19.2.2一次函数(第2课时)教学设计
人教版数学八年级下册:19.2.2 一次函数 教案

14.2.2 一次函数
【教学目标】
知识与技能:掌握一次函数解析式的特点及意义;知道一次函数与正比例函数关系;结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式.
过程与方法:通过类比的方法学习一次函数,体会数学研究方法多样性;进一步提高分析概括、总结归纳能力;进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力;积极参与数学活动,对其产生好奇心和求知欲.形成合作交流、独立思考的学习习惯.情感与态度:培养积极思考、勇跃发言,养成良好学习习惯,培养独立思考、合作探究,培养科学的思维方法.
【教学重点】理解一次函数的意义及解析式的特点.
【教学难点】一次函数与正比例函数关系.
【教学突破点】正比例函数与一次函数的联系与区别.
【教法、学法设计】探究─交流,归纳─总结.
【教学过程设计】。
一次函数的图象和性质教学设计

《一次函数的图象和性质》教学设计人教版《义务教育课程标准实验教科书·数学》(八年级上册第19.2.2节第二课时)(一)教学目标1.掌握一次函数图象及其画法,理解一次函数的性质;2.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用;3.体会从特殊到一般的研究问题的方法;4.提高学生动手实践的能力和与他人交流合作的意识.(二)目标解析1.使学生理解函数与函数图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握的正负对图象变化趋势和函数性质的影响.2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.三、教学问题诊断分析学生对于通过具体函数图象猜想一次函数图象的形状和的正负对于函数图象的变化趋势和函数性质的影响并不困难,但是学生容易停留在只从“形”的角度认识一次函数的图象和性质,不会用函数和变量去思考问题,即从“数”——解析式的角度加深理解.所以,我们在进行教学时,有意识地加强对一次函数与正比例函数解析式的分析与比较,突出数学知识所蕴涵的数学思想和数学方法,以此加深学生对数形结合思想的体会,使学生逐步地增强应用数形结合思想解决问题的意识和能力.教学难点理解一次函数的图象和性质,并能灵活应用.四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点、突破难点,提高课堂效率,采用以实践探索为主、多媒体演示为辅的教学组织形式.在教学过程中,通过设置带有探究性的问题,创设问题情境,引导学生动手实践探索,发现归纳结论.并结合学生亲自动手绘制函数图象,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计活动2:自学发现,探索新知1.用描点法在同一直角坐标系中画出函数y=2x,Y=2X+3与Y=2X-3的图象2.结合学过的函数的图象,比较两个函数的解析式,你能说明函数Y=2X+3、Y=2X-3的图学生列表,描点,画图,然后由图象猜想函数Y=2X+3与Y=2X-3的图象为直线.学生通过观察、比较得到函数与Y=2X+3、Y=2X-3的图象之间的关系.象为什么是直线吗?3.如何由函数的图象得到函数Y=2X+3、Y=2X-3的图象?4.一次函数的图象是什么形状,由直线可经过怎样的变换得到直线?5.画一次函数的图象有哪些方法?学生讨论函数与图象的关系并发表自己的看法.师生一起总结得到:(1)一次函数的图象是一条直线;(2)由直线平移个单位长度得到直线(当时,向上平移;当时,向下平移).学生画图,交流画法,并总结画一次函数的图象的方法.在本次活动中教师应重点关注:(1)学生在描点画图的过程中,是否注意两个函数图象的关系;(2)学生能否通过函数解析式(数)对“平位置关系.(2)引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.(4)将以前学过的平移与现在讨论的函数图象联系起来,增强学生对函数与函数的认识,让学生体会数形结合思想的应用.(5)通过展示学生的不同画法,找到简便的画法,让学生感受到数学的简洁美.活动3:自主实践,深入研究在同一直角坐标系中画出以下函数的图象y=x+1, y=2x-1 ,y=-x+1, y=-2x-1观察上面四个一次函数的图象,探究一次函数中k的正负对函数图象有什么影响,并在此基础上表述函数的性质.一位学生利用实物投影仪展示,并谈谈自己的画法.分析每条直线的变化趋势,观察的正负对函数图象变化趋势的影响,进而总结函数性质.当时,直线从左向右上升,随的增大而增大;当时,直线从左向右下降,随的增大而减小.在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与有关,且与正比例函数的性质相同(3)学生从“数”与(1)通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的随的变化而变化的情况以及的正负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.(2)通过类比正比例函数的性质,加深对一次函数的随的变化而变化的情况的理解.(3)让学生经历画图——类比——归纳的数学活动过程.-5活动4:反馈练习,夯实基础1.直线与轴交点坐标为,与轴交点坐标为,图象经过第象限,随的增大而.2.函数随的增大而.它的图象可由直线向平移个单位得到.。
19.2.2 一次函数(2)说课稿 2021—2022学年人教版数学八年级下册

19.2.2 一次函数(2)说课稿1. 教材分析本节课是人教版数学八年级下册的第二单元中的内容,主要涉及一次函数的问题解决能力。
通过学习本节课,学生将进一步巩固和加深一次函数的概念、性质和图像等知识,并学会通过实际问题解决中的一次函数的应用问题。
2. 教学目标•知识与技能:掌握一次函数的概念,了解一次函数的性质和图像;能够解决一次函数的应用问题。
•过程与方法:培养学生的逻辑思维能力和问题解决能力;引导学生通过观察和分析图像解决问题。
•情感态度与价值观:培养学生的数学兴趣,激发学生学习数学的主动性。
3. 教学重难点•重点:一次函数的性质和应用问题的解决。
•难点:通过图像解决应用问题。
4. 教学准备•教具准备:黑板、彩色粉笔、投影仪、教学PPT。
•学具准备:教材、练习册。
5. 教学过程5.1 导入与引入(10分钟)•我们先回顾一下上节课学过的内容,复习一次函数的概念和性质。
5.2 新课讲解(15分钟)•引入新课:用实际问题引入,通过问题引发学生思考一次函数的应用。
•讲解一次函数的性质和图像特征:涉及斜率和截距的含义和计算方法。
•给予学生一个例子,详细讲解如何通过图像解决应用问题。
5.3 知识巩固与拓展(25分钟)•分组讨论:提供一些应用问题,要求学生分组讨论如何通过一次函数的图像解决问题。
•展示与总结:随机选几组学生进行展示,并与全班讨论总结归纳问题解决的方法和策略。
5.4 练习与巩固(20分钟)•发放练习册并布置相关练习题。
•进行课堂练习,出示题目并给予学生一定时间完成,并进行讲解与订正。
5.5 课堂小结(5分钟)•对本节课所学内容进行小结,强调一次函数的重要性和应用价值。
6. 课后作业•完成练习册上的相关习题。
•思考并记录一到两个实际生活中的问题,尝试通过一次函数解决。
7. 反思与改进•教学过程中,可以通过增加实际案例的讲解,提高学生的学习兴趣和应用能力。
•在讲解一次函数的性质和图像特征时,可以通过生动形象的例子进行说明,提高学生对知识的理解程度。
19.2.2 一次函数的概念 课件(共23张PPT)

(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
一次函数的图像与性质教学设计

《19.2.2 一次函数的图像与性质》教学设计3.将直线y=-4x向上平移1个单位长度可得到直线.4.若直线y=(2m+1)x+m-3与直线y=3x-3平行,则m= .问题5:能否用更简单的方法画出一次函数的图象?两点法依据:两点确定一条直线.希沃课件结合“两点确定一条直线”,引导学生自然、合理地发现可用“两点法”简便地画出一次函数图象.例1:在同一直角坐标系画出一次函数y=2x+1,y = -0.5x+1的图象.(1)列表,得:(2)描点,并连线:学案填空:y=2x+1的图象从左往右,即y随着x增大而,对应的k的符号为;y=-0.5x+1的图象从左往右,即y随着x增大而,对应的k的符号为.例2:在同一直角坐标系画出一次函数y=2x-1与y= -0.5x-1的图象. (1)列表,得:(2)描点,并连线:学案通过类比正比例函数的图象性质的研究,引导学生先画出若干个一次函数的图象,同时巩固两点法画一次函数图象.问题6 结合例1和例2,思考:b的值对函数图象的影响是什么?学案【结论2】学案三、课堂练习1. 直线y=2x-4与x轴的交于点,与y轴交于点_ ,图象经过象限,y随x的增大而_________.2. 关于一次函数y=2x-1的图象,下列说法正确的是()A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限3.直线m:y =kx+b的图象如图所示,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<04. 一次函数2)5(-+-=bxky的图象从左到右下降,且图象经过第一、二、四象限,则k的取值范围为;则b的取值范围为;四、课堂小结1.今天学习了什么内容?2.一次函数y=kx+b(k≠0)中的k、b对函数图象的影响是什么?板书设计。
人教版数学八年级下册19.2.2一次函数的图像与性质 教案

《一次函数图像与性质》教学设计(一)内容解析函数是数学领域中最重要的内容之一,也是刻画和研究现实世界变化规律的重要模型.它反映了数量之间的对应规律,是研究数量关系的重要工具。
一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用。
一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的。
一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质。
它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础。
(二)教学目标知识与技能目标:1、会画一次函数的图象。
2、知道一次函数y=kx+b的性质。
3、了解k、b与一次函数的图象之间的关系。
4、能根据一次函数的图象与k、b的关系解决简单的问题。
过程与方法目标:1.通过画正比例函数与一次函数的图象,培养学生的动手能力;2.在一次函数的图象与性质的教学中,培养学生的观察、分析、总结、归纳的能力。
情感态度与价值观目标:向学生渗透“数形结合”及“分类讨论”的数学思想。
体会从特殊到一般的研究问题的方法,培养科学的学习方法和良好的学习习惯。
(三)目标解析1.使学生理解一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳k的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.(四)教学重点、难点1、教学重点:一次函数的图象及性质。
一次函数与方程、不等式教案
《19.2 一次函数》教学设计19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式教材分析本节内容是在学生已有对一元一次方程、一元一次不等式的认识之后,从变化和对应的角度,对一次函数进行更深入的讨论,是站在更高起点上的动态分析.通过讨论一次函数与一元一次方程及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用.备课素材一、新知导入【复习导入】(1)按照“列表——描点——连线”的步骤画出一次函数y=2x-3的图象;(2)观察一次函数y=2x-3的图象与x轴的交点,指出当y=0时,自变量x的取值是多少?它与方程2x-3=0的解相同吗?它们之间有什么联系?(3)观察一次函数y=2x-3的图象在x轴上方的部分,这些点的纵坐标的符号是怎样的?(4)观察一次函数y=2x-3的图象在x轴下方的部分,这些点的纵坐标的符号是怎样的?【说明与建议】说明:复习一次函数图象的画法,把所列表格中的数据与函数图象中点的坐标结合起来,分析函数值的不同符号特征,与方程、不等式建立起联系.建议:用描点法画一次函数图象时,可以多列出几组数对,在x=1的左右两侧分别列出3~4组对称的数对,再将其与函数图象对照,发挥数形结合思想的优势,使函数值的符号特征更加明显.二、命题热点命题角度1 利用一次函数图象求一元一次方程的解1.一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为(A)A.x=-2 B.y=-2 C.x=1 D.y=1第1题图第2题图2.一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是x =3W.命题角度2 利用一次函数图象求一元一次不等式的解集3.如图,已知直线y =kx -2,根据图象可知不等式kx -2<0的解集是(C ) A .x >1 B .x >-2 C .x <1 D .x <-2第3题图 第4题图4.一次函数y =kx +b 的图象如图所示,当0<kx +b <3时,x 的取值范围为-4<x <0.命题角度3 通过解一元一次方程确定一次函数的图象与坐标轴的交点坐标 5.已知直线经过点(1,2)和点(4,5). (1)求这条直线的解析式;(2)求直线与坐标轴所围成的三角形面积. 解:(1)设直线解析式为y =kx +b ,把(1,2),(4,5)代入,得⎩⎪⎨⎪⎧k +b =2,4k +b =5, 解得⎩⎪⎨⎪⎧k =1,b =1.∴这条直线的解析式为y =x +1.(2)如图,对于直线y =x +1, 令x =0,则y =1; 令y =0,则x =-1. ∴A (0,1),B (-1,0). ∴S △AOB =12 ×1×1=12.∴直线与坐标轴所围成的三角形面积为12.教学设计课题 19.2.3 第1课时 一次函数与一元一次方程、不等式 授课人 素养目标1.会用图象法解一元一次方程、一元一次不等式.2.经历用函数图象表示方程、不等式解集的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.3.通过对一次函数与一元一次方程、一元一次不等式关系的探究,发展学生辩证思维能力.4.体会数学知识的融会贯通,从不同方面认识事物的本质.教学重点理解一次函数、一元一次方程、一元一次不等式之间的联系.教学难点根据一次函数的图象求一元一次方程的解和一元一次不等式的解集.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.解方程4x+1=0;当自变量x为何值时,函数y=4x+1的值为0?2.解不等式3x+6>-2;当自变量x为何值时,函数y=3x+6的值大于-2?回顾旧知,更好地学习新知,为突破重难点做准备.活动一:创设情境、导入新课【课堂引入】(1)观察下面的一元一次方程与一元一次不等式,它们有什么共同之处?2x-2>0,2x-2=0,2x-2<0.(2)上面的一元一次方程与一元一次不等式的解或解集,与一次函数y=2x-2的图象有关系吗?师生活动:教师引导学生观察一元一次方程与一元一次不等式的左边,并与一次函数y=2x-2的右边进行比较,让学生初步感知它们之间有一定的联系.通过直观观察这三个式子与一次函数的区别,联合一次函数的意义,使学生产生深入探究的欲望,更好地进入新课.活动二:实践探究、交流新知【探究新知】1.一次函数的图象与一元一次方程的解下面三个方程有什么共同特点?你能从函数的角度对这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.观察、思考、分析、归纳,引导学生探索一元一次函数、一元一次不等式的关系,学生进一步体会数形结合思想,构建完整的知识体系.师生活动:教师引导学生从函数的角度看一元一次方程.学生小组讨论之后,派出代表汇报想法,教师帮助总结.归纳:解关于x的一元一次方程ax+b=k,就是求当y=ax +b的函数值为k时对应的自变量的值.从数的角度看:求ax+b=0(a≠0)的解⇩x为何值时,y=ax+b的值为0?从形的角度看:求ax+b=0(a≠0)的解⇩确定直线y=ax+b与x轴交点的横坐标2.一次函数的图象与一元一次不等式的解集下面三个不等式有什么共同特点?你能从函数的角度对这三个不等式进行解释吗?你能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.师生活动:教师引导学生类比一元一次方程,自主探究从函数的角度看一元一次不等式.归纳:利用图象求ax+b>0(a≠0)或ax+b<0(a≠0)的解集,就是求一次函数y=ax+b的图象在x轴上方或下方部分所有的点的横坐标所构成的集合.活动三:开放训练、体现应【典型例题】例1 一次函数y=kx+b的图象如图所示,根据图象信息可典型例题巩固新知,让学生进一步熟悉一用求得关于x的方程kx+b=3的解为(C)A.x=-1 B.x=1 C.x=2 D.x=3例1题图例2题图例2 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1 C.x<3 D.x>3【变式训练】1.若一次函数y=ax+b的图象过点A(2,1),则ax+b=1的解是x=2W.2.已知关于x的方程ax+b=2的解为x=-5,则一次函数y=ax+b-2的图象与x轴交点的坐标为(-5,0)W.3.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是(B)A.x>2B.x<2C.x≥2D.x≤2师生活动:学生独立思考,举手回答,师生交流心得和方法.次函数与一元一次方程与一元一次不等式的关系,发展学生数形结合的思想,培养灵活地解决问题的能力.活动四:课堂检测【课堂检测】1.若关于x的方程4x-b=0的解是x=-2,则直线y=4x-b一定经过点(C)A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)2.若直线y=2x+b与x轴交于点A(-3,0),则方程2x+b=0的解是(A)A.x=-3 B.x=-2 C.x=6 D.x=-32通过设置当堂检测,及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.3.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b-1≥0的解集是(D)A.x≥2 B.x≥0 C.x≤2 D.x≤0第3题图第4题图4.如图,已知一次函数y=kx+b,观察图象回答下列问题:当x>2.5时,kx+b>0;当x>3时,kx+b>1.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结(1)本节课你学到了什么?有哪些体会与收获?(2)本节课你还有哪些疑惑?2.布置作业教材第99页第8题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思,更进一步提升.19.2 一次函数19.2.3 一次函数与方程、不等式第2课时一次函数与二元一次方程组教材分析函数、方程和不等式都是人们刻画现实世界的重要数学模型.用函数的观点看方程(组)与不等式,不仅能帮助学生加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美.本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义.备课素材一、新知导入【置疑导入】小聪和小惠去某景区游览,约好在“飞瀑”见面.上午7:00小聪乘电动汽车从“古刹”出发:沿景区公路去“飞瀑”,车速为36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多远?追问:当小聪追上小慧时,他们两个人的什么量是相同的?是否已经过了“草甸”?该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析式法?【说明与建议】 说明:通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决问题,在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.建议:在这个环节的学习过程中,如果学生入手感到困难.可用以下问题串引导学生进行分析:(1)两个人是否同时起步?(2)在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?(3)这个问题中的两个变量是什么?它们之间是什么函数关系?(4)如果用s 表示路程,t 表示时间,那么他们各自的解析式分别是什么?【情景导入】在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )与行驶时间x (min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是80km ;(2)已知货轮距B 码头的距离与行驶时间的函数解析式为y 1=12 x ,求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数解析式;(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意义.【说明与建议】 说明:通过学生熟悉的问题导入新课,培养学生的识图能力和探究能力,调动学生学习的自主意识及学习兴趣.建议:引导学生建立函数模型,结合图象利用“数形结合”解决问题.二、命题热点命题角度1 利用两个一次函数图象求二元一次方程组的解1.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C )A .⎩⎪⎨⎪⎧x =3y =-1B .⎩⎪⎨⎪⎧x =-3y =-1C .⎩⎪⎨⎪⎧x =-3y =1D .⎩⎪⎨⎪⎧x =3y =1第1题图 第3题图2.在平面直角坐标系中,直线y =-2x +11与直线y =13 x +53的交点坐标是(4,3),则方程组⎩⎪⎨⎪⎧2x +y =11,x -3y =-5 的解为⎩⎪⎨⎪⎧x =4y =3 .命题角度2 利用两个一次函数图象求一元一次不等式的解集3.函数y =kx 与y =-x +3的图象如图所示,根据图象可知,不等式kx >-x +3的解集是x >1.命题角度3 利用一次函数与方程、不等式的联系解决实际问题4.某电信公司有两种上网费用的计算方式,方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基本费20元外,再以每分钟0.05元的价格按上网时间计费.设上网时间为x 分钟,所需费用为y 元.用函数方法解答何时两种计费方式费用相等.解:y A =0.1x ,y B =0.05x +20.函数图象如图所示.∴当每月上网时间为400分钟时,两种计费方式费用相等.教学设计课题19.2.3第2课时 一次函数与二元一次方程组授课人素养目标 1.理解一次函数的图象与二元一次方程(组)的关系.2.经历用函数观点分析二元一次方程(组)的过程,进一步体会类比思想、分类讨论思想.3.利用一次函数图象的性质,解决实际问题.4.体会数学知识的融会贯通,发现数学的美,激发学生的学习兴趣.教学重点借助两个一次函数图象求二元一次方程(组)的解或一元一次不等式的解集.教学难点借助四个一次[一次函数、一元一次方程、二元一次方程(组)的解、一元一次不等式]之间的关系,解决实际问题.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾 1.解二元一次方程组2.一次函数y=5x+6与y=3x+10的交点坐标是多少?复习旧知,引发思考,为突破本节课重难点做铺垫.活动一:创设情境、导入新课【课堂引入】1号探测气球从海拔5 m出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都上升了1小时.用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间t(单位:min)的函数关系;1号气球:y=x+5,2号气球:y=0.5x+15.从实际问题抽象出数学问题,一方面有助于发展学生抽象逻辑能力,另一方面可以激发学生的学习兴趣,更好地开展新课.活动二:实践探究、交流新知【探究新知】针对【课堂引入】的问题,继续思考在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多少时间?位于什么高度?问题1 从数的角度看,二元一次方程组与一次函数有什么关系?问题2 从形的角度看,二元一次方程组与一次函数有什么关系?师生活动:教师引导学生类比一次函数与一元一次方程的关系,结合两个一次函数的图象,探求与二元一次方程组之间的关系.最后,教师帮助学生总结.归纳:(2)图象法解方程组的步骤:①将方程组中各方程化为y=ax+b的形式;②画出各函数的图象;通过类比一次函数与一元一次方程,分别从数和形两个角度分析二元一次方程组与一次函数之间的关系,进一步开拓学生的思维,感受数形结合思想以及分类讨论思想,体会数学思想的应用价值.③由交点坐标得出方程组的解.自主探究:在什么时候,1号气球比2号气球高?在什么时候,2号气球比1号气球高?活动三:开放训练、体现应用【典型例题】例1 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是(B)A.x=1 B.x=2 C.x=3 D.x=4例2 如图,在平面直角坐标系中,直线y=-2x和y=ax+2相交于点A(m,1),则不等式-2x<ax+2的解集为(D)A.x<12B.x<1 C.x>1 D.x>-12【变式训练】在同一平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,解决下列问题:(1)求方程-x+4=2x-5的解;(2)求二元一次方程组的解;(3)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?解:画函数图象如图所示.(1)∵一次函数y1=-x+4和y2=2x-5的图象相交于点(3,1),通过典型例题和变式训练.进一步感受两个一次函数与二元一次方程组的解之间的联系.由形判数,培养数形结合思想,体会数学知识的融会贯通.∴方程-x +4=2x -5的解为x =3.(2)由图可知,二元一次方程组(3)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.师生活动:学生独立思考,举手回答,师生交流心得和方法. 活动四:课堂检测 【课堂检测】1.如图,在平面直角坐标系中,直线y =-2x 和y =ax +2相交于点A (m ,1),则关于x ,y 的二元一次方程组的解为(C )第1题图 第2题图 第3题图2.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象交于点A (3,2),它们与x 轴的交点横坐标分别为1和-1,则不等式k 2x +b 2>0>k 1x +b 1的解集为(D )A.x>3 B .x<-1 C .x>1 D .-1<x<13.一次函数y 1=mx +n 与y 2=-x +a 的图象如图所示,则不等式mx +n >-x +a 的解集为(A )A.x >3 B .x <3 C .x <2 D .x >24.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.学以致用,课堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,帮助每个学生有所收获、有所提高.解:(1)∵P(1,b)在直线l1上,∴b=1+1,即b=2.(2)师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结1.如何用一次函数的图象解二元一次方程组?2.你是否从中体会到了某种数学思想?2.布置作业教材第98页练习题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
19.2.2一次函数的图像和性质(08)
乌什县第一中学 八 年级 数学备课组集体备课教案 课 题 19.2.2一次函数的图像和性质(2) 课时 1课时 主备课人 日
期 2014.4. 集体
备课人
教学目标 1.知识与技能 1. 理解一次函数图像特征与解析式的联系规律。 2.会利用简单方法画出一次函数图像。 2.过程与方法 1、 通过对应描点来研究一次函数的图像,经历知识的归纳、探究过程。 2.通过一次函数的图像归纳函数的性质,体验数形结合的应用 3.情感态度价值观 在探究函数的图像和性质的活动中,通过一系列的探究问题,渗透与人交流合作的意识和探究精神.
教学重点 一次函数的图像和性质。
教学难点 理解一次函数图像性质与解析式的联系规律
课前准备 多媒体课件。 第 2 课时教学过程
预设环节 教师活动 学生活动 旁注 一 引入新课(时间约5分钟)
二 探索新知
一、情境引入 问题:1、什么是正比例函数?一次函数?它们之间有什么关系? 2、正比例函数的图象是一条直线,那么一次函数的图象也是直线吗?从解析式上看,正比例函数与一次函数相差什么?如果体现在图象上又会有怎样的关系呢? 二、探究新知 (一) 正比例函数与一次函数图象的关系 1、 用描点法在同一坐标系中画出函数y=-6x与y=-6x+5的图象。 (1)观察两个函数的相同点与不同点,填表。 ①这两个函数的图象形状都是_______,并且倾斜程度____它们的位置________。 ②函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点_____,即它可以看作由直线y=-6x向______平移____个单位长度而得到。 (2)、比较两个函数解析式,试解释函数图象的位置关系。 2、在同一坐标系中画出函数y=2x-1与y=-0.5x+1的图象。 教师给出问题,让学生思考并回答问题。鼓励学生联想。
学生用描点法画图,并通过填表观察比较其异同点。
引导学生如何简单的画 (时间约20分钟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究课教案课题:19.2.2 一次函数(第2课时)
地点:北京市奶子房中学
班级:初二(3)班
教学流程安排
教学过程设计
教师对学生的观察、推广等结果进行适时评价,在此基础上,师生共同得出:
(1) 一次函数y=kx+b(0≠k )的 图象也是一条直线,我们称它为直线y=kx+b(0≠k );
0≠k
1、学生独立通过两点画出函数的图象,并将自己所画的图象与同桌进行交流,体验选点的差异性和图象的一致性。
2、教师指出:可以选取一个(0,)点,再结合解析式选择合适的另一个点,来画直线y=kx+b(0≠k ).
学生通过观察、类比,发表个人
y。