滚动轴承故障模拟实验台设计方案

滚动轴承故障模拟实验台设计方案
滚动轴承故障模拟实验台设计方案

滚动轴承故障模拟实验台设计方案

一.课题简介:

结合旋转机械故障模拟实验台的结构特点,进行滚动轴承故障模拟实验台和试件的结构设计,并对各个组件进行详细的功用分析.

二.课题准备:

1.滚动轴承的结构:

滚动轴承由套圈(内圈和外圈)、滚动体(球或滚子)以及保持架构成。即:相对的两个套圈之间放置若干个滚动体,通过保持架使滚动体保持一定间隔,进行滚动运动。

滚动体的形状,除球之外,还有圆柱滚子、滚针、圆锥滚子以及鼓形球面滚子。从几何学讲,滚动体与内外圈滚道是点(球)或线(滚子)接触。滚动体在内外圈滚动面上进行滚动运动,并公转。

滚动体与套圈是以其滚道面的接触面支撑轴承所承担的负荷。保持架并不直接承受负荷,只是用以保持滚动体的正确位置及等间距,同时防止安装轴承时滚动体脱落。

2.滚动轴承的分类:

滚动轴承按滚动体形状可大致分为:球轴承和滚子轴承。球轴承按套圈结构可分为:深沟球轴承、向心推力球轴承、推力球轴承等;滚子轴承按滚子形状可分为:圆柱滚子轴承、滚针轴承、圆锥滚子轴承、自动调心滚子轴承等。此外,按承受负荷方向可分为:承受径向负荷的向心轴承和承受轴向负荷的推力轴承。(其他分类方法暂不列举)

3.滚动轴承的安装:

轴承的安装是否正确,影响着精度、寿命、性能。因此,设计及组装部门对于轴承的安装要充分研究。希望要按照作业标准进行安装。作业标准的项目通常如下:(1)清洗轴承及轴承关连部件

(2)检查关连部件的尺寸及精加工情况

(3)安装

(4)安装好轴承后的检查

(5)供给润滑剂

这些也是造成轴承故障的原因。

三.课题研究(滚动轴承常见故障及原因分析):

1.故障形式

(1)轴承转动困难、发热;

(2)轴承运转有异声;

(3)轴承产生振动;

(4)内座圈剥落、开裂;

(5)外座圈剥落、开裂;

(6)轴承滚道和滚动体产生压痕。

2.故障原因分析

(1)由于装配前的检查不仔细,轴承在装配前未先清洗并认真检查轴承的内外座圈、滚动体和保持架,导致有生锈、毛刺、碰伤和裂纹;未检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。

(2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况:

A.配合不当

轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。

但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。

B.装配方法不当

轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。

C.装配时温度控制不当

滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。即将轴承放入盛有机油的油桶中,机油桶外部用热水或火焰加热,工艺要求加热的油温控制在80℃~90℃,一般不会超过100℃,最多不会超过120℃。轴承加热后迅速取出套装在轴颈上。若温度控制不当造成加热温度过高,则会使轴承产生回火而致硬度降低,运行中轴承就易磨损、剥落、甚至开裂。

D.装配时间隙调整不当

滚动轴承的间隙分为径向间隙和轴向间隙,其功用是保证滚动体的正常运转和润滑以及补偿热伸长。

对于间隙可调整的轴承而言,因其轴向间隙和径向间隙之间有正比例的关系,所以安装是只要调整好轴向间隙就可获得所需的径向间隙,而切它们一般都是成对使用的(即装在轴的两端或一端),因此,只需要调整一只轴承的轴向间隙即可。一般用垫片调整轴向间隙,有的也可用螺钉或止推环调整。

对于间隙不可调整的滚动轴承,因其径向间隙在制造时就已按标准确定好了,不能进行调整,此类轴承装在轴径上或轴承座孔内之后,实际的径向间隙称为装配径向间隙,装配时要使装配径向间隙的大小恰好能在运转中造成必要的工作径向间隙,以保证轴承灵活转动。此类轴承在工作时,由于轴在温度升高时受热伸长而使其内处座圈发生相对位移,从而使轴承的径向间隙减少,甚至使滚动体在内外座圈间卡住。若将双支承滚动轴承中的一个轴承(另一个轴承固定在轴上和轴承座中)和侧盖间留出轴向间隙,可避免上述现象。

由上述可知,不论间隙可调整或间隙不可调的滚动轴承,它们在装配时都要调整好轴向间隙(但有些间隙不可调的轴承不必留轴向间隙),以补偿轴在温度升高时的热伸长,从而保证滚动体的正常运转。若轴向间隙过小时,会造成轴承转动困难、发热,甚至使滚动体卡死或破损;若轴向间隙过大,则会导致运转中产生异声,甚至会造成严重振动或使保持架破坏。

E.联轴器找正不当

大多数运转设备的输入轴是通过联轴器与动力轴相连接,因此装配时必须进行联轴器的找正,使主动轴与从动轴在同一轴线上。

(3)润滑不良滚动轴承使用的润滑油(或润滑脂)都有一定的工作温度,当温度过高时就会变质,从而失去润滑作用,使轴承因高温而烧损。另外,润滑油(或润滑脂)本身质地不良或运行中加油(脂)不及时,也会造成轴承温度升高或产生异声。

(4)转子不平衡一般来说,运转设备的转子在装配前都要进行动、静平衡,所以,轴承是不会出现问题的。但有些转子在运行过程中由于受到介质的腐蚀或固体杂质的磨损,或者是轴出现弯曲,就会导致产生不平衡的离心力,从而使轴承发热、振动,滚道严重磨损,直至破坏。

(5)检查更换不及时轴承运行过程中,按规定定期进行检查,若出现发热、异声、振动等情况,要及时停车查找原因,消除故障,轴承如发现严重的疲劳剥落、氧化锈蚀、磨损的凹坑、裂纹、硬度降低到HRC<60,或有过大噪音无法调整时,应及时更换。若检查、更换不及时,则会造成轴承甚至转子的严重破坏,从而影响正常的生产。另外,轴承拆卸不当、设备地脚螺栓松动造成的振动,也会导致轴承滚道和滚动体产生压痕,轴承内、外座圈的开裂。

四.课题相关(轴承表示法):

轮廓、载荷特性、

十字形符号表示,

机自06-5班李英豪

060401140532

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

滚动轴承的寿命计算

滚动轴承的寿命计算 1 基本额定寿命和基本额定动载荷 轴承中任一元件出现疲劳点蚀前的总转数或一定转速下工作的小时数称为轴承寿命。大量实验证明,在一批轴承中结构尺寸、材料及热处理、加工方法、使用条件完全相同的轴承寿命是相当离散的(图1是一组20套轴承寿命实验的结果),最长寿命是最短寿命的数十倍。对一具体轴承很难确切预知其寿命,但对一批轴承用数理统计方法可以求出其寿命概率分布规律。轴承的寿命不能以一批中最长或最短的寿命做基准,标准中规定对于一般使用的机器,以90%的轴承不发生破坏的寿命作为基准。 (1)基本额定寿命 一批相同的轴承中90%的轴承在疲劳点蚀前能够达到或 超过的总转数r L (610转为单位)或在一定转速下工作的小时数()h h L 。 图1 轴承寿命试验结果 可靠度要求超过90%,或改变轴承材料性能和运转条件时,可以对基本额定寿命进行修正。 (2)基本额定动载荷 滚动轴承标准中规定,基本额定寿命为一百万转 时,轴承所能承受的载荷称为基本额定动载荷,用字母C 表示,即在基本额定动载荷作用下,轴承可以工作一百万转而不发生点蚀失效的概率为90%。基本额定动载荷是衡量轴承抵抗点蚀能力的一个表征值,其值越大,轴承抗疲劳点蚀能力越强。基本额定动载荷又有径向基本额定动载荷(r C )和轴向基本额定

动载荷(a C )之分。径向基本动载荷对向心轴承(角接触轴承除外)是指径向载荷,对角接触轴承指轴承套圈间产生相对径向位移的载荷的径向分量。对推力轴承指中心轴向载荷。 轴承的基本额定动载荷的大小与轴承的类型、结构、尺寸大小及材料等有关,可以从手册或轴承产品样本中直接查出数值。 2 当量动载荷 轴承的基本额定动载荷C (r C 和a C )是在一定条件下确定的。对同时承受径向载荷和轴向载荷作用的轴承进行寿命计算时,需要把实际载荷折算为与基本额定动载荷条件相一致的一种假想载荷,此假想载荷称为当量动载荷,用字母P 表示。 当量动载荷P 的计算方法如下: 同时承受径向载荷r F 和轴向载荷a F 的轴承 ()P r a P f XF YF =+ (1) 受纯径向载荷r F 的轴承(如N 、NA 类轴承) P r P f F = (2) 受纯轴向载荷a F 的轴承(如5类、8类轴承) P a P f F = (3) 式中:X ——径向动载荷系数,查表1; Y ——轴向动载荷系数,查表1; P f 冲击载荷系数,见表2。 载荷系数P f 是考虑了机械工作时轴承上的载荷由于机器的惯性、零件的误差、轴或轴承座变形而产生的附加力和冲击力,考虑这些影响因素,对理论当量动载荷加以修正。 表中e 是判断系数。0/a r F C 为相对轴向载荷,它反映轴向载荷的相对大小,其中0r C 是轴承的径向基本额定载荷。表中未列出0/a r F C 的中间值,可按线性插值法求出相对应的e 、Y 值。

轴承故障特征倍频公式推导

轴承故障特征倍频公式 推导 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

滚动轴承可能由于润滑不良、载荷过大、材质不当、轴承内落入异物、锈蚀等原因,引起轴承工作表面上的剥落、裂纹、压痕、腐蚀凹坑和胶合等离散型缺陷或局部损伤。当滚动轴承另一工作表面通过某个缺陷点时,就会产生一个微弱的冲击脉冲信号。随着转轴的旋转,工作表面不断与缺陷点接触冲击,从而产生一个周期性的冲击振动信号[5]。缺陷点处于不同的元件工作表面,冲击振动信号的周期间隔也即频率是不相同的,这个频率就称为冲击的间隔频率或滚动轴承的故障特征频率[4,6]。可以根据轴承的几何参数和其转速计算轴承元件的故障特征频率[4,6,10]。 a.速度关系 b.几何关系 图 滚动轴承中个元件的运动关系 如图所示,设外圈和内圈滚道上分别有一接触点A 和B ,假设为理想状态,径向游隙为零,则A 点和B 点的圆周速度分别为 e e e n D v 60π= (4-1) i i i n D v 60π= (4-2) 式中 e v 、i v ——外圈、内圈滚道接触点处的圆周速度,[mm/s]; e D 、i D ——外圈、内圈滚道接触点处的直径,[mm]; e n 、i n ——外圈、内圈的转速,[r/min]。 令 αγcos m D d = (4-3) 式中 d ——滚动体直径,[mm]; m D ——滚动体中心圆直径,[mm]; α——接触角,指接触面中心与滚动体中心连线和轴承径向平面之间的夹角,[弧度或角度]。 由图4-1(b )可见 e D =)1(cos γα+=+m m D d D 滚动体围绕轴承中心线的公转线速度乃是i v 和e v 的平均值,即

滚动轴承的选择及校核计算

滚动轴承的选择及校核计算根据根据条件,轴承预计寿命 16×365×8=48720小时 1、计算输入轴承 (1)已知nⅡ=458.2r/min 两轴承径向反力:F R1=F R2=500.2N 初先两轴承为角接触球轴承7206AC型 根据课本P265(11-12)得轴承内部轴向力 F S=0.63F R则F S1=F S2=0.63F R1=315.1N (2) ∵F S1+Fa=F S2 Fa=0 故任意取一端为压紧端,现取1端为压紧端 F A1=F S1=315.1N F A2=F S2=315.1N (3)求系数x、y F A1/F R1=315.1N/500.2N=0.63 F A2/F R2=315.1N/500.2N=0.63 根据课本P263表(11-8)得e=0.68 F A1/F R1

根据手册得7206AC型的Cr=23000N 由课本P264(11-10c)式得 L H=16670/n(f t Cr/P)ε =16670/458.2×(1×23000/750.3)3 =1047500h>48720h ∴预期寿命足够 2、计算输出轴承 (1)已知nⅢ=76.4r/min Fa=0 F R=F AZ=903.35N 试选7207AC型角接触球轴承 根据课本P265表(11-12)得F S=0.063F R,则 F S1=F S2=0.63F R=0.63×903.35=569.1N (2)计算轴向载荷F A1、F A2 ∵F S1+Fa=F S2 Fa=0 ∴任意用一端为压紧端,1为压紧端,2为放松端 两轴承轴向载荷:F A1=F A2=F S1=569.1N (3)求系数x、y F A1/F R1=569.1/903.35=0.63 F A2/F R2=569.1/930.35=0.63 根据课本P263表(11-8)得:e=0.68 ∵F A1/F R1

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

滚动轴承地寿命计算

滚动轴承的寿命计算 一、基本额定寿命和基本额定动载荷 1、基本额定寿命L10 轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命。由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。 基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。(失效概率10%)。 2、基本额定动载荷C 轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。 基本额定动载荷C (1)向心轴承的C是纯径向载荷; (2)推力轴承的C是纯轴向载荷; (3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。 二、滚动轴承的当量动载荷P 定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致的假想载荷,该假想载荷称为当量动载荷P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。 1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r 2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a 3.同时受径向载荷R和轴向载荷A的轴承P=X F r+Y F a X——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。 径向动载荷系数X和轴向动载荷系数

表12-3 考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。载荷系数fp 表12-4

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它 原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断(附MATLAB程序)

第二组实验 轴承故障数据: Test2.mat 数据打开后应采用 X105_DE_time 作为分析数据,其他可作为参考,转速 1797rpm 轴承型号: 6205-2RS JEM SKF, 深沟球轴承 采样频率: 12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率通过以上原始数据可知次轴承的参数为: 轴承转速 r=1797r/min;滚珠个数 n=9;滚动体直径 d=7.938mm;轴承节径 D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为:外圈故障频率 f1=r/60 * 1/2 * n(1-d/D *cos α )=107.34Hz 内圈故障频率 f2=r/60 * 1/2 * n(1+d/D *cos α)=162.21Hz 滚动体故障频率 f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2( α)]=70.53Hz 保持架外圈故障频率 f4=r/60 * 1/2 * (1-d/D *cos α )=11.92Hz 2.对轴承故障数据进行时域波形分析 将轴承数据Test2.mat导入 MATLAB 中直接做 FFT 分析得到时域图如下:

并求得时域信号的各项特征: 1)有效值:0.2909; 3)峰值因子:5.2441;2)峰值: 1.5256;4)峭度: 5.2793;6)裕度因子:

3.包络谱分析 对信号做 EMD 模态分解,分解得到的每一个 IMF 信号分别和原信号做相关分析,找出相关系数较大的 IMF 分量并对此 IMF 分量进行 Hilbert 变换。 Empirical Mode Decomposition im 由图中可以看出经过 EMD 分解后得到的9个 IMF 分量和一个残余量。 IMF 分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1 的相关系数明显最大,所以选用 IMF1 做 Hilbert 包络谱分析。所得 Hilbert 包络谱图如下:

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

滚动轴承故障的形式有哪些

滚动轴承故障的形式有哪些 轴承在我们的生活中很常见,经过长时间的使用,滚动轴承难免会出现各种各样的故障问题,那么滚动轴承故障有哪些形式呢?轴易购 锈蚀,锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。水分或酸、碱性物质直接侵人会引起轴承锈蚀。当轴承停止工作后,轴承温度下降达到露点,空气中水分凝结成水滴附在轴承表面上也会引起锈蚀。此外,当轴承内部有电流通过时,电流有可能通过滚道和滚动体上的接触点处,很薄的油膜引起电火花而产生电蚀,在表面上形成搓板状的凹凸不平。进口轴承 断裂,过高的载荷会可能引起轴承零件断裂。磨削、热处理和装配不当都会引起残余应力,工作时热应力过大也会引起轴承零件断裂。另外,装配方法、装配工艺不当,也可能造成轴承套圈挡边和滚子倒角处掉块。国产轴承 磨损,由于尘埃、异物的侵入,滚道和滚动体相对运动时会引起表面磨损,润滑不良也会加剧磨损,磨损的结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,振动及噪声也随之增大。对于精密机械轴承,往往是磨损量限制了轴承的寿命。轴承工厂 疲劳剥落,滚动轴承的内外滚道和滚动体表面既承受载荷又相对滚动,由于交变载荷的作用,首先在表面下一定深度处形成裂纹,继而扩展到接触表面使表层发生剥落坑,最后发展到大片剥落,这种现象就是疲劳剥落。疲劳剥落会造成运转时的冲击载荷、振动和噪声加剧。 胶合,在润滑不良、高速重载情况下工作时,由于摩擦发热,轴承零件可以在极短时间内达到很高的温度,导致表面烧伤及胶合。所谓胶合是指一个零部件表面上的金属粘附到另一个零件部件表面上的现象。 塑性变形,当轴承受到过大的冲击载荷或静载荷时,或因热变形引起额外的载荷,或有硬度很高的异物侵入时都会在滚道表面上形成凹痕或划痕。这将使轴承在运转过程中产生剧烈的振动和噪声。而且一旦有了压痕,压痕引起的冲击载荷会进一步引起附近表面的剥落。 保持架损坏,由于装配或使用不当可能会引起保持架发生变形,增加它与滚动体之间的摩擦,甚至使某些滚动体卡死不能滚动,也有可能造成保持架与内外圈发生摩擦等。这一损伤会进一步使振动、噪声与发热加剧,导致轴承损坏。

滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析 滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。 滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。 1、滚动轴承故障诊断方式 振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。 2、滚动轴承正常运行特点与诊断技巧 滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。继续运行一段时

滚动轴承的寿命计算

滚动轴承的寿命计算 四.滚动轴承的受载和失效 1.滚动轴承的受载特点 (a)转动圈各点及滚动体的径向载荷及应力分布 (b)固定圈各点的径向载荷及应力分布深沟球轴承的经向载荷分布通用轴承各滚动元件的载荷及应力分布 ⑴对于转动圈及滚动体经过承载区的各点时接触载荷及应力是变化的;而在每一接触点上的接触载荷及应力呈脉动循环的特征;在非承载区不受载; ⑵对于固定圈各点的受载及应力是不等的,而在每一承载点处承载时的接触载荷及应力均呈现同一的脉动循环的特征,只是幅度的值不同; 其中最下端处受载最大其值是,对于深沟球轴承(6类):F0=(4.37/Z)Fr。 2.滚动轴承的失效形式 ⑴对于正常运转的轴承(10 r/min<n<n lim)——内外圈及滚动体的疲劳点蚀; ⑵对于静止不转或转速低(n≤10 r/min)或间歇摆动的轴承——内外圈及滚动体的塑性变形;

⑶内外圈及滚动体的不可避免的摩擦磨损; 3.滚动轴承的设计准则 ⑴对于正常运转的轴承——为防止疲劳点蚀,以疲劳强度计算为依据,进行寿命计算; ⑵对于低速轴承,或承受连续载荷或承受间断载荷而不旋转的轴承,要求控制塑性变形,——进行静强度计算; ⑶对于高速运转轴承——除进行寿命计算,还要验算轴承的极限转速。 五.滚动轴承的设计计算 ㈠类型的选择 滚动轴承是标准件,在机械设计中,要求能正确地选用滚动轴承。首先选择轴承的类型;然后再根据工作条件、使用要求及轴承特性进行相应的计算,并从有关国标中选取合适的型号。 选择轴承的类型时,应考虑以下因素: 1.轴承的载荷 轴承所受载荷的大小、方向和性质,是选择轴承类型的主要依据。 (1)当载荷较小时,宜选用球轴承;当载荷较大时,宜选用滚子轴承; (2)当只承受径向载荷,选用径向接触轴承(深沟球轴承、圆柱滚子轴承);当只承受轴向载荷,选用轴向接触轴承; (3)当轴承同时承受径向载荷和轴向载荷时,可根据它们的相对值考虑: ①当轴向载荷比径向载荷小得多时,可选用深沟球轴承; ②当轴向载荷比径向载荷较小时,根据转速(见2.轴承的转速)可选用接触角较小的向心角接触轴承(向心角接触球轴承或圆锥滚子轴承); ③当轴向载荷比径向载荷大,可选用接触角较大的推力角接触轴承或选用轴向接触轴承与径向接触轴承组合使用。 (4)当有冲击载荷时,宜选择滚子轴承。 2.轴承的转速 在轴承手册中,极限转速是滚动轴承在一定载荷与润滑条件下允许的最高转速,轴承的工作转速应小于极限转速。 高速时(>1000r/min),应优先选用球轴承。 3.轴承的调心性能

滚动轴承计算题汇总

滚动轴承25题(当量动载荷、寿命计算等) 1.有一轴由一对角接触球轴承支承,如图所示。已知:齿轮的分度圆直径 d =200mm ,作用在齿轮上的载荷为T F =1890N, =700N, =360N.轴承的内部轴向力 S 与径向载荷的关系式为:S=0.4T F 。求两轴承所承受的轴向载荷。 题1图 解:受力分析如图示。 2V 题1答图 1150100 300 700150360100470300 r A v N F F R ?+?= ?+?== 21700470230v r v N R F R =-=-= 2111 189094522 H H r N R R F == =?= 1R = 2R = 1 10.4S R = 2 20.4S R = 1 S 、2S 方向如图示 1 2400360782A N S S F +=+=> 所以轴承2被“压紧”,轴承1“放松”。

1 21 1422,782A N N S S A A F ===+= 2.如图所示,某轴用一对30307圆锥滚子轴承,轴承上所受的径向负荷R 1=2500N ,R 2=5000N ,作用在轴上的向外负荷F a1=400N,F a2=2400N 。轴在常温下工作,载荷平稳f P =1。试计算轴承当量动负载大小,并判断哪个轴承寿命短些?(注:30307轴承的Y=1.6,e=0.37,S=R/(2Y);当A/R>e 时,X=0.4,Y=1.6;当A/R<=e 时,X=1,Y=0) 题2图 解:受力分析如图示。 题2答图 1 12500 78122 1.6 N Y R S = = =? 2 25000 156322 1.6 N Y R S = = =? 2 1 1 278124004002781a a N S S F F +-=+-=> 所以轴承2被“压紧”,轴承1“放松”。 1 1211 1781,2781a a N N S S A A F F ===+-= 11 781 0.312500 e A R = =< 22 2781 0.565000 e A R = =< 所以 1 1 1 1 1 ()2500P N f P X R Y A = +=

滚动轴承故障诊断实验

滚动轴承故障诊断实验 一、实验目的 1·了解滚动轴承常见故障形式与诊断方法。 2·学习解调谱分析技术。 3·通过实验进行信号采集和分析,了解滚动轴承故障特点。 二、实验装置 本实验装置为轴承故障模拟实验台,如图1-1所示,该装置主要包括控制箱、电机、皮带轮、联轴器、轴等。轴的支撑方式为双支撑,故障轴承为非驱动侧的滚动轴承,轴承外圈有一缺口。 图1-1 轴承故障模拟实验台 图1-2为该实验台结构简图。图中1为电机,2为皮带轮(1:1传动),3为联轴器,4为轴,5为滚动轴承。

图1-2 实验台结构简图 三、实验原理 旋转机械是设备状态监测与故障诊断工作的重点,而旋转机械的故障有相当大比例与滚动轴承有关。滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30%是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。 滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等都可能会导致轴承过早损坏。即使在安装、润滑和使用维护都正常的情况下,经过一段时间的运转,轴承也会出现疲劳剥落和磨损而不能正常工作。总之,滚动轴承的故障原因是十分复杂的。滚动轴承的主要故障形式包括:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合以及保持架损坏等。 本次实验中所用轴承型号为6205,其结构如图1-3。 图1-3 6205型轴承

6205中的代号6表示其为深沟球轴承,2是尺寸系列代号,表示轴承直径系列或宽度系列的组合,05是内径代号。它由内圈、外圈、滚动体和保持架四部分组成。该型轴承的结构参数为:节径为39.04mm,滚子直径7.93mm,滚子数9个。 本实验中非驱动侧轴承外圈有一切口,轴承的频率与内圈转速n和滚动体数量有关,轴承各部件的特征频率可由相关软件计算得出。 由于轴承中各部件特征频率不同,因此很难从频谱图中获得故障频率,运用解调谱分析技术可以从频谱图中分离出实验所需的频率成分。 四、实验步骤 1、安装调试好实验台,先手动盘车,确保无干涉存在,打开电机,将转速调至1500r/min,通过加速度传感器测量故障轴承的振动信号,通过数字采集器将振动信号转变为数字信号,传入计算机,在相关软件中分析。 2、将转速调至1200r/min,通过加速度传感器测量轴承的振动信号,通过数字采集器将振动信号转变为数字信号,传入计算机,在相关软件中分析。 3、实验结束,关闭电机,离开前整理好实验台。 五、实验结果 1、当电机转速为1500r/min时的频谱图如图1-4。 图1-4 转速为1500rpm时的频谱图

滚动轴承故障诊断

第二组实验 轴承故障数据: 数据打开后应采用X105_DE_time作为分析数据,其他可作为参考,转速1797rpm 轴承型号:6205-2RS JEM SKF, 深沟球轴承 采样频率:12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率 通过以上原始数据可知次轴承的参数为: 轴承转速r=1797r/min;滚珠个数n=9;滚动体直径d=; 轴承节径D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为: 外圈故障频率f1=r/60 * 1/2 * n(1-d/D *cosα)= 内圈故障频率f2=r/60 * 1/2 * n(1+d/D *cosα)= 滚动体故障频率f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2(α)]= 保持架外圈故障频率f4=r/60 * 1/2 * (1-d/D *cosα)= 2.对轴承故障数据进行时域波形分析 将轴承数据导入MATLAB中直接做FFT分析得到时域图如下:并求得时域信号的各项特征:

(1)有效值:;(2)峰值:; (3)峰值因子:;(4)峭度:; (5)脉冲因子:;(6)裕度因子:: 3.包络谱分析 对信号做EMD模态分解,分解得到的每一个IMF信号分别和原信号做相关分析,找出相关系数较大的IMF分量并对此IMF分量进行Hilbert变换。 由图中可以看出经过EMD分解后得到的9个IMF分量和一个残余量。IMF分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1的相关系数明显最大,所以选用IMF1做Hilbert

包络谱分析。所得Hilbert包络谱图如下: 对包络谱图中幅值较大区域局部放大得到下图 由以上包络图的局部放大图中可以看出包络图中前三个峰值最大也最明显,三个峰值频率由小到大排列分别为、、。把这三个频率数值和前文计算所得的理论值进行比较可知:频率值最大为和内圈的故障理论计算特征频率f2=相近,说明此轴承的故障发生在轴承的内圈。 clc 程序1:原始信号时域分析及小波去噪处理 clear all z=importdata('C:\Users\wangkun\Desktop\轴承诊断\'); x1=(1:4096); clear z; N=4096; fs=12000; n=0:N-1; t=n/fs; f=n*fs/N; figure(1); plot(t,x1); xlabel('t'); ylabel('幅值'); title('原信号时域图') %小波去噪 [thr,sorh,keepapp]=ddencmp('den','wv',x1); xd=wdencmp('gbl',x1,'db3',2,thr,sorh,keepapp); figure(2); plot(t,xd); xlabel('t');

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

滚动轴承常见故障及诊断

滚动轴承常见故障及诊断 2007/08/04 11:41来源:《工程机械与维修》作者:肖军 滚动轴承的故障类型大致有6种,即:腐蚀、摩擦、过热、烧伤、磨损、疲劳剥落等。其中,磨损和疲劳剥落是最常见的故障形式。故障诊断的方法有:转矩测定法、转速测定法、温度测定法、油分析法、振动法等。其中,振动法适用性强,效果好,测试信号处理简单直观,使用最广泛。 1.故障识别 运转中的检查项目有轴承的滚动声、振动、温度等,主要识别方法如下: (1)噪声识别 这需要有丰富的经验,应尽量由专人进行这项工作。用听音器或听音棒贴在外壳上可清楚地听到轴承的声音,也可采用测声器对运转轴承的滚动声的大小及音质进行检测,分辨出不同的故障。 轴承噪声主要有以下几种: ①固有噪声。这是滚动轴承本身具有的一种噪声,属正常噪声。特点:轴承旋转时发出的一种平稳、连续的声音,声音较小;转速变化时,其主频率不变。 ②装配误差产生的噪声。 ③滚道噪声。轴承在转动时产生随机脉动滚道噪声,是轴承噪声的主要成分。特点:滚道噪声会随着滚道和滚动体加工精度的提高而降低。 ④滚动噪声。滚子轴承容易产生滚动噪声。特点:主要发生在滚动体进入、退出承载区的时刻;润滑剂性能不好或黏度极大时最容易产生;滚子轴承只承受径向力,径向游隙比较大时容易产生。 ⑤保持架噪声。产生原因:滚动体和保持架、保持架与引导面之间的滑动摩擦,以及保持架与滚动体发生相互撞击而发出的噪声。特点:具有周期性;当采用滚动体引导保持架时,这种运动的不稳定性更加严重,深沟球轴承的冲压保持架较薄,径向、轴向的刚度较低,整体稳定性差,轴承高速旋转时,因弯曲变形而产生自激振动,发出“蜂鸣声”。 ⑥夹杂物噪声。大约14%的轴承过早损毁是污染所致,外部杂质进入轴承工作面引起非周期性振动和噪声。特点:随机性强,特别是小型轴承对此很敏感。 ⑦伤痕噪声。据统计,16%的轴承过早损毁是由于安装不当或没有使用适当的安装工具。特点:转速不变,噪声频率不变;转速降低,周期变长。如果使用高黏度油脂,噪声将减弱。原因分析:若其噪声连续不断,则可能是滚道有伤;若其噪声或有或无周期性,则为滚动体受损;若滚动体碎裂,会产生“锉齿声、冲击声”。 ⑧缺油噪声。特点:发出“金属磨损的哨声”,如果负载较重且缺油严重,可能产生“尖叫声”。 (2)振动识别 通常在轴承上安装压电式加速度传感器获取振动信号,然后通过计算机进行信号分析,以判断轴承是否存在故障。滚动轴承磨损后产生的振动同正常轴承产生的振动具有相同的性质,但磨损轴承的振幅明显比正常轴承的高。因此,只要将传感器获得的振动信号加以比较,就可判断出滚动轴承是否存在磨损类故障。如果传感器获得的振动信号出现异常,即波形相隔一段时间就出现峰值极大的尖顶,则可判断滚动轴承出现了疲劳剥落和点蚀等故障。 (3)温度识别 使用热感器可以随时监测轴承的工作温度,并在温度超过规定值时实现自动报警以防止事故发生。该方法属比较识别法,仅用于运转状态变化不大的场合。高温表示轴承已处于异常状态,因此,连续监测轴承温度是有必要的。轴承温度的定期测量可借助于温度计(例如数字型温度计)。 (4)润滑剂状态识别

相关文档
最新文档