平南铁路便线基坑回填除保证施工质量外,回填完成后应进行沉降动态监测,根据沉降监测数据,分析基坑回填土的沉降对上部结构物的影响。
为保证后续施工的结构物的质量和安全,对站房范围内的基坑回填制定本沉降观测实施方案。
2.工程概况深圳北站位于深圳市龙华镇,是深圳市重要的交通枢纽,地铁五号线,平南铁路新线、平南铁路既有线、平南铁路便线东西向横穿站房,新区大道南北向穿过站房(如下图)。
留站房范围平面布置图观测组织机构及人员配置 3. 1)组织机构(沉降观测工程是个庞大的系统工程,跨越时间较长,需要各方面组织协调、严格的测试制度和责任到人的人员配置才能完成。
为了满足监测工作的需要,拟定整个项目由金罡总工任总体技术负责人,由廖泽元、刘洪权作为分项技术负责人,其中刘洪权担任专职测量对队长,共同完成本项目的各项任务。
为本项目设个组,即一、二、三工区观测组,各负其责,在项目负责人和技术负责人的3 置管理下分别开展现场测试、数据分析及报告编写工作。
(2)观测组分组情况及设备配置组号人员监测范围线路长( m)仪器设备1杨武、叶国昌、熊飞DK97+172~DK98+3351163天宝 DiNi0.3数字水准仪2杨勇、姜力川、李松DK98+335~DK100+6202285数天宝 DiNi0.3字水准仪3钟科峰、唐小宏、李冰DK100+620~DK104+5003880数天宝 DiNi0.3字水准仪(3)人员职责①第一组杨武任组长,负责资料的收集及整理、上报;仪器的日常维护及检校。
其他人员现场测试。
②第二组杨勇任组长,负责资料的收集及整理、上报;仪器的日常维护及检校。
③第三组钟科峰任组长,负责资料的收集及整理、上报;仪器的日常维护及检校。
深基坑周围地表沉降及变形分析

本研究采用理论分析和现场监测相结合的方法,对北京地铁车站深基坑地表变 形特性进行研究。首先,收集北京地区相关岩土工程资料,了解土体物理性质 及力学性能。其次,利用有限元分析软件进行数值模拟,预测深基坑施工引起 的地表变形。最后,通过现场监测数据对模拟结果进行验证和调整。
通过研究发现,北京地铁车站深基坑地表变形主要表现为沉降和水平位移。沉 降最大值出现在基坑边缘附近,水平位移则表现为向基坑内倾斜。产生这些变 形的原因主要包括:土体物理性质的差异、地下水作用、基坑内外压力差等。 此外,地表变形还受到施工工艺、支护结构形式等因素的影响。
地表沉降及变形分析的目的是预测和控制深基坑施工对周围环境的影响,确保 施工安全和周边设施的正常运行。具体而言,分析内容包括沉降量的测定、沉 降速度的监测、变形模式的识别以及危险区域的划定等。
在沉降量的测定中,常用的方法有精密水准测量法和GPS监测法。这些方法能 够提供高精度的数据,帮助我们了解沉降的量和速度。同时,通过对比不同时 间点的测量数据,可以绘制出沉降曲线,进一步揭示沉降的规律和趋势。
在分析这些变形特性的基础上,本次演示还探讨了可能存在的不足之处,如监 测数据的不确定性、模型简化带来的误差等。同时,为进一步深入研究,本次 演示指出了未来研究方向,如开展多因素耦合分析、考虑长期变形的影响等。
总之,本次演示对北京地铁车站深基坑地表变形特性进行了系统研究,为深入 理解这一复杂现象提供了有益见解。然而,受限于研究方法和实际条件的制约, 本研究仍存在一定局限性。未来的研究者可以在本研究的基础上,进一步拓展 研究范围,综合考虑更多影响因素,以推动地铁车站深基坑工程的理论与实践 发展。
总之,深基坑周围地表沉降及变形分析是确保施工安全和周边环境稳定的重要 手段。通过科学的方法和合理的措施,可以有效控制沉降和变形的发生,保障 工程的顺利进行和社会公共安全。未来,随着监测技术和数值模拟方法的不断 发展,地表沉降及变形分析将更加精确和可靠,为深基坑工程的安全施工提供 有力支持。
沉降观测方案

目录一、编制依据 (2)二、工程概况 (2)三、沉降观测概述 (2)四、沉降观测设计 (2)4.1沉降观测的方法和频率 (2)4.2基准点的选择与布设 (3)五、沉降观测点的布置 (4)六、沉降观测点的做法 (5)七、沉降观测的方法 (6)7.1沉降观测的工作要求 (6)7.2沉降观测的时间和次数 (6)7.3沉降观测的线路 (6)7.4沉降观测的首次测定 (7)八、沉降观测的精度 (7)九、沉降观测的资料 (7)十、沉降观测的问题及处理 (7)10.1 曲线在首次观测后即发生回升现象 (7)10.2 曲线自某点起渐渐回升 (8)10.3 曲线在中间某点突然回升 (8)10.4 曲线中断现象 (8)10.5 曲线的波浪起伏现象 (8)一、编制依据施工图纸;施工组织设计;《工程测量规范》GB50026-2007;《建筑地基基础工程施工质量验收规范》GB 50202-2002《建筑地基基础设计规范》GB 50007-2011《建筑施工高处作业安全技术规范》JGJ 80-91《城市建设工程竣工测量成果规范》CH/T 6001-2014《建筑工程施工测量规程》DB11T 446-2007;《建筑变形测量规范》JGJ82007;二、工程概况项目由两个地块(L1和L2)组成,其中L1地块约合12亩,L2地块约合13亩。
本工程项目用地为商业、住宅用地,净用地面积16680.00平方米,总建筑面积为89991.69平方米。
其中地上计入容积率的建筑面积:为60789.46平方米,地下建筑面积为29243.10平方米。
a.地上部分:L1地块1、2#楼1、2层为商业裙房、3-19层为住宅;L2地块为商业综合楼,商业为6层,酒店为3层。
地下室车库:本工程地下室按两层设计,地下室范围为位于1、2#楼和商业综合楼的下部及其扩展部分。
地下室总建筑面积为29243.10平方米;室内外高差为0.1米,覆土深度为0.6-1.1米,汽车库设有四个坡道出入口。
基坑变形监测的要点及技术措施分析

测。
监测周期与频率
在基坑开挖前应进行初始测量,确定初始值;在基坑开挖期 间,应按照一定的时间间隔进行连续监测,一般为每天1~2 次;当出现异常情况时,应增加监测频率。
在基坑回填期间,也应按照一定的时间间隔进行监测,直至 回填完成。
监测数据的处理与分析
1
对采集的监测数据进行检查和校准,消除错误 数据和异常值。
技术发展趋势与展望
发展自动化监测技术
随着技术的发展,自动化监测技术将在基坑变形监测中得到广 泛应用,提高监测效率和准确性。
引入新型传感器和设备
新型的传感器和设备能够更好地适应复杂的环境,提高监测数据 的准确性。
加强数据分析与解释
对于大量的监测数据,需要加强数据分析与解释,提取有用的信 息,为基坑工程的安全提供更有力的保障。
变形监测应实时监控建筑物的变形情况,及 时发现和预测潜在的安全隐患,为采取必要 的工程措施提供科学依据。
02
基坑变形监测的要点
监测网的建立
监测基准点的设置
应选择在基坑开挖影响范围之外的稳定区域,设置3个以上相互垂直的基准点 ,组成监测控制网。
监测点的布设
在基坑开挖前,根据设计要求和现场实际情况,确定监测点的位置和数量, 应考虑全面覆盖、重点突出、便于数据采集和处理等原则。
04
基坑变形监测的实践应用
工程实例一:上海中心大厦基坑监测
监测点布置
在上海中心大厦基坑周围共布置了8个监测点,监测其垂直位移、 水平位移、沉降等指标。
监测周期
自基坑开挖起至地下室施工完成,每周监测2次,进入稳定期后每 周监测1次。
数据分析
通过数据分析,发现基坑南侧存在较大变形,及时采取了加固措施 ,确保了施工安全。
变形监测方案

绿园污水处理厂顶管施工基坑监测方案编制:审核:审定:二0一五年七月目录1.项目概述 (2)1.1概况 (2)1.2监测项目 (2)2.第三方监测原则及技术规程 (2)2.1监测原则及目的 (2)2.2技术规程 (2)3.监测实施程序 (3)4.监测实施 (3)4.1基坑围护结构顶部沉降监测 (3)4.1.1水准控制网的设置 (3)4.1.2监测点的埋设原则 (5)4.1.3监测点的安设方法 (5)4.1.4监测方法及精度控制 (6)4.1.5沉降观测数据分析及成果表述 (7)4.2基坑围护结构顶部水平位移监测 (7)4.2.1水位位移监测控制网的布设形式 (7)4.2.2水平位移监测控制网布设原则 (8)4.2.3水平位移测点布置原则 (8)4.2.4水平位移测点的埋设技术要求 (8)4.2.5观测技术方法及精度控制 (9)4.2.6观测数据分析及成果概述 (12)4.3基坑自身监测频率 (13)5报警的处理方法 (14)5.1报警值的设定 (15)5.2报警的处理办法 (15)6实施组织计划 (14)7本工程拟投入的主要仪器设备表 (15)8人员组织实施 (16).项目概述1.1概况受0000000厂委托,00000000承担绿园污水处理厂配套管网基坑沉降变形观测工程,管道位于:东湖大街、滏阳路、朝阳大街、长安路、和平路、等路段,管线总长度约12263米,共计92个深基坑,我公司在基坑开挖至回填土完成期间,对基坑坡顶进行水平位移和沉降变形监测。
1.2监测项目本方案监测项目有:基坑围护结构顶部沉降、水平位移监测。
2.第三方监测原则及技术规程2.1监测原则及目的在施工方对基坑支护结构进行实时监测前提下,我方监测在对施工方监测进行校核的基础上,独立地进行监测。
我方遵照委托方提出的要求,在基坑施工期间对基坑支护进行高精度监测,并从岩土工程专业的角度对监测数据、信息进行及时分析,向业主提供监测变形的情况,对异常情况及时提供建议,为施工安全和施工方案优化提供科学依据。
建设工程建筑变形测量监测方案

1、工程概况拟建工程位于**市**区胜利和公园路交汇处东北侧,西邻度假村,南面和东面邻动物园。
场地内原有建筑物已拆除,南侧偏西残留一小山丘,四周均已形成3~7m高的较陡人工边坡。
基坑开挖前将高出基坑顶面设计标高的土坡、山丘进行平整,后进行开挖。
工程基坑底面标高分为34.00m、33.50m、31.20m,基坑顶面标高为43.00m至35.50m。
本工程采用放坡支护方案,基坑安全等级为三级。
地上为2~16层建筑,地下室1层,地下室埋深5.5m。
本工程主体结构采用天然地基下的扩展基础,局部采用高强混凝土预应力PHC管桩基础。
建筑主体分为:A组团办公楼;B组团餐厅;C、D、E组团公寓;F组团图书馆。
2、执行的标准和技术依据①《工程测量规范》(GB50026—2007);②《国家一、二等水准测量规范》(GB12897—2006);③《建筑变形测量规范》(JGJ8—2007);④《建筑基坑工程监测技术规程》(GB50497-2009)⑤《建筑基坑支护技术规程》(JGJ120-2012)⑥《**市基坑支护技术规范》(SJG05-2011)⑦委托人及设计单位有关技术要求;**建筑设计研究院的基坑支护图纸,基坑监测要求。
**建筑设计研究院的建筑物沉降观测监测要求。
⑧《测绘产品检查验收规定》(CH1002—95);3、监测实施方案3.1、监测流程本工程监测工作按以下流程进行。
3.2、实施方案3.2.1、监测点位埋设本工程的基坑监测部分共需埋沉降观测基准点3个,位移观测基准点3个,基坑顶沉降、位移监测点29个,建筑主体沉降监测点149个(办公楼沉降监测点42个、餐厅沉降监测点14个、公寓组团一沉降监测点24个、员公寓组团二沉降监测点24个、公寓组团三沉降监测点24个、图书馆沉降监测点12个、室外连廊沉降监测点3个、地下室沉降监测点6个)。
3.2.2、监测频率与周期在工程施工过程中,按以下频率进行监测。
(1)基坑部分①基坑开挖前,各监测点采集稳定的初始值,且不少于2次;②在基坑开挖过程中,监测频率为3天/次,结构施工为7天/次;基坑填至±0.00后停止监测。
沉降观测施工方案
沉降观测施工方案一、沉降观测工作的要求(一)、固定人员观测和整理成果;(二)、固定使用水准仪和水准尺;(三)、固定水准点;(四)、按规定的日期、方法及路线进行观测。
(五)、《建筑变形测量规程》JGJ/8-97的要求二、地基回弹观测基础开挖前,在建筑物的纵横主轴线上设置观测点,测定其原始标高;在基坑挖至底面时,找出其测量标志,再测出其标高;在浇筑砼基础前,再测一次标高,从而得到各点的地基回弹值。
三、建筑物自身沉降观测以主楼为主要控制对象,采用二级观测。
按照设计要求在建筑物的外轴线共设置12个观测点,测设点的设置应符合规程的要求,保证人员、仪器、附合观测路线等路线。
结构施工阶段,每加一层观测一次,装修施工阶段每月观测一次,观测截止到沉降量小于1mm/100d。
观测前将仪器放在室外30min,使其与外界环境温度一致,天气恶劣时严禁观测。
当建筑物有异常情况时及时观测,如有不均匀沉降出现,适当增加观测次数。
四、沉降观测的精度及成果整理结构封顶至工程竣工,沉降周期应符合下列要求:均匀沉降且连续三个月内平均沉降量不超过1mm时,每三个月观测一次;连续两次每三个月平均沉降量不超过2mm时,每六个月观测一次;外界发生剧烈变化时应及时观测;交工前观测一次;全部竣工后的观察次数:第一年每三个月观测一次,第二年每六个月观测一次,第三年后每年观测一次,直至基本稳定(1mm/100d)为止。
每次观测结束后,检查记录计算是否正确,精度是否合格,并进行误差分配,然后将观测高程列入沉降观测成果表中,计算相邻两次观测之间的沉降量,注明观测日期和荷重情况。
最后对资料进行整理分析,绘出下沉曲线图,找出变形规律,做出今后的变形观测趋势预报,提出今后的观测建议。
五、作业中应遵守的规定(一)、观测应在成像清晰、稳定时进行;(二)、仪器离前、后视水准尺的距离要用皮尺丈量(或视距法测量),视距一般规定不超过50m,前后视距尽可能相等。
(三)、前后视距观测最好用同一根水准尺。
基坑监测监控方案
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑监测施工方案
基坑监测施工方案监测频率要求:开挖期间开挖侧每天观测一次,非开挖期间每3-5天观测一次;当变形超限时应加密观测,当有危险事故征兆时应连续观测。
当基坑变形、地面沉降达到预警值,应立即通知查明原因,及时采取有效的措施。
(一)监测目的1、在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。
2、检验设计所采取的各种假设和参数的正确性,指导基坑开挖和支护结构的施工。
3、确保基坑支护结构和相邻建筑物的安全。
4、积累工程经验,为提高基坑工程的设计和施工的整体水平提供依据。
5、将监测数据与预测值相比较以判断前一步施工工艺和施工参数是否符合要求,以确定和优化下一步的施工参数,做到信息化施工。
6、将现场测量结果用于信息化反馈优化设计,使实际达到优质安全、经济合理、施工快捷的目的。
(二)监测原则深基坑工程是一项技术上复杂,不确定因素较多,风险性很大的系统工程。
根据该基坑支护及周边环境的特点,在确定监测方法及监测内容时,需考虑以下原则:1、保证重点:该工程为深基坑,所以基坑支护结构本身是本工程需监测的重点。
沿基坑四周在基坑原土位置布置测斜管、在桩顶布置测量点进行位移和变形监测,以保证支护结构整体安全。
2、兼顾环境:由于本工程地下场区地下水主要有孔隙水及基岩裂隙水,其中孔隙水为区内地下水的主要赋存形式。
3、为了保证周围建(构)筑物及地下管线的正常安全使用,应布置测点进行变形观测。
4、信息化施工:监测资料的及时整理和快速反馈给设计单位、监理单位、建设单位非常重要。
支护结构本身的变形是否超过报警值,地面沉降是否超过报警值,需要测试结果的及时反馈,以便使施工单位及时调整施工方案和顺序,或采取必要措施保证基坑和周围环境的安全。
5、经济合理:对选定监测内容,以保证安全为前提。
基坑监测方案范文
基坑监测方案范文一、背景介绍基坑工程是建设项目中常见的一种工程类型,涉及到大量的土方开挖和地下施工工作。
然而,基坑施工中存在一定的风险,如土方塌方、地下水涌入、周边建筑物沉降等问题。
为了确保基坑工程的安全和稳定,进行基坑监测是必要的措施之一、本文将提出一种基坑监测方案,以确保基坑工程施工安全。
二、监测目标和指标1.监测目标:确保基坑工程施工过程中土方开挖、支护和地下施工的稳定性和安全性。
2.监测指标:(1)土方开挖监测指标:土体变形、土压力。
(2)支护结构监测指标:支撑剪力、支护位移。
(3)周边建筑物监测指标:沉降、倾斜。
三、监测方案1.监测方法:通过传感器采集数据,在监测点位上进行监测。
传感器可以选择相应的位移传感器、压力传感器、倾斜传感器等。
2.监测网络布局:根据基坑工程的规模和布置,合理确定监测点位布局。
监测点位应包括土方开挖区域、支护结构、周边建筑物等关键部位。
3.监测频次:根据施工进度和工程变化情况,确定监测频次,一般建议每周监测一次。
对于特殊情况,如重大施工阶段或突发事件,可增加监测频次。
4.数据处理:监测数据应及时传输到监测中心,经过专业人员进行处理和分析。
监测中心应建立数据管理系统,保证数据的有效性和可追溯性,及时提供相关报告和预警信息。
5.预警机制:根据监测数据的分析结果,建立相应的预警机制。
一旦监测数据出现异常情况,预警系统应及时发出预警信号,并通知相关人员进行处理。
四、监测实施方案1.土方开挖监测:在土方开挖区域设置位移传感器和压力传感器。
通过定期监测土体的变形和土压力的变化,及时掌握土体的稳定性。
2.支护结构监测:在支撑结构上设置位移传感器和支护剪力传感器。
通过监测支护结构的变形和支撑剪力的变化,及时判断支护结构的安全性。
3.周边建筑物监测:在周边建筑物上设置测斜仪和沉降观测点。
通过监测建筑物的倾斜和沉降情况,判断基坑工程对周边建筑物的影响是否安全。
4.数据报告和预警:监测中心应及时处理监测数据,生成监测报告并及时提供给相关人员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、测区概况1、地理位置待建的秦皇岛恒大城位于秦皇岛市火车站北侧,本次涉及沉降观测及基坑变形监测建筑物为:5#、6#地块(6#地块1、2标;5#地块、6#地块3、4标)拟建的住宅及商业建筑,该标段位于规划北港大街南侧,迎宾北路由标段中间穿过。
项目工程为剪力墙结构,桩筏、筏板基础,一般为地下2层,地上5—49层。
该项目由荆州市晴川建筑设计院有限公司设计,恒大地产集团秦皇岛恒大城房地产开发有限公司投资建设,本工程地基基础设计等级为甲级。
依据设计要求,本工程按国家规范,在施工及使用期间均进行沉降观测。
本次沉降观测工程范围主要包含住宅及配套工程。
基坑监测部分指根据设计图纸要求需要进行基坑监测部分。
二、工作任务恒大城5#、6#地块3、4标段建筑沉降观测具体情况如下表所示:按《规范》要求建筑物沉降观测点建点后,从±0开始进行两次测量,并取各点两次高程中数作为该点的初始高程,结构封顶前按上表设计的次数监测;竣工前按封顶后间隔1个月、2个月、竣工前;竣工后第一年监测3次数;第二年监测2次。
个别建筑在外装修前还需重新布设观测点,换点后应同时测量2次(取其平均数做为起始值)。
每栋建筑封顶后还应监测约8次;合计344次;5#、6#地块沉降观测总计观测次数为771次。
5#、6#地块沉降观测点布设具体位置详见沉降观测布点示意图。
按《建筑变形测量规程》及甲方要求,本工地建筑物沉降进行至主体竣工验收及使用运行两年,当沉降速度小于0.04mm/d,可以认为已进入稳定阶段,否则应增加观测次数,本方案中规定的观测次数仅作为参考。
但是当监测过程中发生下列情况之一时,必须立即报告委托方,同时应及时增加观测次数或调整监测方案:1、变形量或变形速率出现异常变化;2、变形量达到或超出预警值;3、周边或开挖面出现塌陷、滑坡;4、建筑本身、周边建筑及地表出现异常;5、由于地震、暴雨、冻融等自然灾害引起的其他变形异常情况。
如需另外增加观测次数,甲乙双方另行协商。
三、测量技术依据:1、《城市测量规范》(GJJ885)(GJJ8-99)2、《建筑变形测量规范》(JGJ 8--2007)3、《国家一、二等水准测量规范》(GB/T12897-2006)4、《建筑基坑工程技术规范》(YB 9258-97)5、《工程测量规范》(GB50026—93)6、经甲方审批的《秦皇岛恒大城5#、6#地块沉降观测及基坑变形监测方案》四、水准基点及沉降监测点的布设水准基点的埋设:水准基点最少应埋设三个点,以保证沉降监测工作数据的可靠。
此三个点的位置应埋设在远离因本次降水和建筑沉降影响的范围以外的稳定可靠之处,如采用深埋基点的埋设深度应在冰冻层以下,也可布设在沉降稳定建筑物上。
具体位置视实地情况而定。
沉降监测点的布设:沉降监测点的埋设应符合《规范》要求,与甲方协商而定,在每栋楼的主角点、沉降缝和后浇带两侧、大拐角点等处必须做点;直线楼体上两点之间距离不得大于20米;点位应布设在正负零以上100-150mm处。
每个监测点的具体位置应选在便于观测和能够树立标尺之处,。
为保证点位稳定和观测精度,沉降监测点的标志采用Φ=16.0mm,长为160mm的涨栓螺杆。
用电锤打18 mm孔,用植筋胶将丝扣端镶入墙体内10cm。
监测点的保护:当监测点布设完毕,及时向甲方提供监测点的平面布置图,以便甲方通知各施工单、使用单位对监测点加以保护。
由于监测周期很长,提请建设方务必对监测点严加保护;并请施工方不要在沉降点上方2米以下搭设架子和管线。
五、沉降监测的等级和限差1、本次沉降监测中,水准基点网联测按一级水准精度进行;沉降监测点测量按二级水准精度进行。
2、沉降监测应使用日本托普康公司生产的Trimbel Dini03型精密水准仪,配以条码铟瓦水准尺。
使用的水准仪应通过有资质的鉴定单位每年一次的检测并出据相应合格的检测证书。
另外在项目进行中也要定期检较。
用于一、二级水准观测的水准仪i 角不得大于15″。
测量时应采用单路线往返观测,固定观测人员、固定仪器和观测路线。
3、水准观测应在标尺分划线成像清晰且稳定后进行。
下列情况下不应进行观测:A、日出后与日落前30分钟内;B、太阳中天前后各约1小时内;C、标尺分划线的影像跳动而难于照准时;D、气温突变时;E、风力过大而使标尺与仪器不能稳定时。
本次精度等级的确定,借鉴国际测量工作者协会(PIG)于1981年第16届大会提出的常用取值方法,即:为实用目的,观测值中误差不应超过变形允许值的1/20—1/10,或者1--2㎜。
结合《建筑变形测量规程》和《工程测量规范》具体限差见下表:水准观测的测站技术要求F——环线长度,km;R——检测测段长度,km。
视线长度、前后视距差和视线高六、观测顺序及方法1、往测时,奇数测站照准标尺分划的顺序为:A、后视标尺的基本分划;B.前视标尺的基本分划;C、前视标尺的辅助分划;D、后视标尺的辅助分划;2、往测时,偶数测站照准标尺分划的顺序为:A、前视标尺的基本分划;B、后视标尺的基本分划;C、后视标尺的辅助分划;D、前视标尺的辅助分划;3、返测时,奇、偶测站照准标尺的顺序分别与往测偶奇测站相同。
4、测站观测采用光学测微法,一测站的操作程序如下(以往测奇数测站为例)A、首先将仪器整平;B、将望远镜对准后视标尺,使符合水准器两端的影像近于符合。
随后用上下丝照准标尺基本分划进行视据读数。
然后使符合水准气泡准确符合,转动测微器精确照准标尺基本分划,并读定标尺基本分划与测微器读数。
C、旋转望远镜照准前视标尺,并使符合水准气泡两端影像准确符合,精确照准标尺基本分划,并读定标尺基本分划与测微器读数,然后用上、下丝照准标尺基分划进行视距读数;D、用微动螺旋转动望远镜,照准前视标尺的辅助分划,并使符合气泡两端影像准确符合,精确照准并进行标尺辅助分划与测微器读数;E、旋转望远镜,照准后视标尺的辅助分划,并使符合水准气泡的影像准确符合,精确照准并进行辅助分划与测微器的读数。
5、电子水准仪观测顺序按仪器设置顺序执行。
七、成果计算与整理每栋楼的监测点建好后,要进行现场沉降观测点高程的初始值量测,并做好记录。
以后,每次观测结束,首光应认真检查全部外业观测记录,各项限差合格后使用HLADJ3.0智能平差软件进行平差计算,在满足观测精度的前提下,计算出每个沉降观测点的高程值。
并计算各观测点的本期沉降量和总沉降量,打印成表格一式四份,及时上交到有关部门,具体计算过程如下。
⑴对基准点与沉降观测点进行联测,所取得的数据进行整理,计算闭合差,闭合差符合规范要求时,经严密平差计算出各沉降观测点高程H0。
为确保准确,首次成果均应按同精度测量两次,通过分别平差计算后取各观测点两次高程的平均值做为各观测点的初始值。
⑵闭合水准路线的高差闭合差fh等于该路线上各点间高差代数和∑h,即fh=∑h。
符合水准路线的高差闭合差fh等于所测各点间高差的代数和∑h减去终点与起点已知高程之差,即fh=∑h-(H终-H起)。
往返测水准路线的高差闭合差fh等于往测高差代数和绝对值│∑h往│=│∑h往│-│∑h返│。
⑶严密平差计算将高差闭合差按测站数成正比例反号进行分配,即Vi=-fh/N ni式中ni为某测段的测站数N为水准路线的总测站数fh为水准路线闭合差Vi为各观测点所分配的平差数实际监测中平差后的高程值均用 [NASEW95] 平差软件计算。
⑷各沉降观测点的沉降量△H=H0-Hi 式中H0为观测点高程原始值,Hi为每次计算后的观测点的高程。
监测工作全部结束后,编写沉降监测技求报告,报告内容包括变形监测成果表,监测点平面布置图,监测点沉降过程曲线图,建筑物倾斜率计算表,变形分析报告。
八、基坑变形监测基坑变形监测依照甲方要求,按实际需要及设计要求安排监测工作量。
1、基坑位移基点和工作基点及监测点的埋设基坑位移基点、工作基点的布设1)在产生位移范围以外布设2-3个稳固的平面点作为基坑位移观测基点。
2)在基坑监测范围内适当布设固定的平面点作为工作基点,并按独立坐标系统将基点与工作基点联测。
3)基坑位移观测基点、工作基点建点采用深部埋设、浇筑或坚固地面浇筑标志等方法,布设完成后及时通知甲方、施工方做好标志保护工作。
基坑位移监测点的布设基坑位移监测点的布设,点位布设在基坑支护冠梁,可用十字标志或平面反射标志,标志应设置明显并喷涂点号。
布设位置见基坑位移观测点布设略图。
2、监测方法及频率监测施工前,仔细检查监测仪器、设备和元件是否满足观测精度和工程的要求,具有良好的稳定性和可靠性,经过鉴定或标定,且校核记录和标定资料齐全,并在规定的校准有效期内使用。
监测过程中应定期进行监测仪器、设备的维护保养、检测以及监测元件的检查。
对同一监测项目,监测时采用相同的观测方法和观测路线,使用同一监测仪器和设备,固定观测人员,在基本相同的环境和条件下工作。
以保证监测的稳定性和准确性。
监测项目初始值应在基坑开挖前测定,并取至少连续观测2次的稳定值的平均值。
基坑水平位移监测采用视准线法和小角法进行监测,其监测精度为±2mm。
当现场条件不容许时,也可采用交会法或极坐标法测量。
仪器选用2”级全站仪。
每次测量均从基点起始测量出工作基点坐标,再将仪器架至工作基点测量监测点的坐标或所需数据。
各测回数及其他要求按规范有关要求执行。
依据使用仪器特点,也可采用免棱镜极坐标测量法,对观测成果垂直于基坑方向的坐标进行差值比较,计算基坑位移量。
依照甲方要求,按实际需要及设计要求安排监测频率。
3、监测报警基坑工程监测报警值由监测项目的累计变化量和变化速率值两个值控制,其限差按设计要求执行。
当出现下列情况之一时,必须立即进行危险报警,并对基坑支护结构和周边环境中的保护对象采取应急措施。
1、监测数据达到报警值;2、监测数据变化较大或者速率加快;3、存在勘察未发现的不良地质;4、超深、超长开挖等未按设计工况施工:5、基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏:6、基坑附近地面荷载突然增大或超过设计限值:7、支护结构出现开裂;8、周边地面突发较大沉降或出现严重开裂:9、邻近建筑突发较大沉降、不均匀沉降或出现严重开裂;10、基坑底部、侧壁出现管涌、渗漏或流砂等现象;11、基坑工程发生事故后重新组织施工;12、出现其他影响基坑及周边环境安全的异常情况。
九、监测质量管理体系及质量、安全保证措施1.监测质量管理体系本工程按ISO9001:2000质量管理体系进行管理,产品实现流程图如下:2.监测质量保证措施(1)建立以项目总工程师为直接领导,由具备丰富施工经验、监测经验的工程技术人员组成的监测小组。
除及时收集、整理各项监测资料外,尚需对这些资料进行计算分析对比。
(2)在施工前,备齐所有的监测仪器设备,并根据规范进行有关标定工作。