2023年北京市丰台区中考一模数学试卷(word版)
丰台中考一模数学试题及答案解析(3)

丰台中考一模数学试题及答案解析(3)总结:话题作文与学期梳理
课程特色:
以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员
想扎实写作基础,稳固提高作文水平的初中生
赠送
《中学语文知识地图—中学必考文学常识一本通》
第十五章:学期课程融汇与升华
课程特色:
以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析。
【中考数学】2023-2024学年北京市丰台区质量检测仿真模拟卷(2套)(含解析)

2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(4月)一、选一选(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若()1()12⨯-=,则()内的数为()A.2B.2- C.12D.12-2.将数字21600用科学记数法表示应为()A.0.216×105B.21.6×103C.2.16×103D.2.16×1043.下列图形中,是轴对称图形,但没有是对称图形的是()A.B. C.D.4.下列计算正确的是()A.8= B.22(3)9x x +=+ C.326()ab ab = D.0( 3.14)1π-=5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分没有能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C .丙D.丁6.如图,在数轴上表示数的点可能是()A.点EB.点FC.点PD.点Q7.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差8.计算:1252-50×125+252=()A.100B.150C.10000D.225009.我国是最先认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是()A.()()52-+- B.()52-+ C.()52+- D.52+10.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为()A.15B.28C.29D.3411.已知二元方程组54200458m n m n +=⎧⎨-=⎩①②,如果用加减法消去n ,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×512.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A.2cmB.3cmC.4cmD.5cm13.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是()A.1010123x x=- B.1010202x x=-C.1010123x x=+ D.1010202x x=+14.反比例函数y=mx的图象如图所示,则下列结论正确的是()A.常数m<1B.y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上15.已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中∠E=60°,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论:甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数没有变;那么,你认为()A.甲、乙都对B.乙对甲没有对C.甲对乙没有对D.甲、乙都没有对16.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB =y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则图(2)中Q 点的坐标是()A.(4,4)B.(4,3)C.(4,6)D.(4,12)二、填空题(本大题有3个小题,共10分.17-18小题各3分,19小题4分,每空2分.把答案写在题中横线上)17.已知|a-1|=2,则a=_______________________.18.如图,已知△ABC ,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°19.如图,在数轴上,点A 表示数1,现将点A 沿数轴做如下移动:次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A …,按照这种规律移动下去,则第2017次移动到点2017A 时,2017A 在数轴上对应的实数是_______.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:23311x x x -+--问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.21.如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD 度数;(2)当AC=5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果到0.1)22.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数为_________;运动员乙测试成绩的中位数为_________;运动员丙测试成绩的平均数为_________;2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中(2)经计算三人成绩的方差分别为S甲选择一位垫球成绩且较为稳定的接球能手作为人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)23.某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加的教师和学生各有多少人?(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用没有多于1030元,则提早前往的教师至多只能多少人?24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标;(2)若l点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l正方形ABCD的两个顶点,直接写出所有符合条件的c的值.26.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE=°,CD=;(2)试判断:旋转过程中BDAE的大小有无变化,请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(4月)一、选一选(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若()1()12⨯-=,则()内的数为()A.2B.2-C.12D.1 2-【正确答案】B【详解】解:∵1(2)()12-⨯-=,∴()内的数为-2.故选B.2.将数字21600用科学记数法表示应为()A.0.216×105B.21.6×103C.2.16×103D.2.16×104【正确答案】D【详解】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.详解:将数字21600用科学记数法表示应为2.16×104,故选D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,是轴对称图形,但没有是对称图形的是()A. B. C. D.【正确答案】A【分析】根据对称图形与轴对称图形的概念进行判断即可.【详解】解:A.是轴对称图形,但没有是对称图形,故此选项符合题意;B .是对称图形,没有是轴对称图形,故此选项没有合题意;C .既是对称图形,又是轴对称图形,故此选项没有合题意;D .是对称图形,也是轴对称图形,故此选项没有合题意;故选:A .本题考查的是对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,对称图形是要寻找对称,旋转180度后与自身重合.4.下列计算正确的是()A.8= B.22(3)9x x +=+ C.326()ab ab = D.0( 3.14)1π-=【正确答案】D【详解】解:A 4=,故本选项错误;B .(22(3)69x x x +=++,故本选项错误;C .3226()ab a b =,故本选项错误;D .∵π﹣3.14≠0,∴0( 3.14)1π-=,故本选项正确;故选D .5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分没有能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C.丙D.丁【正确答案】D【详解】解:剪去乙或丙时,可构成“一四一”型的正方体展开图;剪去甲时,可构成“一三二”型正方体展开图;剪去丁时,围没有成正方体.故选D.6.如图,在数轴上表示数的点可能是()A.点EB.点FC.点PD.点Q【正确答案】B【详解】解:∵﹣32,∴由数轴可知点F所表示的数大于﹣3而小于﹣2.故选B.点睛:本题主要考查了实数与数轴之间的对应关系,主要根据数在数轴上的位置判断数的大小,以及通过求无理数近似值从而比较数的大小进行判断.7.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差【正确答案】D【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的1、3、3、5的平均数为13354+++=3,中位数为332+=3,众数为3,方差为14×[(1﹣3)2+(3﹣3)2×2+(5﹣3)2]=2;新数据1、3、3、3、5的平均数为133355++++=3,中位数为3,众数为3,方差为15×[(1﹣3)2+(3﹣3)2×3+(5﹣3)2]=1.6;∴添加一个数据3,方差发生变化,故选D.本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键8.计算:1252-50×125+252=()A.100B.150C.10000D.22500【正确答案】C【详解】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.9.我国是最先认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是()A.()()52-+- B.()52-+ C.()52+- D.52+【正确答案】C【分析】由图(1)可得白色表示正数,黑色表示负数,观察图(2)即可列式【详解】解:由图(1)可得白色表示正数,黑色表示负数,∴图(2)表示的过程应是在计算5+(-2)故选:C此题考查了有理数的加法,解题关键在于理解图(1)表示的计算10.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为()A.15B.28C.29D.34【正确答案】B【分析】先由题意求出圆心角∠AOB 的度数,再根据圆周角定理即可求得结果.【详解】由题意得∠AOB=86°-30°=56°则∠ACB∠AOB=28°故选B.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.11.已知二元方程组54200458m nm n+=⎧⎨-=⎩①②,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×5【正确答案】B【分析】利用加减消元法消去n即可.【详解】解:已知二元方程组54200 458m nm n+=⎧⎨-=⎩①②,如果用加减法消去n,则下列方法可行的是①×5+②×4,故选:B.此题考查二元方程组的解法,解题的关键是掌握代入消元法或加减消元法,根据每个方程组的特点选择适合是解法.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cmB.3cmC.4cmD.5cm【正确答案】A【分析】根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.故选:A.主要考查了勾股定理解直角三角形.13.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是()A.1010123x x=- B.1010202x x=-C.1010123x x=+ D.1010202x x=+【正确答案】C【详解】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.14.反比例函数y=mx的图象如图所示,则下列结论正确的是()A.常数m<1B.y随x的增大而增大C.若A (﹣1,h ),B (2,k )在图象上,则h <k D.若P (﹣x ,y )在图象上,则P′(x ,﹣y )也在图象上【正确答案】D【详解】解:∵双曲线的两支分别位于第二、第四象限,∴m <0,∴选项A 没有正确;∵在每一象限内y 随x 的增大而增大,∴选项B 没有正确;∵h =1m =﹣m >0,k =02m<,∴h >k ,∴选项C 没有正确;∵反比例函数y =mx的图象成对称,∴若P (﹣x ,y )在图象上,则P ′(x ,﹣y )也在图象上,∴选项D 正确.故选D .15.已知,如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中∠E =60°,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论:甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数没有变;那么,你认为()A.甲、乙都对B.乙对甲没有对C.甲对乙没有对D.甲、乙都没有对【正确答案】A【详解】解:连接DF 、AF 、CD ,如图,∵四边形BDEF 为菱形,∴BD =BF ,而DF =BD ,∴△BDF 为等边三角形,∴∠DBF =60°.∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠ABF =∠CBD ,∴△ABF 绕点B 顺时针旋转60°可得到△CBD ,∴AF =CD ,∠FBA =∠DBC ,∴∠AFC =∠ABC =60°,即直线AF 和直线CD 所夹的锐角的度数为60°.故选A .点睛:本题考查了旋转的性质:对应点到旋转的距离相等;对应点与旋转所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形和等边三角形的性质.16.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB =y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则图(2)中Q 点的坐标是()A.(4,4)B.(4,3)C.(4,6)D.(4,12)【正确答案】B【详解】解:根据题意和图象可得:BC =4,AC =7﹣4=3.∵∠ACB =90°,点D 为AB 的中点,∴当x =4时,2ACB DPB S S =,∴y =341322⨯⨯=,即点Q 的坐标是(4,3).故选B .点睛:本题考查了动点问题的函数图象,解题的关键是明确题意,利用数形的思想解答问题.二、填空题(本大题有3个小题,共10分.17-18小题各3分,19小题4分,每空2分.把答案写在题中横线上)17.已知|a-1|=2,则a=_______________________.【正确答案】-1或3【分析】先根据题意求出a-1的值,从而没有难求得a 的值,注意值等于正数的数有两个.【详解】解:∵|a-1|=2,∴a-1=±2,∴a=3或a=-1,故-1或3.此题主要考查学生对值等于一个正数的数有两个的理解及运用能力.18.如图,已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于1BC的长为半径2作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.105°D.110°【正确答案】C【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.19.如图,在数轴上,点A 表示数1,现将点A 沿数轴做如下移动:次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A …,按照这种规律移动下去,则第2017次移动到点2017A 时,2017A 在数轴上对应的实数是_______.【正确答案】-3026【分析】根据点A 在数轴上移动的方向及距离计算出前几项的结果,得出n 为奇数时结果为3(1)12n --+;n 为偶数时的结果为312n+,把n=2017代入计算即可得答案.【详解】∵将点A 向左移动3个单位长度到达点1A ,A 表示数1,∴A 1表示的数是1-3=-2,∵将点1A 向右平移6个单位长度到达点2A ,∴A 2表示的数是-2+4=6,同理可得:A 3表示的数为-5,A 4表示的数是7,A 5表示的数是-8,A 6表示的数是10,……∴当n 为奇数时,A n =3(1)12n +-+,当n 为偶数时,A n =312n+∴A 2017=3(20171)12+-+=-3026.故答案为-3026本题考查数轴及数字类变化规律,根据所求出的数,得出n 为奇数和偶数时的结果变化规律是解题关键.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:23311x x x -+--问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.【正确答案】(1)②,②;正确的解答见解析【详解】试题分析:根据分式的加减,可得答案.试题解析:(1)②,②,原式=()()()22313261111x x x x x x x +-+-=+---21.如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD 度数;(2)当AC=5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果到0.1)【正确答案】(1)25°;(2)2.1.【详解】试题分析:(1)延长AC 交ON 于点E ,如图,利用互余计算出∠OCE=65°,再利用对顶角相等得到∠ACB=∠OCE=65°,再根据∠ACD=90°-∠ACB 即可解决问题;(2)接着在Rt △ABC 中利用∠ACB 的余弦可计算出BC ,然后根据矩形的性质即可得到AD的长.试题解析:(1)延长AC交ON于点E,如图,∵AC⊥ON,∴∠OEC=90°,在Rt△OEC中,∵∠O=25°,∴∠OCE=65°,∴∠ACB=∠OCE=65°,∴∠ACD=90°﹣∠ACB=25°(2)∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,在Rt△ABC中,∵cos∠ACB=BC AC,∴BC=AC•cos65°=5×0.42=2.1,∴AD=BC=2.1.22.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数为_________;运动员乙测试成绩的中位数为_________;运动员丙测试成绩的平均数为_________;(2)经计算三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩且较为稳定的接球能手作为人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【正确答案】(1)7分;7分;6.3分;(2)选乙运动员更合适;(3)14.【详解】试题分析:(1)观察表格可知甲运动员测试成绩的众数,观察折线统计图可知乙运动员测试成绩的中位数, 6.3x =丙(分);(2)易知7x =甲(分),7x =乙(分), 6.3x =丙(分),根据题意没有难判断;(3)画出树状图,即可解决问题;试题解析:解:(1)观察表格可知甲运动员测试成绩的众数是7分,观察折线统计图可知乙运动员测试成绩的中位数是7分,x 丙=254637182431⨯+⨯+⨯+⨯+++=6.3(分);(2)∵7x =甲(分),7x =乙(分), 6.3x =丙(分),∴x x =甲乙>2x S 甲丙,>2S 乙∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是2184P ==.23.某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加的教师和学生各有多少人?(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元.①求y 关于x 的函数关系式;②若购买一、二等座票全部费用没有多于1030元,则提早前往的教师至多只能多少人?【正确答案】(1)参加的教师有10人,学生有50人;(2)①y=4x+1020;②2.【详解】试题分析:(1)设参加的教师有a 人,学生有b 人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据没有等关系:购买一、二等座票全部费用没有多于1030元,列出方程求解即可.试题解析:解:(1)设参加的教师有a 人,学生有b 人,依题意有:6022161020a b a b +=⎧⎨+=⎩,解得:1050a b =⎧⎨=⎩.故参加的教师有10人,学生有50人;(2)①依题意有:y =26x +22(10﹣x )+16×50=4x +1020.故y 关于x 的函数关系式是y =4x +1020(0<x <10);②依题意有4x+1020≤1030,解得:x≤2.5.故提早前往的教师至多只能2人.点睛:本题主要考查对函数,二元方程组,一元没有等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.【正确答案】(1)∠BCD=15°;(2)①∠CC'B=75°;②证明见解析.【详解】试题分析:(1)根据三角形外角性质,即可得到∠BCD=∠ADC﹣∠CBA=15°;(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根据等腰三角形的性质,即可得到∠CC'B=∠C'CB=75°;②先根据AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,进而得到∠ACE=∠CEB ﹣∠A=15°,据此可得∠BC'D'=∠BCD=∠ACE,运用ASA即可判定△C'BD'≌△CAE.试题解析:解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°.∵∠ADC=45°,∴∠BCD=∠ADC ﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE.在△C'BD'和△CAE中,'''''BC D ACEAC C BC BD A∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△C'BD'≌△CAE(ASA).点睛:本题主要考查了旋转的性质,全等三角形判定与性质以及等腰三角形的性质的综合应用,解题时注意:两角及其夹边分别对应相等的两个三角形全等.25.如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标;(2)若l点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l正方形ABCD的两个顶点,直接写出所有符合条件的c的值.【正确答案】(1)(2,2)(2)y=﹣x2+3x﹣1(3)2≤MN2(4)﹣1或1或﹣2【分析】(1)根据正方形的性质得到D点的横坐标和C点的横坐标相同,其纵坐标和点A的纵坐标相同,由此得到点D的坐标;(2)利用待定系数法求解;(3)将顶点E的坐标为(2,2),代入抛物线解析式,求出点N,M的坐标,即可得到MN的长度,当点E与点B重合时求出M、N的坐标,即可得到MN取值范围;(4)若l正方形ABCD的两个顶点,则可能B、D;B、C;A、C,将每组点坐标代入解析式即【小问1详解】解:从图上看,D点的横坐标和C点的横坐标相同,其纵坐标和点A的纵坐标相同,故点D的坐标为(2,2)故(2,2);【小问2详解】解:把B(1,1)、C(2,1)代入解析式可得11142b cb c=-++⎧⎨=-++⎩,解得31bc=⎧⎨=-⎩,∴l的解析式为:y=﹣x2+3x﹣1;【小问3详解】解:∵顶点E的坐标为(2,2),∴抛物线解析式为y=﹣(x﹣2)2+2,把y=0代入得﹣(x﹣2)2+2=0,解得x1=2,x2=,即N(,0),M(2,0),所以MN=﹣(2)=;当顶点E的坐标为(1,1),∴抛物线解析式为y=﹣(x﹣1)2+1,把y=0代入得﹣(x﹣1)2+1=0,解得x1=0,x2=2,即M(0,0),N(2,0),所以MN=2﹣0=2,∴2≤MN,故2≤MN;【小问4详解】解:若l正方形ABCD的两个顶点,则可能B、D;B、C;A、C,由于顶点E在正方形ABCD内或边上,故没有可能A、D,当抛物线过点B、D时,将点B、D的坐标代入抛物线表达式得:11242b cb c=-++⎧⎨=-++⎩,解得32bc=⎧⎨=-⎩,当抛物线过点A 、C 时,同理可得c =1;当抛物线过点B 、C 时,同理可得c =﹣1,故﹣1或1或﹣2.此题考查了二次函数的综合知识及正方形的性质,待定系数法求函数解析式,函数图象与坐标轴的交点坐标,正确掌握二次函数的综合知识并应用是解题的关键.26.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE =°,CD =;(2)试判断:旋转过程中BDAE的大小有无变化,请仅就图2的情形给出证明;(3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【正确答案】(1)90°,2n ;(2)无变化,证明见解析;(3)1255;(4)BD=或3.【分析】(1)根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可.【详解】解:(1)①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB==12.∵BC =n ,∴CD =12n .故答案为90°,12n .(2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m ==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =3,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC ==810,∴BD =5.(4)∵m =6,n =CE =3,CD ,AB =2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD .②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴3BM EC ME ===,∴AM =5,AE ,由(2)可知DB AE =3,∴BD =21143.∴BD 为或3.本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(5月)一、选一选(本大题共10小题,每小题3分,共30分)1.7-的值为()A.7B.17C.17-D.7-2.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.875510n ⨯,则n 等于()A.10B.11C.12D.133.如图所示的几何体的俯视图是().A. B. C. D.4.方程()33111x x x =-++的根为() A.1-或3B.1- C.3D.1或3-5.在体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是()A.47,46B.48,47C.48.5,49D.49,496.方程是关于x 的一元二次方程的是() A.211x x+= B.20ax bx c ++=C.()()121x x ++= D.23250x xy y --=7.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,没有能拼成的四边形是()A.邻边没有等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形8.三张外观相同的卡片分别标有数字1,2,3,从中随机性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19 B.16 C.13 D.239.如图,在Rt ABC中, C=90°,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC→CB→BA运动,最终回到A点.设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()A. B. C. D.10.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是()A.3B.5C.11D.6二、填空题(本大题共5小题,每小题3分,共15分)。
丰台中考一模数学试题及答案解析(1)

丰台中考一模数学试题及答案解析(1)总结:话题作文与学期梳理
课程特色:
以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员
想扎实写作基础,稳固提高作文水平的初中生
赠送
《中学语文知识地图—中学必考文学常识一本通》
第十五章:学期课程融汇与升华
课程特色:
以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析。
2023年北京市初三一模数学试题汇编:一次函数章节综合

2023北京初三一模数学汇编一次函数章节综合A.①③B.②④2.(2023·北京房山·统考一模)如图的等边ABC中,点变量x,以下哪个量作为因变量所示的函数关系(.ACD的面积.ACD的周长)与华氏温度()是表示温度的两种方法,它们的关系A .B .C .D . 5.(2023·北京海淀·统考一模)图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是( )A .B .C .D .6.(2023·北京西城·统考一模)设备每年都需要检修,该设备使用年数n (单位:年,n 为正整数且110n ≤≤)与每年至第n 年该设备检修支出的费用总和y (单位:万元)满足关系式 1.40.5y n =−,下列结论正确的是( )A .从第2年起,每年的检修费用比上一年增加1.4万元B .从第2年起,每年的检修费用比上一年减少0.5万元C .第1年至第5年平均每年的检修费用为3.7万元D .第6年至第10年平均每年的检修费用为1.4万元二、解答题(1)求m 的值及一次函数(y kx b k =+≠(2)当1x >时,对于x 的每一个值,函数取值范围.(1)求m的值及l的表达式;17.(2023·北京顺义·统考一模)某京郊民宿有二人间、三人间、四人间三种客房供游客住宿,某旅游团有25位女士游客准备同时住这三种客房共8间,如果每间客房都要住满,请写出一种住宿方案__________;下列说法中,①甲、乙两种物质的溶解度均随着温度的升高而增大;②当温度升高至比乙的溶解度小;③当温度为相同.所有正确结论的序号是、ACD的面积随着意;、ACD的周长随着故选C.【点睛】本题考查动点的函数图象.从图象中有效的获取信息,是解题的关键.B【分析】根据表格信息,求出函数解析式即可.【详解】解;由表格数据可得:则222y V t k t ==,∴运动路程y 是t 的二次函数,图象开口向下,图象变化趋势是先陡后缓;故选C【点睛】本题主要考查了动点问题的函数图象,解题的关键是理解题意,列出函数表达式,灵活运用所学知识解决问题.5.C【分析】设两个直线关系式,再表示出z ,x 之间的关系式,即可得出图象.【详解】根据图像可知y 与x 是一次函数,z 和y 是正比例函数,设关系式为y kx b =+,1z k y =,所以1111()z k y k kx b k kx k b ==+=+,可知z 与x 是一次函数,所以图像C 符合题意.故选:C .【点睛】本题主要考查了函数图像的判断,表示出各函数关系式是解题的关键.6.D【分析】本题根据设出连续三年总支出,再两两相减得到连续两年的差值即可知道连续两年的每年的检修费,再根据总支出得到平均每年检修费.【详解】由题意得,前n 年支出总费用为 1.40.5y n =−万元,前1n +年支出总费用为: 1.4(1)0.5 1.40.9y n n =+−=+万元; 前2n +年支出总费用为:() 1.4 20.5 1.4 2.3y n n =+−=+万元; 易知,前n 年和前1n +年差值为1.4万元,前 1n +年和 2n +年差值为1.4万元, 故第二年起,每年检修费比上一年保持不变,故A , B 错误;第一到第五年总支出费用为1.450.5 6.5y =⨯−=万元, 故平均每年检修费用为6.55 1.3÷=万元, 故C 错误.15−年总支出为6.5万元,110−年总支出为1.4100.513.5y =⨯−=万元, 所以610−年平均每年检测费用为(13.5 6.5)5 1.4−÷=万元,故D 正确.故选D .【点睛】本题考查了一次函数的性质及基本不等式在实际生活中的应用,解题的关键是理解变量之间的关系.7.(1)一次函数的解析式+4y x =−;(2)1m ≥【分析】(1)用待定系数法求解即可;(2)根据题意列出关于m 的不等式即可求解.)一次函数∴0.5 2.5m ≤≤.【点睛】本题考查一次函数图象的平移及一次函数与一次不等式的关系,解题的关键是数形结合思想的应用.10.(1)21y x =−,1,02A ⎛⎫ ⎪⎝⎭;)函数图象经过点32k,当两直线平行时,1>−时,对于∴312k≤≤.∴c 最小时,y 最小,即1c =时,最小值为5700元,此时9a =;②当2a =,4b =,3c =时,由(1)得61005700y =>,不合题意,舍去;当3a >时,4b =,82a c =−,∴5000.860049005600100y a c c =⨯+⨯+=+,∵1000>,∴c 最小时,y 最小,即1c =时,最小值为5700元,此时6a =;③当1a =,6b =,2c =时,50016006900259005700y =⨯+⨯+⨯=>,不合题意,舍去;综上,如果租车的总费用最低,那么甲,乙,丙三种型号客车的租用数量可以分别是9,2,1或6,4,1.故答案为:9,2,1或6,4,1.【点睛】本题考查了一次函数的应用,正确的分类是解题的关键,注意租用甲型客车有优惠活动.。
2023年北京丰台区高三一模数学试卷(解析版)

2023年北京丰台区高三一模数学试卷(详解)一、单选题2.A.B.C.D.【答案】【解析】设,且,则C解:A .取,,则不成立;B .取,,则不成立;C .∵,∴,正确;D .取,∵,∴,因此不成立.故选:.3.A.B.C.2D.3【答案】已知圆与轴相切,则( )C1.A. B.C.D.【答案】【解析】已知集合,,则( )D 【分析】根据并集运算求解.【详解】因为集合,,所以,故选:D.【解析】【分析】求出圆心和半径,即可求解.【详解】圆的圆心为,半径为.因为圆与轴相切,所以.故选:C4.A.B.0C.1D.2【答案】【解析】已知是定义在上的奇函数,当时,,则( )A 【分析】根据奇函数的性质及所给函数解析式计算可得.【详解】因为是定义在上的奇函数,当时,,所以.故选:A5.A.B.C.D.【答案】【解析】在平面直角坐标系中,若角以轴非负半轴为始边,其终边与单位圆交点的横坐标为,则的一个可能取值为( )B 【分析】根据三角函数的定义得到,再根据特殊角的三角函数判断即可.【详解】依题意可得,则或,所以的一个可能取值为.故选:B6.A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】【解析】在中,若,则该三角形的形状一定是( )A 【分析】利用内角和定理及诱导公式得到,利用两角和与差的正弦函数公式化简,代入已知等式变形再利用两角和与差的正弦函数公式化简,得到,即,即可确定出三角形形状.【详解】解:在中,,,即,,,,即,则为等腰三角形.故选:A .7.A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】【解析】设无穷等差数列|的前n 项和为,则“对任意,都有”是“数列为递增数列”的( )A 【分析】利用定义法直接判断.【详解】充分性:因为“对任意,都有”,所以,所以“数列为递增数列”成立.故充分性满足;必要性:因为“数列为递增数列”,取数列:-1,1,3,5……符合数列为无穷等差数列|,且为递增数列,但是.故必要性不满足.故“对任意,都有”是“数列为递增数列”的充分而不必要条件.故选:A\displaystyle{S_{n}=S_{n}_{-1}+a_{n}> S_{n}_{-1},n\geq 2}8.A.1B.C.2D.【答案】【解析】已知抛物线的顶点是坐标原点O ,焦点为F ,A 是抛物线C 上的一点,点A 到x 轴的距离为.过点A 向抛物线C 的准线作垂线、垂足为B .若四边形ABOF 为等腰梯形,则p 的值为( )C 【分析】过点A 向x 轴作垂线、垂足为E .设准线交x 轴于D.利用几何法求出直角三角形的三边,利用勾股定理即可求解.【详解】如图示:过点A (不妨设为第一象限点)向x 轴作垂线、垂足为E .设准线交x 轴于D.因为四边形ABOF 为等腰梯形,所以,.所以.又,所以,所以,所以.所以.由抛物线的定义可得:.在直角三角形中,,.由勾股定理可得:,解得:.故选:C9.A.3B.C.2D.【答案】【解析】已知函数的定义域为,存在常数,使得对任意,都有,当时,.若在区间上单调递减,则t 的最小值为( )B 【分析】根据函数的周期性和绝对值型函数的单调性进行求解即可.【详解】因为存在常数,使得对任意,都有,所以函数的周期为,当时,函数在单调递减,所以当时,函数在上单调递减,因为在区间上单调递减,所以有,故选:B 【点睛】关键点睛:根据函数的周期的性质,结合绝对值型函数的单调性是解题的关键.10.A.0B.1C.2D.3【答案】【解析】如图,在直三棱柱中,,,,,点在棱上,点在棱上,给出下列三个结论:①三棱锥的体积的最大值为;②的最小值为;③点到直线的距离的最小值为.其中所有正确结论的个数为( )C 【分析】根据锥体的体积公式判断①,将将翻折到与矩形共面时连接交于点,此时取得最小值,利用勾股定理求出距离最小值,即可判断②,建立空间直角坐标系,利用空间向量法求出点到距离,再根据函数的性质计算可得.【详解】在直三棱柱中平面,对于①:因为点在棱上,所以,又,又,,,点在棱上,所以,,所以,当且仅当在点、在点时取等号,故①正确;对于②:如图将翻折到与矩形共面时连接交于点,此时取得最小值,因为,,所以,所以,即的最小值为,故②错误;对于③:如图建立空间直角坐标系,设,,,,,所以,,则点到直线的距离,当时,当时,,,则,所以当取最大值,且时,即当在点在点时点到直线的距离的最小值为,故③正确;故选:C二、填空题11.【答案】若复数是纯虚数,则 .【解析】【踩分点】【分析】根据复数代数形式的除法运算化简复数,再根据复数的概念得到方程(不等式),解得即可.【详解】,因为是纯虚数,所以,解得.故答案为:12.【答案】【解析】【踩分点】已知正方形的边长为,则 .【分析】根据正方形的性质及数量积的定义计算可得.【详解】因为正方形的边长为,所以,,,所以.故答案为:13.【答案】【解析】从,,,,这个数中任取个不同的数,记“两数之积为正数”为事件,“两数均为负数为事件.则 ./【分析】根据古典概型的概率公式求出,,再由条件概率的概率公式计算可得.【踩分点】【详解】从,,,,这个数中任取个不同的数有种取法,其中满足两数之积为正数的有种取法,满足两数之积为正数且两数均为负数的有种取法,所以,,所以.故答案为:三、双空题14.【答案】【解析】设函数若存在最小值,则a 的一个取值为 ;a 的最大值为 .1(≤1的任一实数,答案不唯一); ; 1【分析】利用导数讨论函数的单调性,分析取最值的情况,进行求解.【详解】记函数,则.令,解得:.列表得:+0-0+单增单减单增对于函数,当时,不能取得最小值,所以存在最小值,的最小值只能在时,时取得.当时,在单减,在单增,在单减,在单增.所以的最小值为,即存在最小值;【踩分点】当时,在单减,在单减,在单增.所以的最小值为,即存在最小值;当时,在单减,在单减,在单增.所以的最小值为,即存在最小值;当时,在单减,在单增.所以的最小值为,即存在最小值;当时,在单减,在单增,且,所以的最小值为,即存在最小值;当时,在单减,在单增,且,不能取得最小值.综上所述:当时函数存在最小值.故答案为:①1(的任一实数,答案不唯一);②1.15.【答案】三等分角是“古希腊三大几何问题”之一,目前尺规作图仍不能解决这个问题.古希腊数学家Pappus (约300~350前后)借助圆弧和双曲线给出了一种三等分角的方法:如图,以角的顶点C 为圆心作圆交角的两边于A ,B 两点;取线段AB 的三等分点O ,D ;以B 为焦点,A ,D 为顶点作双曲线H .双曲线H 与弧AB 的交点记为E ,连接CE ,则.①双曲线H 的离心率为 ;②若,,CE 交AB 于点P ,则.2【踩分点】【分析】①根据图形关系确定即可求解;利用面积之比,进而可求出,再根据求解.【详解】①由题可得所以,所以双曲线H 的离心率为;②,因为,且,所以,又因为,所以所以,所以,因为,解得,所以,故答案为:2;.四、解答题16.【答案】已知函数的部分图象如图所示.(1)求的解析式;(2)若函数,求在区间上的最大值和最小值.(1)(2)最大值为和最小值为0π【踩分点】【分析】(1)由图象及三角函数的性质可以得到,进而得到的解析式;(2)根据三角恒等变换化简,进而分析在区间上的最大值和最小值.【详解】(1)由图象可知:,将点代入得,∴(2)由得当时,即;当时,即;π17.如图,在四棱锥中,底面是边长为2的菱形,AC 交BD 于点O ,,.点E 是棱PA 的中点,连接OE ,OP .(1)求证:平面PCD ;(2)若平面PAC 与平面PCD 的夹角的余弦值为,再从条件①,条件②这两个条件中选择一个作为已知,求线段OP 的长.条件①:平面平面;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】【解析】(1)证明见解析(2)【分析】(1)根据线面平行的判定定理证明;(2)利用空间向量的坐标运算表示出平面PAC与平面PCD的夹角的余弦值,即可求解.【详解】(1)因为底面是菱形,所以是中点,因为E是棱PA的中点,所以,又因为平面PCD, 平面PCD,所以平面PCD.(2)选择条件①:因为,是的中点,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,所以两两垂直,以为原点建立空间直角坐标系,因为菱形的边长为2,所以,所以设所以,设为平面的一个法向量,由得所以取,所以,因为平面,所以平面的一个法向量为,平面PAC与平面PCD的夹角的余弦值为,所以,所以所以,所以,因为,所以,所以.所以线段OP的长为.选择条件②:因为.在菱形中,,因为平面平面,所以平面,因为平面,所以,因为,所以两两垂直,以为原点建立空间直角坐标系,因为菱形的边长为2,所以,所以设所以,设为平面的一个法向量,由得所以取,所以,因为平面,所以平面的一个法向量为,平面PAC与平面PCD的夹角的余弦值为,所以,所以所以,所以,因为,所以,所以.所以线段OP的长为.【踩分点】18.【答案】【解析】交通拥堵指数(TPI )是表征交通拥堵程度的客观指标,TPI 越大代表拥堵程度越高.某平台计算TPI 的公式为:,并按TPI 的大小将城市道路拥堵程度划分为如下表所示的4个等级:TPI 不低于4拥堵等级畅通缓行拥堵严重拥堵某市2023年元旦及前后共7天与2022年同期的交通高峰期城市道路TP1的统计数据如下图:(1)从2022年元旦及前后共7天中任取1天,求这一天交通高峰期城市道路拥堵程度为“拥堵”的概率;(2)从2023年元旦及前后共7天中任取3天,将这3天中交通高峰期城市道路TPI 比2022年同日TPI 高的天数记为,求的分布列及数学期望;(3)把12月29日作为第1天,将2023年元旦及前后共7天的交通高峰期城市道路TPI 依次记为,将2022年同期TPI 依次记为,记,.请直接写出取得最大值时的值.(1)(2)答案见解析(3)【分析】(1)根据随机事件的概率公式即可求解;(2)结合题意先求出的分布列,再结合数学期望的公式求解即可;(3)结合题意先求得,进而即可求解.【详解】实际行程时间畅通行程时间(1)由图可知,2022年元旦及前后共7天中,交通高峰期城市道路拥堵程度为“拥堵”的共2天,所以这一天交通高峰期城市道路拥堵程度为“拥堵”的概率为.(2)由图可知,2023年元旦及前后共7天中比2022年同日TPI高的天数只有1月3日和1月4日这2天,所以,,,所以的分布列为:012数学期望.(3)由题意,,,,,,,,所以,所以取得最大值时,.【踩分点】19.【答案】【解析】已知椭圆的一个顶点为,焦距为2.(1)求椭圆E 的方程;(2)过点的直线与椭圆E 交于B ,C 两点,过点B ,C 分别作直线的垂线(点B ,C 在直线l 的两侧).垂足分别为M ,N ,记,,的面积分别为,,,试问:是否存在常数t ,使得,,总成等比数列?若存在,求出t 的值.若不存在,请说明理由.(1)(2)存在,使得,,总成等比数列.【分析】(1)根据的关系求解;(2)表示,,的面积,利用韦达定理表示出即可求出常数t 的值.【详解】(1)根据已知可得,所以,所以椭圆E 的方程为.(2)由已知得,的斜率存在,且在轴的同侧,设直线的方程为,,不妨设,则由得所以因为,所以,【踩分点】,要使,,总成等比数列,则应有解得,所以存在,使得,,总成等比数列.20.【答案】【解析】已知函数.(1)求函数的极值;(2)若函数有两个不相等的零点,.(i )求a 的取值范围;(ii )证明:.(1)函数无极大值,有极小值.(2)(i ).(ii )见详解.【分析】(1)利用导数研究函数的单调性和极值.(2)(i )利用导数研究函数的单调性与极值,再结合图象与零点进行求解.(ii )利用构造对称函数以及导数进行证明.【详解】(1)因为,所以,因为,由有:,由有:,所以函数在单调递减,在单调递增,所以函数无极大值,有极小值.(2)(i )由(1)有:函数在单调递减,在单调递增,若函数有两个不相等的零点,,则,解得,所以,因为当时,,所以,【踩分点】所以在上有1个零点,当时,,又“指数爆炸”,所以,所以在上有1个零点,综上,当时,函数有两个不相等的零点,.(ii )由(i )有:当时,函数有两个不相等的零点,,不妨设,构造函数,则,因为,所以,因为,所以,当前仅当时取到等号,所以,所以在R 上单调递减,又,所以,即,即,又,所以,又,所以,由(1)有:函数在单调递减,所以,即,结论得证.21.【答案】已知集合,对于集合的非空子集.若中存在三个互不相同的元素,,,使得,,均属于,则称集合是集合的“期待子集”.(1)试判断集合,是否为集合的“期待子集”;(直接写出答案,不必说明理由)(2)如果一个集合中含有三个元素,,,同时满足①,②,③为偶数.那么称该集合具有性质.对于集合的非空子集,证明:集合是集合的“期待子集”的充要条件是集合具有性质;(3)若的任意含有个元素的子集都是集合的“期待子集”,求的最小值.(1)是集合的“期待子集”,不是集合的“期待子集”(2)证明见解析(3)【解析】【分析】(1)根据所给定义判断即可.(2)先证明必要性,再证明充分性,结合所给“期待子集”的定义及性质的定义证明即可;(3)首先利用反例说明当、时不成立,再利用数学归纳法证明集合的任意含有个元素的子集,都是的“期待子集”,即可得解.【详解】(1)因为,对于集合,令,解得,显然,,所以是集合的“期待子集”;对于集合,令,则,因为,即,故矛盾,所以不是集合的“期待子集”;(2)先证明必要性:当集合是集合的“期待子集”时,由题意,存在互不相同的,使得,不妨设,令,,,则,即条件中的①成立;又,所以,即条件中的②成立;因为,所以为偶数,即条件中的③成立;所以集合满足条件.再证明充分性:当集合满足条件时,有存在,满足①,②,③为偶数,记,,,由③得,由①得,由②得,所以,因为,,,所以,,均属于,即集合是集合的“期待子集”.(3)的最小值为,理由如下:一方面,当时,对于集合,其中任意三个元素之和均为奇数,由(2)知,不是的“期待子集”;当时,对于集合,从中任取三个不同的元素,若不含有,则不满足条件的③,若含有,则另外两个数必都是奇数,因为任意两个奇数之差(大数减小数)都不小于,故不满足条件中的②,所以不是的“期待子集”;所以.另一方面,我们用数学归纳法证明集合的任意含有个元素的子集,都是的“期待子集”:(I)当时,对于集合的任意含有个元素的子集,记为,当、、三个数中恰有个属于时,则,因为数组、、、、都满足条件,当三个数都属于,因为数组满足条件,所以此时集合必是集合的“期待子集”,所以当时的任意含有个元素的子集都是集合的“期待子集”.(II)假设当时结论成立,即集合的任意含有个元素的子集都是的“期待子集”,那么时,对于集合的任意含有个元素的子集,分成两类,①若,至多有个属于,则中至少有个元素都在集合,由归纳假设知,结论成立;②若,,则集合中恰含的个元素,此时,当中只有一个奇数时,则集合中包含中的所有偶数,此时数组,,符合条件,结论成立;当集合中至少有两个奇数时,则必有一个奇数不小于,此时数组,,符合条件,结论成立,所以时结论成立,根据(I)(II)知,集合的任意含有个元素的子集,都是的“期待子集”,所以的最小值为【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.【踩分点】。
2023年北京中考数学一模分类汇编——代数式运算(学生版)

2023年北京中考数学一模分类汇编——代数式运算1.(2023•海淀区一模)已知2x2+x﹣1=0,求代数式(2x+1)2﹣2(x﹣3)的值.
2.(2023•西城区一模)已知a是方程x2+2x﹣1=0的一个根,求代数式(a+1)2+a(a+2)的值.
3.(2023•东城区一模)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)+(x﹣3)2的值.
4.(2023•朝阳区一模)已知x2﹣x﹣3=0,求代数式(x+2)(x﹣2)﹣x(2﹣x)的值.
5.(2023•丰台区一模)已知x2﹣2x﹣2=0,求代数式2(x﹣1)(x+1)﹣(x+1)2的值.
6.(2023•石景山区一模)已知x2﹣x﹣5=0,求代数式的值.
7.(2023•通州区一模)先化简,再求值:已知3x2+x+1=0,求(x+1)(x﹣2)﹣(3+2x)(2x﹣3)的值.
8.(2023•平谷区一模)已知2x2+x﹣1=0,求代数式(x+2)(x﹣2)+x(x+1)的值.
9.(2023•门头沟区一模)已知m2﹣m﹣1=0,求代数式(2m+1)(2m﹣1)+(m﹣2)2﹣m2的值.
10.(2023•房山区一模)已知a2+4a﹣3=0,求代数式a(a+2)+(a+3)2的值.
11.(2023•延庆区一模)已知x2+x﹣3=0,求代数式(2x+3)(2x﹣3)﹣x(x﹣3)的值.12.(2023•大兴区一模)已知x2+x﹣1=0,求代数式(2x+1)(2x﹣1)﹣x(x﹣3)的值.13.(2023•燕山一模)已知x2+3x﹣5=0,求代数式(x+3)2+3x(x+2)的值.14.(2023•顺义区一模)已知x2﹣2x﹣1=0,求代数式(x+2)(x﹣2)+x(x﹣4)的值.。
北京丰台区中考一模数学试卷及答案(图片版)
要练说,得练看。看与说是统一的,看不准就难以说儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。2019北京昌平区中考一模数学试卷及答案
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。2019北京延庆区中考一模数学试卷及答案
2023年北京市初三一模数学试题汇编:简单的几何图形章节综合
2023北京初三一模数学汇编简单的几何图形章节综合 一、单选题1.(2023·北京顺义·统考一模)如图,要把角钢(1)变成夹角是90︒的钢架(2),则在角钢(1)上截去的缺口的度数为( )A .60︒B .90︒C .120︒D .150︒2.(2023·北京通州·统考一模)如图,是某一个几何体的表面展开图,这个几何体是( )A .五棱锥B .四棱锥C .四棱柱D .三棱柱3.(2023·北京丰台·统考一模)下列度数的角,只借助一副三角尺不能拼出的是( ) A .15︒ B .75︒ C .105︒ D .115︒4.(2023·北京西城·统考一模)下面几何体中,是圆柱的是( )A .B .C .D .5.(2023·北京西城·统考一模)如图,点O 在直线AB 上,OC OD ⊥,若50AOC ∠=,则BOD ∠的度数是( )A .120B .130C .140D .1506.(2023·北京海淀·统考一模)在一条沿直线MN 铺设的电缆两侧有甲、乙两个小区,现要求在MN 上选取一点P ,向两个小区铺设电缆.下面四种铺设方案中,使用电缆材料最少的是( )A.B.C.D.7.(2023·北京平谷·统考一模)下面几何体中,是圆柱的为()A.B.C.D.参考答案1.B【分析】本题是平角的定义及角的应用的考查.因为在截取之前的角是平角180︒,截完弯折后左右两边重合,所组成的新角是90︒,所以缺口角易求.【详解】因为缺口角为90︒,在截取之前的角是平角180︒,所以缺口角等于1809090︒−︒=︒, 故选:B .【点睛】本题是实际应用题,截取弯成后的角与缺口角是互补的,理解这个问题是解题的关键. 2.D【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选:D .【点睛】本题考查的是三棱柱的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.D【分析】根据一副三角尺的角度(90,45,30,60︒︒︒︒)能否通过和或差求出所对应的度数即可.【详解】解:A 、453015︒−︒=︒,即能用三角尺画出15︒的角,故本选项不符合题意; B 、453075︒+︒=︒,即能用三角尺画出75︒的角,故本选项不符合题意;C 、4560105︒+︒=︒,即能用三角尺画出105︒的角,故本选项不符合题意;D 、根据90,45,30,60︒︒︒︒的组合不得出115︒的角,即不能用三角尺画出115︒的角,故本选项符合题意; 故选D .【点睛】本题考查了角的有关计算的应用,主要考查学生的理解能力和计算能力,掌握一副三角尺的角度有90,45,30,60︒︒︒︒是本题的关键.4.B【分析】根据圆柱体的特征进行判断即可.【详解】解:A.是正方体,不符合题意;B.是圆柱,符合题意;C.是圆锥,不符合题意;D.是球体,不符合题意,故选:B .【点睛】本题考查了认识立体图形,熟练掌握每个几何体的特征是解题的关键.5.C【分析】根据余角和平角的定义分析得出答案.【详解】解:∵OC OD ⊥,∴90COD ∠=︒,∴90905040AOD AOC ∠=︒−∠=︒−︒=︒,再根据邻补角的定义,得BOD AOD∠=︒−∠=︒−︒=︒.180********故选C.【点睛】此题主要考查了余角和邻补角的定义,正确把握余角和邻补角的定义是解题关键.6.A【分析】根据两点之间线段最短即可得出答案.【详解】解:甲、乙位于直线MN的两侧,∴根据两点之间线段最短,连接甲、乙两点,与直线MN交于点P,点P即为所求;故选:A.【点睛】本题考查两点之间线段最短的公理,解题的关键是分析题中两点的位置是在直线的同侧还是异侧,在异侧连接两点即可,在同侧需做其中一点的对称点再连接.7.A【分析】根据圆柱体的特征判断即可.【详解】解:A、是圆柱,故此选项符合题意;B、是圆锥,故此选项不符合题意;C、是三棱锥,故此选项不符合题意;D、是球体,故此选项不符合题意;故选:A.【点睛】本题考查了认识立体图形,熟练掌握每个几何体的特征是解题的关键.。
2023年北京市初三一模数学试题汇编:圆(下)章节综合
2023北京初三一模数学汇编圆(下)章节综合统考一模)如图,O是ABC的外接圆,是O的切线;12,AD=,求O的半径.北京顺义·统考一模)如图,在O中,AB在O上,CE ,交AD的延长线于点F,且CE CF=是O的切线;60BAF∠=北京丰台·统考一模)如图,是O的直径,是O的两条弦,作O的切线交CB的延长线于点(1)求证:CE DE⊥(2)若1tan3A=,BE4.(2023·北京平谷是O的直径,是O上的两点,且O的切线交AC的延长线于点统考一模)如图,ABC是圆内接三角形,过圆心∠,COF是O的切线;8,求O半径的长度.北京门头沟·统考一模)在平面直角坐标系,给出如下定义:连接(1)如图1,已知线段MN 上的两点()0,2M ,()4,0N ;①点()11,3P ,()22,1P −,()34,2P 中,点M ,N 的“条件拐点②如果过点()0,A a 且平行于x 轴的直线上存在点M ,(2)如图2,已知点()0,1F ,()0,T t ,过点F 作直线l ⊥②若O 与点A 的关联直线相切,则O 的半径为已知点(0C ,为直线CD 2d =时,求点的关联直线的距离的最大值;()11T −,为圆心,为半径作T .在点M 的关联直线与T 交于E 的最小值为的值.2023·北京海淀统考一模)如图,AB 为O 的直径,为O 上一点,BC 的中点,(1)求证:直线DE 为O 的切线;(2)延长,AB ED 交于点F .若BF 10.(2023·北京房山·统考一模)如图,ABC 中,为直径作O ,与边过点D 的O 的切线交BC 的延长线于点E .(1)求证:2BAC DBC ∠=∠;(2)若3cos 5BAC ∠=,DE =11.(2023·北京朝阳·统考一模)如图,是O 的弦,过点作O 的切线,交OC 的延长线于点D(1)求证:B D ∠=∠;(2)延长BO 交O 于点E ,连接12.(2023·北京西城·统考一模)如图,是O 的直径,是O 上一点,的平分线交O 于点作O 的切线交E .(1)求证:DE AB ∥;(2)若5OA =,3sin 5A =,求线段∽求解即可.,继而根据ADO EOC是O的直径,是O的切线.)解:∵AB是⊙ACB=︒.9090+∠=BAC B⊥作CE AB∴ADO EOC ∽,AD OE AO EC =. 1.5324AD a AO a ==. 3AD =,4OA =.∴O 的半径为【点睛】本题考查切线的判定,相似三角形的判定与性质、三角函数,勾股定理,等腰三角形的判定,圆周角定理的推论,本题属圆的综合题目,熟练掌握相关性质与判定是解题的关键..(1)见解析;(2)33. 【分析】(1)根据CE OA ∠CF OC 为O 的半径,是O 的切线;OC ∠OB ∴OCB 为等边三角形,∴=60B ∠︒.1CF =,1CE =,1tan 60BE =DE 是O 的切线,90ODE =︒AO DO .ODA A =∠2DOB A =∠=∴DO CE∥.∴180E ODE∠=︒−∠∴CE DE⊥.(2)解:连接BD,AB是O的直径,∴90ADB∠=︒.90∠=ABDOD OB,∴∠ODE ODB∠=∠BDE A=∠BE∠为O的切线,得出,即可求证E∠=∠B ECD ∠=∠2 cos3B,,则CD=,最后根据cos∠为O的切线,EDO=︒,90DC,∠,2OD,∠,3内接于O,2cosB,3是直径,ADB=︒,90=,9=,6=,DC故答案为:1P,3P.②由题意可得线段OA的所有相关点都在以如图.设这个圆的圆心是H.(2A ,0),∴ (1H ,0).当直线y x b =+与H 相切,且将直线y x b =+与x 轴的交点分别记为则点B 的坐标是(b −,0).∴ 1BH b =+.,解得21b =−与H 相切,且21−.的取值范围是2−−是直线x =,则以QK 为直径的圆上两点设以QK 为直径的圆,圆心是C .则C ⎛− ⎝∴52CP = M 是ST 的中点,2ST PM =,∴2SP PM =Rt CSM中,2QK CS==2KB KQ=根据对称性可得当(2)O半径的长度为【分析】(1)根据得出DC是O的切线;2)根据圆周角定理可得,即可证明ABC EAC,根据相似三角形的性质,结合【详解】(1)解:∵2COF∠=是O的半径,是O的切线.)由(1)可知1 2AOC=∠OAC=∠=BCA ACE=∠∴ABC EAC,BC ACAC CE=,即AC8BC CE⋅=,28AC=,∴由勾股定理得2OC∴O 半径的长度为到直线的距离小于等于F 的半径,列不等式由题意知,MN 在以B 为圆心,∵过点()0,A a 且平行于x ∴B 到过点()0,A a 且平行于由题意知,OC OD t ==,TF ∴45OCD ∠=︒,点F 到直线y x t =−的距离为令()2112t t +≤−,解得3t ≥+同理得,()2112t t +≤−,解得∴0322t <≤−;当10t −<≤时,如图4,同理可得()2112t t +≤−,解得∴10t −<≤;当1t ≤−时,如图5,同理可得()2112t t −−≤−,解得∴1t ≤−,综上所述,322t ≥+或32t ≤−【点睛】本题考查了勾股定理,勾股定理的逆定理,直线与圆的位置关系,等边对等角,正弦,解一元一次不等式.解题的关键在于理解题意并从中抽象出数学模型.8.(1)①2y x =+;②与O 相切于点OC OD =)2m −+,,则点,进而得到当点的关联直线的距离最大,然后利用勾股定理求解即可;②同理求出点与O 相切于点, ∴O 的半径为(2)解:①设直线CD 的解析式为由题意得,点()02C ,,点D ∴202k b b +=⎧⎨=⎩, ∴12k b =−⎧⎨=⎩,②同理可得直线CD的解析式为设点M的坐标为2 n nd ⎛−⎝,∴点M的关联直线为y=是O 的直径,可得是矩形,即可得出结论;)设O 的半径为Rt ODF △,得到sin ABC =∠,即可得到AC .【详解】(1)证明:连接.是O 的直径,90ACB =︒,是BC 的中点,BC ,AC ⊥,∴四边形CEDF 是矩形,是O 的半径,是O 的切线.(2)解:设O 的半径为在Rt ODF △中,sin OFD ∠∴123r r =+, 2,【点睛】本题考查了切线的性质判定,垂径定理,矩形的性质与判定,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.10.(1)见解析BE=.(2)8【分析】(1)由等边对等角,以及三角形内角和定理推出为O的直径,90DBC=︒−∠=∠2BAC DBC)解:∵BC为O的直径,BDC BDA=∠=︒,903BAC=,5=,BD5a则OD OB =,∴CBD BDO ∠=∠,∵BC 为O 的直径,DE 为O 的切线,∴90BDC ODE ∠=∠=︒,∴EDC BDO EBD ∠=∠=∠,DEC BED =∠DEC BED ∽△24CD a BD a =交O 于点E )证明:如图,连接∵AD 为O 的切线,∴90OAD ∠=︒∴+90CAD OAB ∠∠︒=,∵OC AB ⊥,=90ACD ︒,+90D ∠︒=,交O 于点E在Rt ACD △中,25AD =可得sin 2AC AD D =⋅=,∵OC AB ⊥,为O 的直径,90EAB =︒,ABE 中,AE Rt ACE 中,根据勾股定理,得【点睛】本题考查了圆与三角形的综合应用,勾股定理,解直角三角形,三角函数的定义,垂径定理,切线的性质,等腰三角形的性质,灵活运用所学知识是解题关键.(1)见解析35 是O 的切线,切点是DE .90ODE ︒=.是O 的直径,的平分线交O 于点D 45︒.(2)解:作BH DE ⊥于∴90BHD BHE ∠∠︒==.∵OD DE ⊥,90AOD ∠=∴90BOD ODH ∠∠︒==.【点睛】本题考查了切线的性质,正方形的判定和性质,圆周角定理及推论,锐角三角函数之间的转化,关键是连接过切点的半径,得垂直于半径的直线,过点B作垂线构造直角三角形.。
2020年北京市丰台区中考数学一模试卷 (解析版)
2020年数学一模试卷一、选择题1.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是()A.B.C.D.2.据报道,位于丰台区的北京排水集团槐房再生水厂,是亚洲规模最大的一座全地下再生水厂,日处理污水能力600000立方米,服务面积137平方公里.将600000用科学记数法表示为()A.0.6×105B.0.6×106C.6×105D.6×1063.正六边形的每个内角度数为()A.60°B.120°C.135°D.150°4.下列几何体的主视图和俯视图完全相同的是()A.B.C.D.5.在数轴上,点A,B分别表示数a,3,点A关于原点O的对称点为点C.如果C为AB 的中点,那么a的值为()A.﹣3B.﹣1C.1D.36.在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD7.某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:垃圾箱种类“厨余垃圾”箱“可回收物”箱“有害垃圾”箱“其他垃圾”箱垃圾量垃圾种类(吨)厨余垃圾4001004060可回收物301401020有害垃圾5206015其他垃圾25152040下列三种说法:(1)厨余垃圾投放错误的有400t;(2)估计可回收物投放正确的概率约为;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是()A.0B.1C.2D.38.图书馆将某一本书和某一个关键词建立联系,规定:当关键词A i出现在书B j中时,元素a ij=1,否则a ij=0(i,j为正整数).例如:当关键词A1出现在书B4中时,a14=1,否则a14=0.根据上述规定,某读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,则下列相关表述错误的是()A.当a21+a51+a61=3时,选择B1这本书B.当a22+a52+a62<3时,不选择B2这本书C.当a2j,a5j,a6j全是1时,选择B j这本书D.只有当a2j+a5j+a6j=0时,才不能选择B j这本书二、填空题(本题共16分,每小题2分)9.如果二次根式有意义,那么实数a的取值范围是.10.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).11.当m+n=1时,代数式•(m2﹣n2)的值为.12.如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中一个作为题设,余下的两个作为结论组成命题,其中真命题的个数为.13.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为C1和C2,则C1C2(填“>”、“=”或“<”).14.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP 和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第名.15.已知函数y=kx2+(2k+1)x+1(k为实数).(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点;(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m 的值为.16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:12345678累计工作时长最多件数(时)种类(件)甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为元.三、解答题(本题共68分,第17-23题,每小题0分,第24-25题,每小题0分,第26-28题,每小题0分)17.计算:﹣2cos30°+(3﹣π)0+|1﹣|.18.解不等式组:.19.如图,在△ABC中,∠CAB=∠CBA,AD⊥BC于点D,BE⊥AC于点E.求证:AD =BE.20.关于x的一元二次方程x2﹣4x+2m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.在平面直角坐标系xOy中,一次函数y=x+4的图象与y轴交于点A,与反比例函数y =的图象的一个交点为M.(1)求点A的坐标;(2)连接OM,如果△MOA的面积等于2,求k的值.22.如图,在▱ABCD中,AC,BD交于点O,且AO=BO.(1)求证:四边形ABCD是矩形;(2)∠ADB的角平分线DE交AB于点E,当AD=3,tan∠CAB=时,求AE的长.23.居民人均可支配收入、居民人均消费总支出和恩格尔系数都是反映居民生活水平的指标,其中恩格尔系数指居民家庭中食品支出占消费总支出的比重,恩格尔系数越小,说明食品支出占消费总支出比重越低,居民家庭越富裕,反之越贫穷.下面是根据从权威机构获得的部分数据绘制的统计图:根据以上信息,回答下列问题:(1)2019年中国城乡居民恩格尔系数m约为(精确到0.1%);(2)2019年居民人均消费总支出n约为万元(精确到千位);(3)下面的推断合理的是.①2015﹣2019年中国城乡居民人均可支配收入和人均消费总支出均呈逐年上升的趋势,说明中国居民生活水平逐步提高;②2015﹣2019年中国城乡居民恩格尔系数呈现下降趋势,说明中国居民家庭富裕程度越来越高.24.在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.25.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB =6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7位置8 AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是.26.已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.27.已知∠AOB=120°,点P为射线OA上一动点(不与点O重合),点C为∠AOB内部一点,连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,且点Q恰好落在射线OB上,不与点O重合.(1)依据题意补全图1;(2)用等式表示∠CPO与∠CQO的数量关系,并证明;(3)连接OC,写出一个OC的值,使得对于任意点P,总有OP+OQ=4,并证明.28.如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2)的圆为∠EMO 的角内相切圆,直接写出∠EOM的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:A.2.据报道,位于丰台区的北京排水集团槐房再生水厂,是亚洲规模最大的一座全地下再生水厂,日处理污水能力600000立方米,服务面积137平方公里.将600000用科学记数法表示为()A.0.6×105B.0.6×106C.6×105D.6×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:将600000用科学记数法表示为6×105,故选:C.3.正六边形的每个内角度数为()A.60°B.120°C.135°D.150°【分析】利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.故选:B.4.下列几何体的主视图和俯视图完全相同的是()A.B.C.D.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.解:A、圆锥的主视图是等腰三角形,俯视图是圆,故A选项不合题意;B、圆柱主视图是矩形,俯视图是圆,故B选项不合题意;C、三棱柱主视图是一行两个矩形,俯视图是三角形,故C选项不合题意;D、正方体主视图和俯视图都为正方形,故D选项符合题意;故选:D.5.在数轴上,点A,B分别表示数a,3,点A关于原点O的对称点为点C.如果C为AB 的中点,那么a的值为()A.﹣3B.﹣1C.1D.3【分析】根据题意得点C表示的数为﹣a,根据C为AB的中点,列出关于a的绝对值方程,按照绝对值的化简法则计算,得出a的值并进行取舍即可.解:∵点A,B分别表示数a,3,点A关于原点O的对称点为点C.∴点C表示的数为﹣a,∵C为AB的中点,∴|a﹣(﹣a)|=|3+a|,∴2a=3+a,或﹣2a=3+a,∴a=3(舍去,因为此时点A与点B重合,则点C为AB中点,但又要与点A关于原点对称,矛盾),或a=﹣1.故选:B.6.在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD【分析】根据作图过程可知:AD是⊙O的直径,=,根据垂径定理即可判断A、B、C正确,再根据DC=OD,可得AD=2CD,进而可判断D选项.解:根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.7.某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:“厨余垃圾”箱“可回收物”箱“有害垃圾”箱“其他垃圾”箱垃圾箱种类垃圾量垃圾种类(吨)厨余垃圾4001004060可回收物301401020有害垃圾5206015其他垃圾25152040下列三种说法:(1)厨余垃圾投放错误的有400t;(2)估计可回收物投放正确的概率约为;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是()A.0B.1C.2D.3【分析】根据投放正确的概率进行判断即可.解:(1)厨余垃圾投放错误的有100+40+60=200t;故错误;(2)估计可回收物投放正确的概率约为=;故正确;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普,故正确.故选:C.8.图书馆将某一本书和某一个关键词建立联系,规定:当关键词A i出现在书B j中时,元素a ij=1,否则a ij=0(i,j为正整数).例如:当关键词A1出现在书B4中时,a14=1,否则a14=0.根据上述规定,某读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,则下列相关表述错误的是()A.当a21+a51+a61=3时,选择B1这本书B.当a22+a52+a62<3时,不选择B2这本书C.当a2j,a5j,a6j全是1时,选择B j这本书D.只有当a2j+a5j+a6j=0时,才不能选择B j这本书【分析】根据题意a ij的值要么为1,要么为0,当关键词A i出现在书B j中时,元素a ij =1,否则a ij=0(i,j为正整数),按照此规定对每个选项分析推理即可.解:根据题意a ij的值要么为1,要么为0,A、a21+a51+a61=3,说明a21=1,a51=1,a61=1,故关键词“A2,A5,A6”同时出现在书B1中,而读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,故A表述正确;B、当a22+a52+a62<3时,则a22、a52、a62时必有值为0的,即关键词“A2,A5,A6”不同时具有,从而不选择B2这本书,故B表述正确;C、当a2j,a5j,a6j全是1时,则a2j=1,a5j=1,a6j=1,故关键词“A2,A5,A6”同时出现在书B j中,则选择B j这本书,故C表述正确;D、根据前述分析可知,只有当a2j+a5j+a6j=3时,才能选择B j这本书,而a2j+a5j+a6j的值可能为0、1、2、3,故D表述错误,符合题意.故选:D.二、填空题(本题共16分,每小题2分)9.如果二次根式有意义,那么实数a的取值范围是a≥1.【分析】根据二次根式中的被开方数是非负数求解可得.解:根据题意知a﹣1≥0,解得a≥1,故答案为:a≥1.10.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】根据图形,可知∠CPA=45°,∠CPA=∠PAB+∠PBA,从而可以得到∠PAB+∠PBA的值.解:∵∠CPA=45°,∠CPA=∠PAB+∠PBA,∴∠PAB+∠PBA=45°,故答案为:45.11.当m+n=1时,代数式•(m2﹣n2)的值为4.【分析】先利用分式的混合运算顺序和运算法则化简原式,再将m+n的值整体代入计算可得.解:原式=[+]•(m+n)(m﹣n)=•(m+n)(m﹣n)=4(m+n),∵m+n=1,∴原式=4×1=4,故答案为:4.12.如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中一个作为题设,余下的两个作为结论组成命题,其中真命题的个数为3.【分析】利用已知结合全等三角形的判定与性质得出答案.解:已知②EO=OF;①BO=DO,结论:③AE=CF.理由:在△DOE和△BOF中,∴△DOE≌△BOF(SAS),∴DE=BF,∵四边形ABCD是平行四边形,∴AD=BC,∴AE=FC,同理可得:已知②EO=FO,③AE=CF,结论:①BO=DO,是真命题;已知:①BO=DO,③AE=CF,结论:②EO=FO,是真命题,故答案为:3.13.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为C1和C2,则C1=C2(填“>”、“=”或“<”).【分析】设图2中大长方形长为x,宽为y,再表示出长方形Ⅰ和Ⅱ的长和宽,进而可得周长,然后可得答案.解:设图2中大长方形长为x,宽为y,则长方形Ⅰ的长为x﹣1,宽为y﹣3,周长C1=2(x﹣1+y﹣3)=2x+2y﹣8,长方形Ⅱ的长为x﹣2,宽为y﹣2,周长C2=2(x﹣2+y﹣2)=2x+2y﹣8,则C1=C2,故答案为:=.14.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP 和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第3名.【分析】由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,再由第二个图可求解.解:由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,由第二个图可得GDP排名第九的城市的教育科研与医疗的排名为第3名,故答案为:3.15.已知函数y=kx2+(2k+1)x+1(k为实数).(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1);(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m 的值为0.【分析】(1)分别将x取﹣2或0时,计算相应的函数值,即可得到答案;(2)先由k>0,判断函数图象的开口方向,再求出函数的对称轴,则m值大于﹣1时均符合题意,任取范围内一个m值即可.解:(1)∵y=kx2+(2k+1)x+1(k为实数).∴当x=﹣2时,y=4k+(2k+1)×(﹣2)+1=1,当x=0时,y=0+0+1=1,∴对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点(0,1),故答案为:(0,1);(1)∵k为任意正整数,∴k>0,∴函数图象开口向上,∵函数y=kx2+(2k+1)x+1的对称轴为x =﹣=﹣1﹣<﹣1,∴在对称轴右侧,y随x的增大而增大,∵x>m时,y随x的增大而增大,∴m≥﹣1﹣,故m=0时符合题意.(答案不唯一,m≥﹣1即可).故答案为:0.16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:12345678累计工作时长最多件数(时)种类(件)甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为160元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x +y=8,x,y均为正整数,那么他一天的最大收入为180元.【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,得出最大收入即可.解:(1)当只送乙类件时,他一天的最大收入为2×80=160;(2)∵x+y=8,x,y均为正整数,所以当送甲类件3小时,乙类件5小时时,他一天的最大收入为80×1+50×2=180,故答案为:160;180.三、解答题(本题共68分,第17-23题,每小题0分,第24-25题,每小题0分,第26-28题,每小题0分)17.计算:﹣2cos30°+(3﹣π)0+|1﹣|.【分析】直接利用二次根式的性质和特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案.解:原式===.18.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x>4(x﹣1),得:x<4,解不等式≤x,得:x≥1,则不等式组的解集为1≤x<4.19.如图,在△ABC中,∠CAB=∠CBA,AD⊥BC于点D,BE⊥AC于点E.求证:AD =BE.【分析】得出CA=CB.证明△ADC≌△BEC(AAS),则结论得证.【解答】证明:∵∠CAB=∠CBA,∴CA=CB.∵AD⊥BC于点D,BE⊥AC于点E,∴∠ADC=∠BEC=90°,∵∠ACD=∠BCE,∴△ADC≌△BEC(AAS).∴AD=BE.20.关于x的一元二次方程x2﹣4x+2m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)根据判别式的意义得到△=(﹣4)2﹣4(2m﹣2)>0,然后解不等式即可;(2)在(1)中m的范围内取一个确定的值,然后解一元二次方程即可.解:(1)根据题意得△=(﹣4)2﹣4(2m﹣2)>0,解得m<3;(2)取m=0,此时方程为x2﹣4x=0,解得x1=0,x2=4.21.在平面直角坐标系xOy中,一次函数y=x+4的图象与y轴交于点A,与反比例函数y =的图象的一个交点为M.(1)求点A的坐标;(2)连接OM,如果△MOA的面积等于2,求k的值.【分析】(1)通过计算自变量为0对应的一次函数值得到A点坐标;(2)利用一次函数图象上点的坐标特征,设M点的坐标为(t,t+4),根据三角形面积公式得到×4×|t|=2,求出t得到M点的坐标,然后利用反比例函数图象上点的坐标特征求k的值.解:(1)当x=0,y=x+4=4,∴A(0,4);(2)设M点的坐标为(t,t+4),∵△MOA的面积等于2,∴×4×|t|=2,解得t=1或t=﹣1,∴M点的坐标为(1,5)或(﹣1,3),当M点的坐标为(1,5)时,k=1×5=5;当M点的坐标为(﹣1,3)时,k=﹣1×3=﹣3,综上所述,k的值为5或﹣3.22.如图,在▱ABCD中,AC,BD交于点O,且AO=BO.(1)求证:四边形ABCD是矩形;(2)∠ADB的角平分线DE交AB于点E,当AD=3,tan∠CAB=时,求AE的长.【分析】(1)由平行四边形性质和已知条件得出AC=BD,即可得出结论;(2)过点E作EG⊥BD于点G,由角平分线的性质得出EG=EA.由三角函数定义得出AB=4,sin∠CAB=sin∠ABD==.,设AE=EG=x,则BE=4﹣x,在Rt △BEG中,由三角函数定义得出,即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AC=2AO,BD=2BO.∵AO=BO,∴AC=BD.∴▱ABCD为矩形.(2)解:过点E作EG⊥BD于点G,如图所示:∵四边形ABCD是矩形,∴∠DAB=90°,∴EA⊥AD,∵DE为∠ADB的角平分线,∴EG=EA.∵AO=BO,∴∠CAB=∠ABD.∵AD=3,tan∠CAB=,∴tan∠CAB=tan∠ABD==.∴AB=4.∴BD===5,sin∠CAB=sin∠ABD==.设AE=EG=x,则BE=4﹣x,在△BEG中,∠BGE=90°,∴sin∠ABD=.解得:x=,∴AE=.23.居民人均可支配收入、居民人均消费总支出和恩格尔系数都是反映居民生活水平的指标,其中恩格尔系数指居民家庭中食品支出占消费总支出的比重,恩格尔系数越小,说明食品支出占消费总支出比重越低,居民家庭越富裕,反之越贫穷.下面是根据从权威机构获得的部分数据绘制的统计图:根据以上信息,回答下列问题:(1)2019年中国城乡居民恩格尔系数m约为28.3%(精确到0.1%);(2)2019年居民人均消费总支出n约为 2.1万元(精确到千位);(3)下面的推断合理的是①②.①2015﹣2019年中国城乡居民人均可支配收入和人均消费总支出均呈逐年上升的趋势,说明中国居民生活水平逐步提高;②2015﹣2019年中国城乡居民恩格尔系数呈现下降趋势,说明中国居民家庭富裕程度越来越高.【分析】(1)根据扇形统计图中食品所占的圆心角的度数÷360°即可得到结论;(2)根据食品支出占消费总支出的百分比×0.6即可得到结论;(3)由折线统计图和条形统计图中的信息监控得到结论.解:(1)2019年中国城乡居民恩格尔系数m约为×100%≈28.3%,故答案为:28.3%;(2)2019年居民人均消费总支出n约为0.6÷28.3%≈2.1(万元);(3)由条形统计图可以看出2015﹣2019年中国城乡居民人均可支配收入和人均消费总支出均呈逐年上升的趋势,说明中国居民生活水平逐步提高;由折线统计图可知2015﹣2019年中国城乡居民恩格尔系数呈现下降趋势,说明中国居民家庭富裕程度越来越高.故推断合理的是①②;故答案为:(1)28.3%;(2)2.1;(3)①②.24.在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.【分析】(1)连接AP,根据圆周角定理得到∠APD=45°,求得DA=AP=a,得到∠D=∠APD=45°,推出D A⊥PA,于是得到结论;(2)根据等腰三角形的性质得到∠BAP=∠B=22.5°,求得∠PAC=∠PCA=67.5°,推出点C在⊙P上,根据垂径定理得到AC=CE,求得∠APE=90°,于是得到结论.解:(1)直线DA与图形W的公共点的个数为1个;∵点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,∵到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∵∠B=22.5°,∴∠APD=45°,∵点D到点A的距离也等于a,∴DA=AP=a,∴∠D=∠APD=45°,∴∠PAD=90°,∴DA⊥PA,∴DA为⊙P的切线,∴直线DA与图形W的公共点的个数为1个;(2)∵AP=BP,∴∠BAP=∠B=22.5°,∵∠BAC=90°,∴∠PAC=∠PCA=67.5°,∴PA=PC=a,∴点C在⊙P上,∵AE⊥BD交图形W于点E,∴=,∴AC=CE,∴∠DPE=∠APD=45°,∴∠APE=90°,∵EP=AP=a=2,∴AE=,∠E=45°,∵∠B=22.5°,AE⊥BD,∴∠BAE=67.5°,∴∠AFE=∠BAE=67.5°.∴EF=AE=.25.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB =6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7位置8 AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9 CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定AC的长度是自变量,CD的长度和DF 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是 3.5cm<x<5cm.【分析】(1)根据函数的定义可得结论.(2)利用描点法画出函数图象即可.(3)利用图象法,观察图象写出函数CD的图象在函数DF的图象上方时,自变量的取值范围即可.解:(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(2)函数图象如图所示:(3)观察图象可知CD>DF时,3.5cm<x<5cm.故答案为:3.5cm<x<5cm.26.已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=1;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.【分析】(1)由对称轴是直线x=﹣,可求解;(2)分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.解:(1)由题意可得:对称轴是直线x==1,故答案为:1;(2)当a>0时,∵对称轴为x=1,当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,∴3a﹣(﹣a)=4.∴a=1,∴二次函数的表达式为:y=x2﹣2x;当a<0时,同理可得y有最大值为﹣a;y有最小值为3a,∴﹣a﹣3a=4,∴a=﹣1,∴二次函数的表达式为:y=﹣x2+2x;综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;(3)∵a<0,对称轴为x=1,∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,∴t≥﹣1,t+1≤3,∴﹣1≤t≤2.27.已知∠AOB=120°,点P为射线OA上一动点(不与点O重合),点C为∠AOB内部一点,连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,且点Q恰好落在射线OB上,不与点O重合.(1)依据题意补全图1;(2)用等式表示∠CPO与∠CQO的数量关系,并证明;(3)连接OC,写出一个OC的值,使得对于任意点P,总有OP+OQ=4,并证明.【分析】(1)根据题意补全图形即可;(2)根据四边形内角和为360°可得答案;(3)连接OC,在射线OA上取点D,使得DP=OQ,连接CD,首先证明△COQ≌△CDP,然后△COD为等边三角形,进而可得答案.解:(1)补图如图1:(2)∠CQO+∠CPO=180°,理由如下:∵四边形内角和360°,且∠AOB=120°,∠PCQ=60°,∴∠CQO+∠CPO=∠1+∠2=180°.(3)OC=4时,对于任意点P,总有OP+OQ=4.证明:连接OC,在射线OA上取点D,使得DP=OQ,连接CD.∴OP+OQ=OP+DP=OD.∵∠1+∠2=180°,∵∠2+∠3=180°,∴∠1=∠3.∵CP=CQ,在△CQO和△CPD中,∴△COQ≌△CDP(SAS).∴∠4=∠6,OC=CD.∵∠4+∠5=60°,∴∠5+∠6=60°.即∠OCD=60°.∴△COD是等边三角形.∴OC=OD=OP+OQ=4.28.如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。