蛋白质可逆磷酸化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白可逆磷酸化

——1992年诺贝尔生理和医学奖简介

龚祖埙(中科院上海生物化学研究所)由于在蛋白质可逆磷酸化研究方面的贡献,1992年诺贝尔生理和医学奖授予美国西雅图华盛顿大学的两位生物化学家——克雷布斯(Edwin Krebs)和费歇尔(Edmon Fisher),诺贝尔奖委员会在宣布授予他们诺贝尔奖时宣称:“我们现在已确定在整个基因组内大约有1%的基因编码蛋白质激酶,这些激酶调节至细胞内成千上万蛋白质的功能”。的确,蛋白质可逆磷酸化及其有关的第二信使调控,蛋白质激酶和磷酸脂酶的研究已经成为当代生物化学、生理学、细胞生物学、分子生物学研究的一个最活跃最吸引人的研究领域。蛋白质可逆磷酸化和如此众多的生命过程相联系,诸如细胞生长,组织分化,基因表达,肌肉收缩,能量利用和肿瘤转化等,可以毫不夸张的说,它参与了每一个生物的“生”和“死”的过程。

50年代初,克雷布斯从事肌肉代谢的研究,当时对肌肉收缩的能量代谢很感兴趣,因此对肌肉内糖原酵解过程的调节给以特别注意。费歇尔博士当时在瑞士日内瓦大学从事植物酶学的研究。从1953年开始,由于共同的兴趣,他们在美国西雅图华盛顿大学开始携手合作,并且很快发现,磷酸酶在从高能化合物——腺苷三磷酸(ATP)处获得无机磷后,由非活性转化为火星状态。如果该酶在去磷酸化后,即蛋白质分子失去与其共价键结合的无机磷后,酶的活性又消失。正如细胞内其它所有的生物化学反应一样,蛋白质的可逆磷酸化反应也是由酶来调控的。因此他们的下不宜目标是寻找相应的酶,他们两人发现了第一个这样的酶,并称之为激酶(kinase)。激酶是负责蛋白质磷酸化的酶,以后他们又发现了去磷酸化的酶,并称之为磷酸酯酶。

回顾历史,在同一个研究方向或领域内,先后获得三次诺贝尔奖的可以说是绝无仅有的,而糖原酵解和蛋白质磷酸化的研究则是唯一的例外克雷布斯在40年代末期曾在美国圣路易斯的华盛顿大学医学院科里(Gerty Cori)实验室工作。而科里由于在糖原酵解研究中发现磷酸化酶的活性和非活性两种形式,于1947年获诺贝尔奖。尽管在当时尚不知这有两种形式的酶在结构上的差异。这一结构上的差异——即蛋白质可逆磷酸化正是在45年后授予克雷布斯和费歇尔诺贝尔奖的主题。在这长达近半个世纪的过程中,我们还应提起和磷酸化酶研究有关的另一个诺贝尔奖获得者——萨瑟兰(Earl Sutherland)。他也在颗粒实验室进行过研究,由于发现环腺苷酸(cAMP)作用而获得1971年的诺贝尔奖,这是和磷酸化酶有关的第二个诺贝尔奖,目前cAMP被广泛称为“第二信使”,在细胞功能的调控中,它的重要性是显而易见的。

1.蛋白质的可逆磷酸化

细胞内每时每刻进行着成千上万的生物化学过程,细胞又能够迅速对细胞内环境和外界刺激产生响应,这些过程都有一个复杂的调控机制,大多数是直接或间接地由蛋白质构象变化介导的,而蛋白质本身构想的变化则是由变构效应或各种修饰来实现的,如二硫键的配对,蛋白水解酶的加工,蛋白质的可逆磷酸化则是一种最常见,也是最重要的共价修饰方式。

蛋白质的磷酸化和去磷酸化常伴随着这一蛋白质生理活性的激活和失活,因此这是一个动态的过程。蛋白质的可逆磷酸化需有两种专一的酶来协助完成,磷

酸化时需要蛋白质激酶,而去磷酸化需磷酸酯酶。

很多酶在活性作用过程中都有一个磷酸或和去磷酸化的过程。至80年代中期,已报道有50多种酶存在可逆磷酸化过程,其中极少数的酶,磷酸化过程不影响其本身的活性变化,因而称为“Slient phosphorylation”,很多激酶常能被其它激酶磷酸化,但有些激酶仅仅能磷酸化自身,称为“autophosphorylation”。

2.蛋白质激酶

蛋白质激酶是一个大的家族,目前已发现了上百种,它们的分子结构,分子大小,亚基组成,激活效应因子,底物的专一性和细胞内的定位等各不相同。蛋白质激酶常由催化、调节和定位三个部分组成,但所有的蛋白质激酶都有一个保守的翠花核心,因而可能有相同的进化起源。蛋白质激酶的非催化区域,保守性不强,但对该酶的细胞内定位和激活调节等作用有重要的影响。

70年代末以前,第五种的丝氨酸和苏氨酸被认为是受激酶催化的磷的受体。1978~1979年,在肿瘤病毒的研究中,首次发现多瘤病毒的T抗原的酪氨酸可以被磷酸化,以后又连续发现在一些逆转录病毒中也存在有酪氨酸蛋白质激酶,如劳氏肉瘤病毒的致瘤基因产物pp60src,以及一些活性蛋白和激素的受体,如表皮生长因子,血小板生长因子和胰岛素受体等。除上述以外,大多数蛋白质激酶为丝氨酸或苏氨酸激酶。

3.蛋白质可逆磷酸化参与的各种生命过程

(1)磷酸化和肌肉收缩:动物的肌肉组织可分为三大类型,即骨骼肌(又称横纹肌)、平滑肌和介于两者之间的心肌。骨骼肌是由肌动蛋白、原肌球蛋白和肌钙蛋白三者互相协同作用而实现肌肉收缩的调控,这一过程首先是由细胞内钙离子浓度变化而启动的。平滑肌收缩的调控则是由肌球蛋白轻链激酶翠花的。轻链激酶本身是属于钙离子和钙调蛋白激活的一种激酶。

肌钙蛋白抑止因子是组成肌钙蛋白三个成分中的一个,能抑止肌动球蛋白的Mg-ATP活力,又能与肌钙蛋白C因子结合。小鼠心肌的肌钙蛋白抑止因子的磷酸化程度和心肌搏动的强弱有平行关系。肌钙蛋白抑止因子的磷酸化可使肌球蛋白的Mg-ATP酶活性对钙离子的致敏性降低,从而使心肌建立起一个负反馈系统,使心脏迅速松弛。

(2)磷酸化和蛋白质合成的调控:兔内织网无细胞体系是目前分子生物学中应用最广泛的体外翻译的无细胞体系。在这一体系内存在有以来于氯高铁血红素和双链RNA的激酶,这一激酶可使蛋白质合成的起始因子Eif-2磷酸化。在蛋白质合成的整个机器内,目前还知道,40S核糖体亚基中的S6蛋白质也能被可逆磷酸化。S6磷酸化后,细胞内激素的合成量增加。目前还有报道,tRNA在转移氨基酸的过程中也有可逆磷酸化的调控过程。

(3)磷酸化和基因表达的调控:80年代已证明在基因表达过程中,也有可逆磷酸化反应参加调控。按照分子生物学的中心法则,遗传信息的表达第一步应该是由DNA模板转录至RNA。RNA的产生包括在模板上RNA合成的起始,RNA 链的延伸,和新生链的终止。这一整个过程是由依赖于DNA的RNA聚合酶在各种调控蛋白下共同进行的结果。在真核细胞中,按合成核糖体RNA,信使RNA 和tRNA,可把RNA聚合酶分成Ⅰ,Ⅱ,Ⅲ三个类型。这三类RNA合成的调控机制是近十年来的研究热点。有人研究了肝癌细胞和正常肝细胞中三类RNA聚合酶活性的差异,结果发现肝癌细胞中Ⅰ型聚合酶的活力,特别在细胞核中,大大高于正常肝细胞。这一活力的增高主要是由于磷酸化后酶的比活增加。进一步的研究证明,基因表达过程可能由染色质的非组蛋白的磷酸化来进行调控,而Ⅰ型聚

相关文档
最新文档