带电粒子在磁场中的受力

带电粒子在磁场中的受力
带电粒子在磁场中的受力

带电粒子在磁场中的受力

带电粒子在电场、磁场(或电场、磁场和重力场的复合场)中的运动是高中物理中的重点内容,是每年高考考查的重点和难点,本部分内容综合性很强,几乎可以综合一切力学规律,题目突出,与生产技术、生活实际、科学研究等紧密结合,突出考查学生从实际问题中获取物理信息,建立物理模型的能力,同时对于学生的空间想象能力、分析综合能力、应用数学知识分析物理问题的能力也有较高的要求

(一)不计重力的带电粒子在电场中的运动

1、带电粒子的加速

(1)运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动。

(2)用功能观点分析:粒子动能的变化量等于电场力做的功(电场可以是非匀强电场)。

若粒子的初速度为零,则mv2=qU,v=。

若粒子的初速度不为零,则mv2-mv02=qU。v=。

2、带电粒子在匀强电场中的偏转

(1)运动状态分析:带电粒子以速度v0垂直于电场线方向飞入匀强电场时,受到与初速度方向恒成90°角的电场力作用而做匀变速曲线运动。

(2)偏转问题的分析处理方法类似于平抛运动,应用运动的合成和分解的知识方法。

①沿初速度方向的匀速直线运动,运动时间t=。

②沿电场力方向初速度为零的匀加速直线运动a=。

离开电场时的偏移量y=at2=,离开电场时的偏转角tanθ==。

3、推论:(1)粒子从偏转电场中射出时,其速度反向延长线与初速度方向交于一点,此点平分沿初速度方向的位移。

在下图中,设带电粒子质量为m、带电荷量为q,以速度v0垂直于电场线射入匀强偏转电场,偏转电压为U。若粒子飞出电场时偏角为θ,则tanθ=,式中

v y=at=·,v x=v0,代入得tanθ=。

粒子从偏转电场中射出时偏距y=at2=。

作粒子速度的反向延长线,设交于O点,O点与电场边缘的距离为x,则

x=。

由此可知,粒子从偏转电场中射出时,就好像是从极板间的l/2处沿直线射出似的。

(2)若连接入射点与出射点,设连线与入射方向(v0的方向)的夹角为α,则

tanα=

由此可知tanθ=2 tanα。

问题1、带电粒子在电场中的平衡与加速:

如图所示,竖直固定的光滑绝缘直圆筒底部放置一场源A,其电荷量,

场源电荷A形成的电场中各点的电势表达式为,其中k为静电力常量,r为空间某点到A的距离。有一个质量为m=0.1kg的带正电小球B,B球与A球间的距离为a=0.4m,此时小球B处于平衡状态,且小球B在场源A形成的电场中具有的电势能表达式为

,其中r是q与Q之间的距离。有一质量也为m的不带电绝缘小球C从距离B的上方H=0.8m处自由下落,落在小球B上立刻与小球B粘在一起向下运动,它们到达最低

点后又向上运动,它们向上运动到达的最高点为P。(取),求:

(1)小球C与小球B碰撞后的速度为多少?

(2)小球B的带电量q为多少?

(3)P点与小球A之间的距离为多大?

(4)当小球B和C一起向下运动到与场源A距离多远时,其速度最大?速度的最大值为多少?

【解析】(1)小球C自由下落H高度后的速度,

小球C与小球B发生碰撞,由动量守恒定律得:,

解得小球C与小球B碰撞后的速度

(2)小球B在碰撞前处于平衡状态,对B球进行受力分析知:,

解得

代入数据得小球B的带电量:

(3)C和B向下运动到最低点后又向上运动到P点,运动过程中系统能量守恒,设P 与A之间的距离为x,由能量守恒得:

代入数据得P点与小球A之间的距离为:不合题意,舍去。

(4)当C和B向下运动的速度最大时,与A之间的距离为y,对C和B整体进行受力分析有:,

解得,

代入数据有:

由能量守恒得:

代入数据得:

【总结方法】带电粒子在电场中的平衡问题一般是分析带电粒子在电场中所受的力(重力、库仑力、电场力、弹力、摩擦力等),根据物体平衡条件列出平衡方程解之;带电粒子在电场中的加速一般根据动能定理由电场力做功等于动能变化列方程求解。

变式1:

如图所示,匀强电场方向沿x轴的正方向,场强为E。在A(d,0)点有一个静止的中性微粒,由于内部作用,某一时刻突然分裂成两个质量均为m的带电微粒,其中电荷量为q 的微粒1沿y轴负方向运动,经过一段时间到达(0,-d)点。不计重力和分裂后两微粒间的作用。试求:

(1)分裂时两个微粒各自的速度;

(2)当微粒1到达(0,-d)点时,电场力对微粒1做功的瞬时功率;

(3)当微粒1到达(0,-d)点时,两微粒间的距离。

【解析】(1)设分裂时微粒1的初速度为v1,到达(0,-d)点所用时间为t。依题意可知微粒1带负电,在电场力的作用下做类平抛运动,得下列方程:

由①②③解得④

根号外的负号表示沿y轴的负方向。

设分裂时另一微粒2的速度为v2,根据动量守恒定律⑤

得⑥

(2)当微粒1运动到B(0,-d)点时,速度在x轴方向上的分量为,则

由③⑦解得

电场力对它做功的瞬时功率

(3)中性微粒分裂时,根据电荷守恒定律,微粒2带等量的正电荷,所受电场力沿x 轴的正方向,在电场力的作用下也做类平抛运动。根据对称性,当微粒1到达B(0,-d)点时,微粒2运动到C(2d,d)点,此时两微粒间的距离是

(二)不计重力的带电粒子在磁场中的运动:

1、带电粒子在匀强磁场中的圆周运动规律:

①洛伦兹力提供向心力:qvB=m。

②轨迹半径:r=。

③周期(与v、r无关)。

④角速度公式:ω=。

⑤动能公式:E k=mv2==。

2、带电粒子在磁场中做匀速圆周运动的几个重要几何关系

①在运动平面内,速度方向的垂线必然经过圆心如图甲所示。

②弦的垂直平分线必然经过圆心,如图乙所示。

③偏向角等于圆心角。如图丙所示。

④圆心角α等于弦切角β的2倍,如图丁所示。

根据以上几何关系,可以确定带电粒子在匀强磁场中匀速圆周运动的圆心、半径以及偏转角度等。

问题2、带电粒子在有界磁场中的运动问题:

如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,PQ板带正电,MN 板带负电,在PQ板的上方有垂直纸面向里的匀强磁场。一个电荷量q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右端飞进电场。不计粒子重力。试求:(1)两金属板间所加电压U的大小;

(2)匀强磁场的磁感应强度B的大小;

【解析】(1)解法一:如图所示,设带电粒子在平行金属板匀强电场中运动的时间为t,由类平抛运动可知:

联立求解①~④式解得:

解法二:设带电粒子第一次飞出电场时的速度为v即由动能定理

●和①③④联立可得。

●(2)解法一:带电粒子以速度v飞出电场后射入匀强磁场做匀速圆周运动,如上图所示,由

●联立以上有关方程可得

●解法二:由下列常规方法求解:

●联立以上有关方程式求解可得:。

●【方法总结】本题是比较复杂的题型,涉及到带电粒子先在匀强电场运动后再进入单边有界磁场中运动的情形,对于在匀强电场中的类平抛运动是容易的,接着进入磁场后粒子只在磁场力作用下运动,审题时一定要注意题设条件的解读。对于这类问题解决的办法比较多,解题时根据自己的熟悉程度及题目要求来灵活选择处理的方法。

变式2:

如图为可测定比荷的某装置的简化示意图,在第一象限内有垂直于纸面向里的匀强磁场,磁感应强度大小,在x轴上距坐标原点L=0.50m的P处为粒子的入射口,在y轴上安放接收器。现将一带正电荷的粒子以的速度从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带正电粒子的质量为m,电量为q,不计其重力。

(1)求上述粒子的比荷;

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场就可使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;

(3)为了在M处观测到按题设条件运动的上述粒子,第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。

【解析】(1)设粒子在磁场中的运动半径为r,如图甲所示,依题意M、P连线即为该粒子在磁场中做匀速圆周运动的直径,由几何关系得

由洛伦兹力提供粒子在磁场中做匀速圆周运动的向心力,可得

联立①②并代入数据解得

(2)设所加电场的场强大小为E。如图乙所示,当粒子经过Q点时,速度方向沿y轴正方向,依题意,在此时加入沿x轴正方向的匀强电场,电场力与此时的洛伦兹力平衡,则有

代入数据得

所加电场的场强方向沿x轴正方向。由几何关系可知,圆弧PQ所对应的圆心角为,设带电粒子做匀速圆周运动的周期为T,所求时间为t,则有

联立①⑥⑦并代入数据得

(3)如图丙所示,所求的最小矩形是MM1P1P,该区域面积

联立①⑨并代入数据得

矩形如图丙中MM1P1P(虚线)所示。

(三)带电粒子在复合场中的运动:

1. 高中阶段所说的复合场有四种组合形式:①电场与磁场的组合;②磁场与重力场的组合;③电场与重力场的组合;④电场、磁场与重力场的组合,每一种又可分为重叠式和分立式组合。

2. 带电粒子所受三种场力的特征

(1)洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,f洛=0;当带电粒子的速度与磁场方向垂直时,f洛=qvB。洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面,无论带电粒子做什么运动,洛伦兹力都不做功。

(2)电场力的大小为qE,方向与电场强度E的方向及带电粒子所带电荷的性质有关。电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关。

(3)重力的大小为mg,方向竖直向下,重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关。

注意:①微观粒子(如电子、质子、离子)一般都不计重力。②对带电小球、液滴、金属块等实际的物体,没有特殊交代时,应当考虑其重力。③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给物理过程及隐含条件,具体分析后作出符合实际的判断。

3. 带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析。当带电粒子在复合场中所受的合外力为0时,带电粒子做匀速直线运动(如速度选择器);当带电粒子在复合场中做匀速圆周运动时,则除所受的洛伦兹力外,其他力的合力应为零或大小不变、方向沿圆的半径,例如一带正电的粒子在一负点电荷形成的电场和匀强磁场中的运动.

4. 带电粒子在复合场中的运动的分析方法

(1)当带电粒子在复合场中做匀速直线运动时,应根据平衡条件列方程求解。

(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解。

(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解。

注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解。

由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解。

对于带电粒子连续通过不同场的问题,要注意在通过场边界时的条件,如速度关系、几何角度关系等。

问题3、带电粒子在复合场中的运动问题:

在磁感应强度为B的水平匀强磁场中,一质量为m、带正电量为q的小球在O点静止释放,小球的运动曲线如图所示。已知此曲线在最低点的曲率半径为该点到x轴距离的2倍,重力加速度为g,求:

(1)小球运动到任意位置P(x,y)处的速率v。

(2)小球在运动过程中第一次下降的最大距离y m。

(3)当在上述磁场中加一竖直向上场强为的匀强电场时,小球从O点静止释放后获得的最大速率。

【解析】(1)洛伦兹力不做功,由动能定理得,

得②

(2)设在最大距离处的速率为,根据圆周运动有

且由②知④

由③④及⑤

(3)小球运动如图所示,由动能定理得

由圆周运动

且由⑥⑦及解得。

【方法总结】带电粒子在复合场中运动问题的解决方法是:(1)确定研究对象,受力分析,运动状态和运动过程分析,(2)可以用力的平衡或动力学规律解决问题,也可以用能量转化的观点解决问题。(3)一般情况下用能量观点显示得非常简捷,特别是带电粒子受变力作用而又做曲线运动时,必须借助于功能关系进行过程处理。

变式3:

如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小

球P,其质量,电荷量q=0.2C,将弹簧拉至水平后,以初速度v0=20m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小v=15m/s。若O、

O1相距R=1.5m,小球P在O1点与另一由细绳悬挂的、不带电的、质量的静止绝缘小球N相碰,碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的匀强磁场。此后,小球P在竖直平面内做半径r=0.5m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10m/s2。那么,

(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结) 一.带电粒子在磁场中的运动 (1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。 ② 则粒子做匀速直线运动。 (2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感 线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。 二、带电粒子在匀强磁场中的圆周运动 1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. (4)运动时间: (Θ 用弧度作单位 ) 1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动. 2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关. 三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题) (一)边界举例: 1、直线边界(进出磁场有对称性) 规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。 2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场: 若从c 点射出,则圆心在d 处 若从d 点射出,则圆心在ad 连线中点处 4. (从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。) 特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出 2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==?=?v L =t

带电粒子磁场中的受力及运动

1、如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a。求: (1)该带电粒子的电性; (2)该带电粒子的比荷。 2、如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x 轴的各个交点中,任意两个相邻交点间的距离. 3、如图A-6所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50V/m,方向向左,磁场方向垂直于纸面向外.一个电荷量为q=4.0×10-2C、质量m=0.40kg 的光滑小球从斜面顶点由静止开始滚下,经过3s后飞离斜面,求磁感应强度B.(g取10m/s2) 4、(10分)一个负离子,质量为m,电量大小为q,垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图所示磁场的方向与离子的运动方向垂直,并垂直于纸面向里,其磁感应强度为B。如果离子进入磁场后经过时间t到 达位置P,试推导直线OP 与离子入射方向之间的夹角跟时间t的关系式。

6、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:(1)粒子做圆周运动的半径 (2)匀强磁场的磁感应强度B 7、在如图所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴正方向成60°,大小为; y轴右方有一垂直纸面向里的匀强磁场,磁感应强度B=0.20T.有一质子以速度v=2.0×m/s,由x轴上的A点(10cm,0)沿与x轴正方向成30°斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场.已知质子质量近似为m=1.6×kg,电荷q=1.6×C,质子重力不计.求:(计算结果保留3位有效数字) (1)质子在磁场中做圆周运动的半径. (2)质子从开始运动到第二次到达y轴所经历的时间. (3)质子第三次到达y轴的位置坐标. 8、如图所示,坐标平面第Ⅰ象限内存在大小为E=4×105N/C、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂 直纸面向里的匀强磁场.质荷比为=4×10-10 kg/C的带正电粒子从x轴上的A点以初速度v0=2×107 m/s垂直x轴 射入电场,OA=0.2 m,不计重力.求: (1)粒子经过y轴时的位置到原点O的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B的取值范围(不考虑粒子第二次进入电场 后的运动情况.)

带电粒子在磁场运动中的轨迹赏析

带电粒子在匀强磁场中的轨迹问题赏析 带电粒子在磁场中受到垂直于运动速度方向的洛仑兹力作用而做匀速圆周运动,由于所受力及初始条件不同,带电粒子在匀强磁场中形成不同的图形。这些图形反映了有关带电粒子在匀强磁场中运动时的不同特性,研究这些图形,可以直观的得到解题思路和方法,给人以美的享受,美的启迪。现以例题形式解析在匀强磁场中几种常见的图形。 一.一面“扇子” 例1 如图所示,在半径为R 的圆范围内有匀强磁场,一个 电子从M点沿半径方向以v射入,从N点射出,速度方向偏 转了600则电子从M到N运动的时间是( ) A v R 2π B v 3R 2π C v 3R π D v 3R 3π 解析 选D 过M,N两点分别做O’M⊥OM,O’N⊥ON.则粒子运动轨道形成一“扇面“图形,如图所示,圆心角∠MO’N= 60=3 π 又由r=Bq mv =030tan R =3R 和T=Bq m π2,得T=v R π3 2,所以电子从M 到N 运动时间t=T πθ2 =π π2 3×v R π3 2=v R 33 π 估选D 。 二. 一颗“心脏” 例2如图所示,以ab 为分界面的两个匀强磁场,方向 均垂直于纸面向里,其磁感应强度B 1=2B 2,现有一质量为m,带电量为+q 的粒子,从

O 点沿图示方向以速度v 进入B 1中,经过时间t= 粒子重新回到O 点(重力不计) 解析 粒子重新回到O 点时其运动轨道如图所示,形 成一”心脏”图形.由图可知,粒子在B 1中运动时间 t 1=T 1=q B m 12π 粒子在B 2中的运动时间为t 2=2 1T 2=q B m 2π 所以粒子运动的总时间t= t 1+ t 2= q B m 12π+q B m 2π=q B m 22π或q B m 14π 三. 一条“螺旋线” 例3如图所示,水平放置的厚度均匀的铝箔,置于匀强磁场 中,磁场方向垂直于纸面向里,一带电粒子进入磁场后在 磁场中做匀速圆周运动,粒子每次穿过铝箔时损失的能量 都相同,如图中两圆弧半径R=20cm, R=19cm,则该粒子总共能穿过铝箔的次数是多少? 解析 由R=Bq mv 及E K =2 1mv 2 得::E K =m R B q 2222 所以每次动能损失:?E K = E K1- E K2=m R B q 22122—m R B q 22 222 所以粒子总共能穿过 铝箔的次数:K 1E ?E =222121R R R -=2 221.02.02.0-3.10≈ 故n=10次 粒子在每次穿过铝箔后其轨迹形成如图所示的一条“螺旋线”图形 四.一座“拱桥” 例4如图所示,在x 轴上方有垂直于xy 平面的匀强

运动电荷在磁场中的受力

3.5 磁场对运动电荷的作用力(第一课时) 【学习目标】 1、知道什么是洛伦兹力。 2、利用左手定则会判断洛伦兹力的方向,理解洛伦兹力对电荷不做功。 3、掌握洛伦兹力大小的推理过程。 4、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 【教学重点】 1.利用左手定则会判断洛伦兹力的方向。 2.掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 【复习提问】如图,判定安培力的方向 磁场对电流有力的作用,电流是由电荷的定向移动形成的,大家会想到什么? (提示:这个力可能是作用在运动电荷上的,而安培力是作用在运动电荷上的力的宏观表现。) 【同步导学】 1、洛伦兹力的方向 运动电荷在磁场中受到的作用力称为。通电导线在磁场中所受实际是洛伦兹力的宏观表现。但两者的受力物体是有区别的。 方向(左手定则): 。 如果运动的是负电荷,则四指指向负电荷运动的反方向,那么拇指所指的方向就是负电荷所受洛伦兹力的方向。 讨论并判断下图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向。 甲乙丙丁 例题1:下列关于电荷所受电场力和洛伦兹力的说法,正确的是() A、电荷在磁场中一定受到洛伦兹力的作用 B、电荷在电场中一定受到电场力的作用 C、电荷所受电场力一定与该处电场方向一致 D、电荷所受洛伦兹力不一定与磁场方向垂直 例题2:如图所示,各带电粒子均以速度v射入匀强磁场,其中图C中v的方向垂直纸面向里,图D中v的方向垂直纸面向外,试分别指出各带电粒子所受洛仑兹力的方向。

2.洛伦兹力的大小 若有一段长度为L的通电导线,横截面积为S,单位体积中含有的自由电荷数为n,每个自由电荷的电量为q,定向移动的平均速率为v,将这段导线垂直于磁场方向放入磁感应强度为B的磁场中。 这段导体所受的安培力为 电流强度I的微观表达式为 这段导体中含有自由电荷数为 安培力可以看作是作用在每个运动上的洛伦兹力F的合力,这段导体中含有的自由电荷数为,所以每个自由电荷所受的洛伦兹力大小为 当运动电荷的速度v方向与磁感应强度B的方向不垂直时,设夹角为θ,则电荷所受的洛伦兹力大小为 思考与讨论: 同学们讨论一下带电粒子在磁场中运动时,洛伦兹力对带电粒子是否做功? 洛伦兹力只改变速度的方向,不改变速度的大小,所以洛伦兹力对电荷。 例题3:两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:4,电量之比为1:2,则两带电粒子受洛仑兹力之比为() A、2:1 B、1:1 C、1:2 D、1:4 例题4:下列关于安培力和洛伦兹力的说法中,正确的是() A、洛伦兹力和安培力是性质完全不同的两种力 B、洛伦兹力和安培力,其本质都是磁场对运动电荷的作用力 C、洛伦兹力就是安培力,两者是等价的 D、洛伦兹力对运动电荷不能做功,安培力对通电导体能做功 【训练测试】 1、关于带电粒子所受洛仑兹力f、磁感应强度B和粒子速度v三者之间的关系,下列说法中正确的是() A、f、 B、v三者必定均相互垂直 B、f必定垂直于B、v,但B不一定垂直v C、B必定垂直于f,但f不一定垂直于v D、v必定垂直于f,但f不一定垂直于B 2.如图所示,在电子射线管上方平行放置一通电长直导线,则电子射线将() A、向上偏 B、向下偏 C、向纸内偏 D、向纸外偏

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

电荷在磁场中受到的力

电荷在磁场中受到的力 一、选择题 1.(多选)下列关于电荷所受静电力和洛伦兹力的说法中,正确的是( ) A.电荷在磁场中一定受洛伦兹力的作用 B.电荷在电场中一定受静电力的作用 C.电荷受静电力的方向与该处的电场方向一致 D.电荷若受洛伦兹力,则受力方向与该处的磁场方向垂直 [导学号99690306] 解析:选BD.静止电荷在磁场中不受洛伦兹力的作用,但在电场中一定受静电力的作用,选项A错误,选项B正确;只有正电荷的受力方向与该处的电场方向一致,选项C错误;根据左手定则知运动电荷若受洛伦兹力,则受力方向与该处的磁场方向垂直,选项D正确. 2.(多选)带电荷量为+q的粒子在匀强磁场中运动,下面说法中正确的是( ) A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向、大小不变,则洛伦兹力的大小不变 C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D.粒子只受到洛伦兹力的作用,不可能做匀速直线运动 [导学号99690307] 答案:BD 3.三种不同粒子a、b、c从O点沿同一方向进入垂直纸面向里的匀强磁场中的运动轨迹分别如图所示.则( ) A.粒子a一定带正电 B.粒子b一定带正电 C.粒子c一定带正电 D.粒子b一定带负电 [导学号99690308] 解析:选A.由左手定则可以判断,粒子a带正电,粒子b不带电,粒子c带负电,故选项A正确. 4.在阴极射线管中电子流方向由左向右,其上方放置一根通有如图所示电流的直导线,导线与阴极射线管平行,则电子将( ) A.向上偏转 B.向下偏转 C.向纸里偏转D.向纸外偏转 [导学号99690309] 解析:选B.由题图可知,直导线电流的方向由左向右,根据安培定则,可判定直导线下方的磁场方向为垂直于纸面向里,而电子运动方向由左向右,由左手定则知(电子带负电荷,四指要指向电子运动方向的反方向),电子将向下偏转,故B选项正确.5.来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将( )

带电粒子在磁场中的运动习题含标准答案

带电粒子在磁场中的运动练习题2016.11.23 1. 如图所示,一个带正电荷的物块m由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A.D′点一定在D点左侧 B.D′点一定与D点重合 C.D″点一定在D点右侧 D.D″点一定与D点重合 2. 一个质量为m、带电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆 上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,在以 后的运动过程中,圆环运动的速度图象可能是() A.B.C.D. 3. 如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L,一带电粒子从ad的 中点垂直于电场和磁场方向射入,恰沿直线从bc边的中点P射出,若撤去磁场,则粒子从 c点射出;若撤去电场,则粒子将(重力不计)() A.从b点射出B.从b、P间某点射出 C.从a点射出D.从a、b间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三 个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左匀速运动,比 较它们的重力Ga、Gb、Gc的大小关系,正确的是() A.Ga最大B.Gb最大 C.Gc最大D.Gb最小

5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B.t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力,则. ( ) A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为 2 L π B .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为L π C .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为2L π D .若电子从P 点出发经原点O 到达Q 点,则n L π(n 为任意正整数)都有可能是电子运动的路程 7. 如图,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求: (1)电子的质量是多少? (2)穿过磁场的时间是多少? (3)若改变初速度,使电子刚好不能从A 边射出,则此时速度v 是多少?

通电导线在磁场中受到的力练习题

! 《新课标》高二物理(人教版)第二章磁场 第四讲通电导线在磁场中受到的力(一) 1.磁场对电流的作用力,称为安培力.安培力方向的判定用左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时大拇指所指的方向就是通电导线在磁场中所受安培力的方向. 2.通电导线在磁场中所受安培力的大小与磁感应强度大小、电流大小、导线长度、 以及电流I与B的夹角有关,当通电导线与磁感线垂直时,即电流方向与磁感 线方向垂直时,所受的安培力最大F=ILB 。当通电导线与磁感线不垂直时,如 图所示,电流方向与磁感线方向成θ角,通电导线所受的安培力为F=IBLsin_θ。 ) 当通电导线与磁感线平行时,所受安培力为0 。 3.磁电式电流表:主要构件有蹄形磁铁、圆柱形铁芯、铝框、线圈、转轴、螺旋弹簧、指针、接线柱.其工作原理为:当电流通过线圈时,导线受到安培力的作用.由左手定则可以判断,线圈左右两边所受的安培力方向相反,所以架在轴上的线圈就要转动.线圈转动时,螺旋弹簧变形,反抗线圈的转动,电流越大,安培力就越大,线圈偏转的角度越大,所以从线圈偏转的角度就能判断通过的电流大小;线圈中的电流方向改变时,安培力的方向随之改变,指针的偏转方向也随之改变. 1.画出图中导线棒ab所受的磁场力方向 图3 答案ab棒所受的磁场力方向如下图所示. : 2.将长度为20 cm,通有0.1 A电流的直导线放入一匀强磁场中,电流与磁场的方向如图所示,已知磁感应强度大小为1 T,试求出下列各图中导线所受安培力的大小和方向. 解析:由左手定则和安培力的计算公式得:(1)因导线与磁感线平行,所以导线所受安培力为零;(2)由左手定则知:安培力方向垂直导线水平向右,大小F2=BIL=1×× N= N;(3)安培力的方向在纸面内垂直导线斜向上,大小F3=BIL= N. 3.把一小段通电直导线放入磁场中,导线受到安培力的作用,关于安培力的方向,下列说法中正确的是 ( D ) A.安培力的方向一定跟磁感应强度的方向相同 ( B.安培力的方向一定跟磁感应强度的方向垂直,但不一定跟电流方向垂直 C.安培力的方向一定跟电流方向垂直,但不一定跟磁感应强度方向垂直 D.安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直 4.关于通电导线所受安培力F的方向,磁感应强度B的方向和电流I的方向之间的关系,下列说法正确的是 ( B )

【导学案】第4节 通电导线在磁场中受到的力 Word版含解析

第4节通电导线在磁场中受到的力 1.磁场对通电导线的作用力称为安培力,安培力的方向由左手定 则判定。 2.安培力的大小为:F=ILB,当磁感应强度与导线方向成θ角 时,F=ILB sin θ。 3.磁电式电流表的工作原理利用了安培力与电流的关系,所测电 流越大时,电流表指针偏转角度越大,根据指针偏转的方向可知 电流的方向。

一、安培力的方向 1.安培力:通电导线在磁场中受的力。 2.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。 3.安培力方向与磁场方向、电流方向的关系:F⊥B,F⊥I,即F垂直于B和I所决定的平面。 二、安培力的大小 1.垂直于磁场B放置、长为L的通电导线,当通过的电流为I时,所受安培力为F=ILB。 2.当磁感应强度B的方向与导线方向成θ角时,公式F=ILB sin_θ。 三、磁电式电流表 1.原理 安培力与电流的关系。 2.构造 磁铁、线圈、螺旋弹簧、指针、软铁、极靴。如图所示。 3.特点 两极间的极靴和极靴中间的铁质圆柱,使极靴与圆柱间的磁场都沿半径方向,使线圈平面都与磁场方向平行,从而使表盘刻度均匀。 4.工作原理 如图所示是线圈在磁场中受力的示意图。当电流通过线圈时, 导线受到安培力的作用,由左手定则知,线圈左右两边所受的安培 力的方向相反,于是架在轴上的线圈就要转动,通过转轴收紧螺旋

弹簧使其变形,反抗线圈的转动,电流越大,安培力就越大,螺旋弹簧的形变也就越大,所以,从线圈偏转的角度就能判断通过电流的大小。线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变。所以,根据指针的偏转方向,可以知道被测电流的方向。 5.优缺点 优点是灵敏度高,可以测出很弱的电流;缺点是线圈的导线很细,允许通过的电流很弱。 1.自主思考——判一判 (1)安培力的方向与磁感应强度的方向相同。(×) (2)安培力的方向与磁感应强度的方向垂直。(√) (3)应用左手定则时,四指指向电流方向,拇指指向安培力方向。(√) (4)通电导线在磁场中不一定受安培力。(√) (5)一通电导线放在磁场中某处不受安培力,该处的磁感应强度不一定是零。(√) (6)若磁场一定,导线的长度和电流也一定的情况下,导线平行于磁场时,安培力最大,垂直于磁场时,安培力最小。(×) 2.合作探究——议一议 (1)如图所示,两条平行的通电直导线之间会通过磁场发生相互作用, 在什么情况下两条直导线相互吸引,什么情况下两条直导线相互排斥? 提示:每一条通电直导线均处在另一直导线电流产生的磁场中,根据 安培定则可判断出直线电流产生的磁场的方向,再根据左手定则可判断出 每一条通电直导线所受的安培力,由此可知,同向电流相互吸引,反向电流相互排斥。 (2)在磁场越强的地方通电导体受到的安培力一定越大吗? 提示:不一定,通电导体受安培力的大小与B、I、L及θ有关,当θ=0°(B∥I)时,无

带电粒子在匀强磁场中的运动

学乐教育2010年秋季八年级物理一对一讲义 第七讲带电粒子在匀强磁场中的运动(复合场) (一)复习引入 [问题1]什么是洛伦兹力? [磁场对运动电荷的作用力] [问题2]带电粒子在磁场中是否一定受洛伦兹力? [不一定,洛伦兹力的计算公式为F=qvB sinθ, θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0.] [问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?—带电粒子在匀强磁场中的运动、质谱仪. (二)新课讲解---带电粒子在匀强磁场中的运动 【演示】先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。后进行实验. [实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形. [分析得出结论] 当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动. 带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件). 一是要明确所研究的物理现象的条件----在匀强磁场中垂直于磁场方向运动的带电粒子。二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度) ①.电子受到怎样的力的作用?这个力和电子的速度的关系是怎样 的?(电子受到垂直于速度方向的洛伦兹力的作用.) ②.洛伦兹力对电子的运动有什么作用?(.洛伦兹力只改变速度的 方向,不改变速度的大小) ③.有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作 用使电子离开磁场方向垂直的平面) ④.洛伦兹力做功吗?(洛伦兹力对运动电荷不做功) 1.带电粒子在匀强磁场中的运动 (1)、运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功. 【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。 使学生理解带电粒子在匀强磁场中做匀速圆周运动,的轨道半径r和周期T与粒子所带电量、质量、粒子的速度、磁感应强度有什么关系。 一为带电量q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大? [问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力] [问题2]向心力的计算公式是什么?[F=mv2/r]

通电导线在磁场中受力的典型例题(练习版)

典例1:磁场对通电导线的作用力 典例1:考察概念。下列关于通电直导线在磁场中受磁场力的说法中,正确的是[ ] A.导线所受磁场力的大小只跟磁场的强弱和电流的强弱有关 B.导线所受磁场力的方向可以用左手定则来判定 C.导线所受磁场力的方向跟导线中的电流方向、磁场方向都有关系 D.如果导线受到的磁场力为零,导线所在处的磁感应强度一定为零 E安培力的方向可以不垂直于直导线 F安培力的方向总是垂直于磁场的方向 G.安培力的大小与通电导线和磁场方向的夹角无关 H.将直导线从中折成直角,安培力的大小一定变为原来的一半 典例2:关于通电导线所受安培力F的方向,磁场B的方向和电流I的方向之间的关系,下列说法正确的是 A. F、B、I三者必须保持相互垂直 B. F必须垂直B、I,但B、I可以不相互垂直 C. B必须垂直F、I,但F、I可以不相互垂直 D. I必须垂直F、B,但F、B可以不相互垂直 典例3:下列各图中,表示磁场方向、电流方向及导线所受安培力方向的相互关系,其中正确的是() A. B. C. D.

E. F G H 典例4:如图所示.一边长为L底边,BC的电阻R,是两腰AB、AC的电阻RAB、RAC 的两倍(RBC=2RAB=2RAC)的正三角形金属框放置在磁感应强度为B的匀强磁场中。若通以图示方向的电流.且已知从B端流人的总电流强度为I,则金属框受到的总磁场力的大小为 A.0 B.BIL C. D.2 BIL 易错训练:如图所示,导线框中电流为I,导线框垂直于磁场放置,匀强磁场的磁感应强度为B,AB与CD相距为d,则MN所受安培力大小为() A.F=BId B.F=BIdsinθC.F=BId/sinθ D .F=BIdcosθ 二、安培力作用下的运动 常用方法:等效法、电流元法1、特殊值法2、推论法、转换研究对象法 典例1:如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和直导线ab、cd(ab、cd在同一条水平直线上)连接而成的闭合回路,导线框中通有图示方

导线在磁场中受力

3.4通电导线在磁场中受到的力导学案 班级姓名 学习目标 1.探究安培力方向与哪些因素有关。 2.会用左手定则判断安培力的方向。 3.能够计算匀强磁场中安培力的大小。 4.了解磁电式电流表的基本构造及基本原理。 一知识体系梳理 1.安培力的方向 (1)安培力:通电导线在磁场中受到的力称为安培力。 (2)左手定则:伸开左手,使拇指与其余四指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。 2.安培力的大小 (1)当导线与磁场方向垂直时:F=ILB。 (2)当导线与磁场方向平行时:F=0。 (3)当导线与磁场方向的夹角为θ时:F=LB sin θ。 3.磁电式电流表 (1)原理:安培力与电流的关系。 (2)构造:磁铁、线圈、极靴、螺旋弹簧、软铁和指针。 (3)优缺点:磁电式电流表的优点是灵敏度高;缺点是允许通过的电流很小。 (4)刻度:线圈无论转到什么位置,它的平面都跟磁感线平行,所以表盘的刻度是均匀的。 二重点难点探究 主题1:探究影响安培力方向的因素(重点探究) 阅读本节教材中“安培力的方向”标题下面的内容,按照第一节教材中图3.1-3(通电导线与磁体通过磁场发生相互作用)所示进行演示实验,回答下列问题。 (1)在探究安培力的方向与电流方向、磁场方向的关系时,能否同时改变二者的方向? (2)试探讨安培力的方向与磁场方向、电流方向的关系。 主题2:电流之间的安培力 (1)电流之间通过什么发生相互作用? (2)以如图所示的两根直导线为例,分析如何判断电流之间安培力的方向。 主题3:安培力的大小(重点探究) 阅读教材中“安培力的大小”标题下面的内容,回答下列问题。 (1)通电导线如果在磁场中不受安培力作用,能否说明该处磁感应强度为零? (2)当通电导线与磁场方向既不垂直也不平行时,所受安培力如何计算? (3)磁场越强,放入磁场中的通电导线所受安培力一定越大吗? 主题4:磁电式电流表 (1)N、S两块磁极之间的磁场是匀强磁场吗? (2)磁电式电流表的工作原理是什么?

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 毛卫娟 一、教学目标 1.知识与技能 (1)理解洛伦兹力对粒子不做功。 (2)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速 圆周运动。 (3)会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些 因素有关,并会用它们解答有关问题。 (4)知道质谱仪的工作原理。知道回旋加速器的基本构造、工作原理及用途。 2.过程与方法 通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题,培养学生的分析推理能力。 3.情感、态度与价值观 通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 二、教学重点难点 重点:带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题。 难点:带电粒子在匀强磁场中的受力分析及运动径迹。 三、教学方法 实验观察法、讲述法、分析推理法。 四、教学用具 洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备。 五、教学过程 (一)导入新课 问题1:什么是洛伦兹力? 磁场对运动电荷的作用力 问题2:带电粒子在磁场中是否一定受洛伦兹力? 不一定,洛伦兹力的计算公式为F=qvBsinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0。 问题3:带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动、质谱仪。 (二)推进新课 [演示]先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。后进行实验。 教师进行演示实验。 [实验现象] 在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。 [教师引导学生分析得出结论] (1)当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动。 (2)带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件)。 一是要明确所研究的物理现象的条件——在匀强磁场中垂直于磁场方向运动的带电粒

运动电荷在磁场中的受力

3、 洛伦兹力 带电粒子在磁场中的运动 教学目标: 1.掌握洛仑兹力的概念; 2.熟练解决带电粒子在匀强磁场中的匀速圆周运动问题 教学过程: 1.洛伦兹力 运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。 计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。由以上四式可得F=qvB 。条件是v 与B 垂直。当v 与B 成θ角时,F=qvB sin θ。 2.洛伦兹力方向的判定 在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。 3.有关洛伦兹力大小的计算 (1)正确画出带电粒子可能的运动轨迹图, a)定偏向:运用左手定则定轨迹偏向,其中要特别注意四指指向与负电荷的运动方向相反。 b)定圆心:主要利用v f ⊥或弦与半径垂直的关系确定。找出对应交点就找到了圆心。 c)定半径:方法有两种,一是利用几何关系求;二是根据半径公式求。 (2)可能用到常用的四个关系式 a) qvB= m R v 2= m 2 ωr=m ωv=m T π2v ; 可得: R= Bq mv ; c) T=Bq m π2; d)T t π θ 2= 3、带电粒子在有边界的匀强磁场中的运动 1、带电粒子在半无界磁场中的运动 【例1】 如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? M

带电粒子在匀强磁场中的运动专题

带电粒子在匀强磁场中的运动专题 一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法 1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。 2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。 3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。 例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直 径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ) A.12Δt B .2Δt C.1 3 Δt D .3Δt 例题2、如图,虚线OL 与y 轴的夹角θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 。一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M 。粒子在磁场中运动的轨道半径为R ,粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R 。不计重力。求M 点到O 点的距离和粒子在磁场中运动的时间。 二、带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解 受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。如图甲所示,带电粒子以速率v 垂直进入匀强磁场,如带正电, 其轨迹为a ,如带负电,其轨迹为b 。 2.磁场方向不确定形成多解 有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。如图乙所示,带正电粒子以速率v 垂直进入匀强磁 场,如B 垂直纸面向里,其轨迹为a ,如B 垂直纸面向外,其轨迹为b 。 3.临界状态不唯一形成多解 带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了, 也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。 4.运动的周期性形成多解 带电粒子在部分是电场,部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示。

带电粒子在匀强磁场中的运动(模型与题型分类汇编):

带电粒子在匀强磁场中的运动 例1.如图所示,在MN右侧有一个磁感应强度为B的匀强磁场。在磁场中的A点有一静止镭核(Ra),A点距MN的距离OA=d.D为放置在MN边缘的粒子接收器,接收器位置距OA直线的距离也为d。发生衰变时,放出某粒子x后变为一氡核(Rn),接收器D恰好接收到了沿垂直于MN方向射来的粒子x。(取原 子质量单位用m0表示,电子电量用e表示)。 (1)写出上述过程中的核衰变方程(要求写出x的具体符号),并确定粒子x的轨迹圆半径; (2)求出射出的粒子x的速度大小(3)若衰变时释放的核能全部转化成生成物的动能,求该衰变过程的质量亏损。 同类型练习1.在xOy的纸面内存在如图所示的匀强磁场区域,在O点到P点区域的x轴上方,磁感应强度为B,方向垂直纸面向外,在x轴下方,磁感应强度大小也为B,方向垂直纸面向里,OP两点距离为x0.现在原点O 处以恒定速度v0不断地向第一象限内发射氘核粒子。 (1)设粒子以与x轴成45°角从O点射出,第一次与x轴相交于A点,第n次与x轴交于P点,求氘核粒子的比荷(用已知量B、x0、v0、n表示),并求OA段粒子运动轨迹的弧长(用已知量x0、v0、n表示)。 (2)求粒子从O点到A点所经历时间t1和从O点到P点所经历时间t(用已知量x0、v0、n表示)。 同类型练习2.如图所示,坐标系xoy在竖直平面内,y轴的正方向竖直向上,y轴的右侧广大空间存在水平向左的匀强电场E1=2N/C,y轴的左侧广大空间存在匀强磁场和电场,磁场方向垂直纸面向外,B=1T,电场方向竖直向上,E2=2N/C.t=0时刻,一个带正电的质点在O点以v=2m/s的初速度沿着与x轴负方向成450角射入y轴的左侧空间,质点的电量为q=10﹣6C,质量为m=2×10﹣7kg,重力加速度g=10m/s2.求: (1)质点从O点射入后第一次通过y轴的位置; (2)质点从O点射入到第二次通过y轴所需时间;

高中物理磁场(二)运动电荷在磁场中受到的力基础训练

运动电荷在磁场中受到的力基础训练 1.下面四幅图表示了磁感应强度B 、电荷速度v 和洛伦兹力F 三者方向之间的关系,其中正确的是 ( ) 2.关于电荷所受电场力和洛伦兹力,正确的说法是( ) A .电荷在磁场中一定受洛伦兹力作用 B .电荷在电场中一定受电场力作用 C .电荷所受电场力一定与该处电场方向一致 D .电荷所受的洛伦兹力不一定与磁场方向垂直 3.在匀强磁场中,一带电粒子沿着垂直磁感应强度的方向运动.现将该磁场的磁感应强度增大为原来的2 倍,则该带电粒子受到的洛伦兹力( ) A .变为原来的14 B .增大为原来的4倍 C .减小为原来的12 D .增大为原来的2倍 4.如图所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是( ) A .当从a 端通入电流时,电子做匀加速直线运动 B .当从b 端通入电流时,电子做匀加速直线运动 C .不管从哪端通入电流,电子都做匀速直线运动 D .不管从哪端通入电流,电子都做匀速圆周运动 5.带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( ) A .只要速度大小相同,所受洛伦兹力就相同 B .如果把+q 改为-q ,且速度反向、大小不变,则洛伦兹力的大小、方向均不变 C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子在只受洛伦兹力作用下运动的动能、速度均不变 6. 初速度为v 0的电子,沿平行于通电长直导线的方向开始运动,直导线中电流方向与电子的初始运动方向 如图所示,则( )

A.电子将向右偏转,速率不变 B.电子将向左偏转,速率改变 C.电子将向左偏转,速率不变 D.电子将向右偏转,速率改变 7. 图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小 相同的电流,方向如图所示。一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( ) A.向上B.向下 C.向左 D.向右 8.如图所示,在真空中,水平导线中有恒定电流I通过,导线的正下方有一质子初速度方向与电流方向相同,则质子可能的运动情况是( ) A.沿路径a运动 B.沿路径b运动 C.沿路径c运动 D.沿路径d运动 9.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是( ) A.带电粒子沿电场线方向射入,电场力对带电粒子做正功,粒子动能一定增加 B.带电粒子垂直于电场线方向射入,电场力对带电粒子不做功,粒子动能不变 C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加 D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变 10. 质量为m,带电荷量为q的微粒,以速度v与水平方向成45°角进入匀强电场和匀强磁场同时存在的 空间,如图所示,微粒在电场、磁场、重力场的共同作用下做匀速直线运动,求: (1) 电场强度的大小,该带电粒子带何种电荷; (2) 磁感应强度的大小。

相关文档
最新文档