2020-2021学年安徽省中考数学模拟试卷及答案解析A
2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷(含答案解析)

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣6的相反数是()A .﹣6B .﹣16C .6D .162.粮食是人类赖以生存的重要物质基础,2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A .46.828510⨯吨B .46828510⨯吨C .76.828510⨯吨D .86.828510⨯吨3.如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A .平移B .旋转C .轴对称D .黄金分割5.如图,Rt ABC △是一块直角三角板,其中90,30C BAC ∠=︒∠=︒.直尺的一边DE 经过顶点A ,若DE CB ∥,则DAB ∠的度数为()A .100°B .120°C .135°D .150°6.如图,ABC 内接于O ,AD 是O 的直径,若20B ∠=︒,则CAD ∠的度数是()A .60°B .65°C .70°D .75°7.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大暑”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A .23B .12C .16D .188.如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在 AB 上的点C 处,图中阴影部分的面积为()A .3π-B .3πC .2π-D .6π9.如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形1111D C B A ;第二次,顺次连接四边形1111D C B A 各边的中点,得到四边形2222A B C D ;…如此反复操作下去,则第n 次操作后,得到四边形n n n n A B C D 的面积是()A .2nab B .12n ab -C .12n ab +D .22nab 二、填空题10.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2m (3m ≥,m 为正整数),则其弦是______(结果用含m 的式子表示).11.若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是__.12.如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.13.如图,在菱形ABCD 中,60A ∠=︒,6AB =.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,.F 当点M 与点B 重合时,EF 的长为______;当点M 的位置变化时,DF 长的最大值为______.三、解答题14.计算:012022sin302--︒.15.解方程:1 122 x xx x-=--.16.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.17.观察下面的点阵图形和与之相对应的等式探究其中的规律.①•→4×0+1=4×1﹣3;②→4×1+1=4×2﹣3;③→4×2+1=4×3﹣3;④→;⑤→.(1)请在④和⑤后面的横线上分别写出相对应的等式;(2)猜想第n(n是正整数)个图形相对应的等式为.18.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 1.73︒≈︒≈︒≈≈,,).19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A .8小时及以上;B .6~8小时;C .4~6小时;D .0~4小时.第二项您阅读的课外书的主要来源是(可多选)E .自行购买;F .从图书馆借阅;G .免费数字阅读;H .向他人借阅.调查结论……请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程20(0)ax bx c a ++=≠的根就是相应的二次函数2(0)y ax bx c a =++≠的图象(称为抛物线)与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(2b a -,244ac b a -)和一元二次方程根的判别式24b ac =-△,分别分0a >和a<0两种情况进行分析:(1)0a >时,抛物线开口向上.①当240b ac =-> 时,有240ac b -<.∵0a >,∴顶点纵坐标2404ac b a -<.∴顶点在x 轴的下方,抛物线与x 轴有两个交点(如图1).②当240b ac =-= 时,有240ac b -=.∵0a >,∴顶点纵坐标2404ac b a -=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图2).∴一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根.③当240b ac =-= 时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A .数形结合B .统计思想C .分类讨论.D .转化思想(2)请参照小论文中当0a >时①②的分析过程,写出③中当0,0a ><△时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30︒的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,MBQ ∠=______︒,CBQ ∠=______︒;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当1cm FQ =时,直接写出AP 的长.参考答案:1.C【分析】根据相反数的意义,即可解答.【详解】解:6-的相反数是6,故选:C.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:68285万=6.8285×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.4.D【分析】根据黄金分割的定义即可求解.【详解】解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D【点睛】本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为12,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.熟知黄金分割的定义是解题关键.5.B【分析】先根据平行线的性质可得90DAC C ∠=∠=︒,再根据角的和差即可得.【详解】解:DE CB ∥ ,90C ∠=︒90DAC C ∴∠=∠=︒,30BAC ∠=︒ ,120DAB D C AC BA ∠=∠+=∴∠︒,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.6.C【分析】首先连接CD ,由AD 是O 的直径,根据直径所对的圆周角是直角,可求得=90ACD ∠︒,又由圆周角定理,可得20D B ∠=∠=︒,再用三角形内角和定理求得答案.【详解】解:连接CD ,∵AD 是O 的直径,∴=90ACD ∠︒.∵20D B ∠=∠=︒,∴18090180902070CAD D ∠=︒-︒-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.7.C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:将“立春”、“立夏”、“秋分”、“大暑”的图片分别记为A 、B 、C 、D .根据题意,列表如下:ABCDA(A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C(C ,A )(C ,B )(C ,D )D (D ,A )(D ,B )(D ,C )由表格可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“立春”和“立夏”的结果有2种,故其概率为:21126=.故选:C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.8.B【分析】根据折叠,ACB AOB ≌△△,进一步得到四边形OACB 是菱形;进一步由3OC OB BC ===得到OBC △是等边三角形;最后阴影部分面积=扇形AOB 面积-菱形的面积,即可【详解】依题意:ACB AOB ≌△△,3AO BO ==∴3AC BC AO BO ====∴四边形OACB 是菱形∴AB CO⊥连接OC∵3OC OB ==∴3OC OB BC ===∴OBC △是等边三角形同理:OAC 是等边三角形故120AOB ∠=︒由三线合一,在Rt OBD △中:1302OBD OBC ∠=∠=︒1322OD OB ==BD ==1132222222OACB S BD OD =⨯⋅=⨯⨯⨯=菱形212033360AOB S ππ︒=⋅⋅=︒扇形3OACB AOB S S S π=-=阴影菱形扇形故选:B【点睛】本题考查菱形的判定,菱形面积公式,扇形面积公式;解题关键是发现OBC △是等边三角形9.A【分析】利用中位线、菱形、矩形的性质可知,每一次操作后得到的四边形面积为原四边形面积的一半,由此可解.【详解】解:如图,连接AC ,BD ,11A C ,11B D .∵四边形ABCD 是矩形,∴AC BD =,AD BC =,AB CD =.∵1A ,1B ,1C ,1D 分别是矩形四个边的中点,∴1111111111,22A DBC BD A B C D AC ====,∴11111111A D B C A B C D ===,∴四边形1111D C B A 是菱形,∵11AC AD a ==,11B D AB b ==,∴四边形1111D C B A 的面积为:1111111222ABCD A C B D ab S ⋅== .同理,由中位线的性质可知,22221122D C A B AD a ===,2222////D C A B AD ,22221122D A C B AB b ===,2222////D A C B AB ,∴四边形2222A B C D 是平行四边形,∵AD AB ⊥,∴2222C D D A ⊥,∴四边形2222A B C D 是矩形,∴四边形2222A B C D 的面积为:1111222211112242ABC A B C D D C D A D a b S S ⋅=⋅== 菱形.∴每一次操作后得到的四边形面积为原四边形面积的一半,∴四边形n n n n A B C D 的面积是2nab .故选:A .【点睛】本题考查矩形的性质,菱形的性质以及中位线的性质,证明四边形1111D C B A 是菱形,四边形2222A B C D 是矩形是解题的关键.10.21m +【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【详解】解:m 为正整数,∴2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,222444m a a a +=++,2444a m =-,解得21a m =-,∴弦为222121a m m +=-+=+,故答案为:21m +.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.11.3【分析】根据根与系数的关系直接可得答案.【详解】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.12.5或354【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE =2CD ,Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦,2425250x x -+=,()()4550x x --=,x =5或x =54,∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354;故答案为:5或354;【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.13.6-【分析】如图1中,求出等边ADB 的高DE 即可.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .证明OK =AF 的最小值,可得结论.【详解】解:如图1中,四边形ABCD 是菱形,AD AB BC CD ∴===,60A C ∠=∠=︒,ADB ∴ ,BDC 都是等边三角形,当点M 与B 重合时,EF 是等边ADB 的高,sin 606EF AD =⋅︒=⨯.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .∵AD CG ,OK AD ⊥,OK CG ∴⊥,90G AKT GTK ∴∠=∠=∠=︒,∴四边形AGTK 是矩形,sin 60AG TK AB ∴==⋅︒=OA OM =∵,AOK MOT ∠=∠,90AKO MTO ∠=∠=︒,()AAS AOK MOT ∴ ≌,OK OT ∴==OK AD ⊥ ,OR OK ∴≥=90AOF ∠=︒ ,AR RF =,2AF OR ∴=≥AF ∴的最小值为DF ∴的最大值为6-.故答案为:6-【点睛】本题考查菱形的性质,矩形的判定和性质,垂线段最短等知识,解题的关键是学会填空常用辅助线,构造特殊四边形解决问题,属于中考填空题中的压轴题.14.3【分析】先化简每项,再加减计算,即可求解.【详解】原式111222=++-3=【点睛】本题考查零次幂,二次根式,绝对值,三角函数;注意先每项正确化简,再加减计算即可求解.15.=1x -【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解.【详解】1122x x x x -=--,()112x x =-,解得=1x -,经检验=1x -是原方程的解,故原方程的解为:=1x -【点睛】本题考查解分式方程,注意分式方程要检验.16.(1)作图见解析(2)AE CF =,证明见解析【分析】(1)根据垂直平分线的尺规作图的画法,分别以A 、C 为圆心,以大于12AC 的长为半径画弧,交于两点,过两点作直线即可得到线段AC 的垂直平分线.(2)利用矩形及垂直平分线的性质,可以证得AEO CFO ≌,根据全等三角形的性质即可得出结论.【详解】(1)解:如图,(2)解:AE CF =.证明如下:∵四边形ABCD 是矩形,∴AD BC ∥.∴EAO FCO AEO CFO ∠=∠∠=∠,.∵EF 为AC 的垂直平分线,∴OA OC =.∴AEO CFO ≌.∴AE CF =.【点睛】本题主要考查了垂直平分线的尺规作图的画法、矩形的性质、全等三角形的判定和性质.17.(1)④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)4(1)143n n -+=-.【分析】(1)根据从同一顶点向外作出的四条线上的点的个数解答;(2)根据变化的层数和相应的图形的序数解答.【详解】解: ①401413→⨯+=⨯- ;②411423→⨯+=⨯-;③421433→⨯+=⨯-;∴④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)第n 个图形:4(1)143n n -+=-.【点睛】本题是对图形变化规律的考查,仔细观察图形,从每一条线上的点的个数考虑求解是解题的关键.18.58m【分析】延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒,再根据图形应用三角函数即可求解.【详解】解:延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒.又∵=90GAC ∠︒,∴四边形ACHG 是矩形.∴GH AC =.由题意,得60,24,70,30,60AG OF AOG EOF EFH ==∠=︒∠=︒∠=︒.在Rt AGO △中,90,tan AG AGO AOG OG ∠=︒∠=,∴606021.822tan tan 70 2.75AG OG AOG ==≈≈≈∠︒(m )﹒∵EFH ∠是EOF 的外角,∴603030FEO EFH EOF ∠=∠-∠=︒-︒=︒.∴EOF FEO ∠=∠.∴24EF OF ==m .在Rt EHF 中,90,cos FHEHF EFH EF∠=︒∠=∴cos 24cos 6012FH EF EFH =⋅∠=⨯︒=(m).∴()22241258m AC GH GO OF FH ==++=++≈.答:楼AB 与CD 之间的距离AC 的长约为58m .【点睛】本题主要考查三角函数的综合应用,正确构造直角三角形并应用三角函数进行求解是解题的关键.19.(1)参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;(2)1152人(3)答案见解析【分析】(1)用D类人数除以所占百分比即可得到总人数;再用总人数乘以F类所占百分比,即可求解;(2)利用样本估计总体的思想即可解决问题;(3)从平均每周阅读课外书的时间和阅读的课外书的主要来源写出一条你获取的信息即可.÷=(人).【详解】(1)解:3311%300⨯=(人);30062%186答:参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;⨯=(人).(2)解:360032%1152答:估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数有1152人;(3)解:答案不唯一.例如:第一项:①平均每周阅读课外书的时间在“4~6小时”的人数最多;②平均每周阅读课外书的时间在“0~4小时”的人数最少;③平均每周阅读课外书的时间在“8小时及以上”的学生人数占调查总人数的32%;第二项:①阅读的课外书的主要来源中选择“从图书馆借阅”的人数最多;②阅读的课外书的主要来源中选择“向他人借阅”的人数最少.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.20.(1)AC(2)分析见解析;作图见解析(3)答案见解析【分析】(1)解一元二次方程的解转化为抛物线与x轴交点的横坐标;还体现了分类讨论思想;(2)依照例题,画出图形,数形结合,可以解答;(3)结合所学知识,找到用转化思想或数形结合或分类讨论思想解决问题的一种情况即可.【详解】(1)解:上面解一元二次方程的过程中体现了转化思想、数形结合、分类讨论思想,故答案为:AC ;(2)解:a >0时,抛物线开口向上.当△=b 2−4ac <0时,有4ac −b 2>0﹒∵a >0,∴顶点纵坐标24>04ac b a-﹒∴顶点在x 轴的上方,抛物线与x 轴无交点(如图):∴一元二次方程ax 2+bx +c =0(a ≠0)无实数根.(3)解:可用函数观点认识二元一次方程组的解.(答案不唯一.又如:可用函数观点认识一元一次不等式的解集,等)【点睛】本题考查的二次函数与一元二次方程的关系,根据转化思想将一元二次方程的解的问题转化成抛物线与x 轴交点的横坐标的问题,再根据数形结合的思想用抛物线与x 轴的交点个数确定一元二次方程根的情况是本题的关键.21.(1)EMB ∠或CBM ∠或ABP ∠或PBM ∠(任写一个即可);(2)①15,15;②CBQ MBQ ∠=,理由见解析;(3)40cm 11或24cm 13【分析】(1)由折叠的性质可得12AE BE AB ==,90AEF BEF ∠=∠=︒,AB BM =,ABP PBM ∠=∠,由锐角三角函数可求30EMB ∠=°,即可求解;(2)由“HL ”可证Rt BCQ △≌Rt BMQ △,,可得15CBQ MBQ ∠=∠=︒;②由“HL ”可证Rt BCQ △≌Rt BMQ △,可得CBQ MBQ ∠=∠;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【详解】(1) 对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠== ,30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP PBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或(PBM ∠任写一个即可);(2)①由()1可知30CBM ∠=︒,四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,又BQ BQ = ,在Rt BCQ △和Rt BMQ △中BQ BQ BC BM=⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,15CBQ MBQ ∴∠=∠=︒,故答案为:15,15;MBQ CBQ ∠=∠②,理由如下:四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,在Rt BCQ △和Rt BMQ △中,,BM BC BQ BQ =⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4cm DF CF ==,AP PM =,Rt BCQ ≌Rt BMQ △,CQ MQ ∴=,当点Q 在线段CF 上时,1cm FQ = ,3cm MQ CQ ∴==,5cm DQ =,222PQ PD DQ =+ ,22(3)(8)25AP AP ∴+=-+,4011AP ∴=,当点Q 在线段DF 上时,1cm FQ = ,5cm MQ CQ ∴==,3cm DQ =,222PQ PD DQ =+ ,22(5)(8)9AP AP ∴+=-+,2413AP ∴=,综上所述:AP 的长为40cm 11或24cm 13.【点睛】本题是四边形综合题,考查了矩形的性质,正方形的性质,折叠的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.。
2021-2021新人教版初中数学中考模拟卷(含答案)

2021-2021新人教版初中数学中考模拟卷(含答案)2021-2021学年度人教版中考数学模拟试卷(考试用时:120分钟满分: 120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效............2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试卷和答题卡一并交回........一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)....1.A.?2021的值是11 B.? C.2021 D.?2021 202120211中,自变量x的取值范围是3x?1A O B P 2.在函数y?A.x?1111 B. x?? C. x? D. x? 33333.如图1,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于 A.45° B.30° C.60° D.90° 4.下列运算中,正确的是A.4m?m?33(m2)?m6 C.图1B.?(m?n)?m?n D.m2?m2?m5.如图所示几何体的俯视图是正面�JA. B. 6.下列说法正确的是C. D.A.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 B.随机抛掷一枚均匀的硬币,落地后正面一定朝上 C.在一次抽奖活动中,“中奖的概率是1”表示抽奖l00次就一定会中奖 100 D.在平面内,平行四边形的两条对角线一定相交1?x?y?5k,7.若关于x,y的二元一次方程组?的解也是二元一次方程2x?3y?6 的解,则k的值为x?y?9k?A.?33 B. 44C.44 D.? 338.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是 A.0B.1 41 C.2 41 D.19.函数y=ax-2(a≠0)与y=ax2(a≠0)在同一平面坐标系中的图象可能是y y OO A. 2y x O y x x O B. x C. D. 10.若方程x?3x?1?0的两根为x1、x2,则 11?的值为 x1x2D.?A.3 B.-3 C.1 321 311.在平面直角坐标系中,将二次函数y?2x的图象向上平移2个单位,所得图象的解析式为 A.y?2x2?2 B.y?2x2?2 C.y?2(x?2)2 D.y?2(x?2)212.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y = S△EPF,则y与t的函数图象大致是二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)....13.分解因式:27x?18x?3? .14.我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里..15.某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意22所列方程是.16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.17.一次函数y=x+1图象与y轴相交于点A,将y=x+1图象绕点A顺时针旋转105 °后得到的图象的函数解析式为 .18.如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.D A B? D? CE B C?第16题图三、解答题(本大题共8题,共66分,请将答案写在答题卡上)....?1?19.(本题满分6分)计算:?1?|3?2|????5?(2021?π)0?2?2?1?3?(2x?1)≥?220.(本题满分6分)解不等式组??10?2(1?x)?3(x?1)?21.(本题满分8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).(1)做△ABC关于x轴对称得到△A1B1C1,写出点C1的坐标,(2)把△ABC绕着原点O逆时针旋转90°得△A2B2C2,画出△A2B2C2,并写出C2的坐标。
【附5套中考模拟试卷】安徽省六安市2019-2020学年中考第五次质量检测数学试题含解析

安徽省六安市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大2.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.243.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩4.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣35.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是()A.待定系数法B.配方C.降次D.消元6.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是()A .63B .123C .183D .2437.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )A .B .C .D .8.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( )A .9B .4C .43D .339.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱10.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .11.3的倒数是( )A .3B .3-C .13D .13- 12.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为( )A .252B .252πC .50D .50π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.14242x -=的根是__________.15.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是16.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.17.若关于x 的方程230x x m --=有两个相等的实数根,则m 的值是_________.18.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.20.(6分)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是»BD的中点,过点 C 作AD 的垂线 EF 交直线 AD 于点 E .(1)求证:EF 是⊙O 的切线;(2)连接BC ,若AB=5,BC=3,求线段AE 的长.21.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走6 米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°,已如A 点离地面的高度AB =4米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?23.(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.24.(10分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25.(10分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为(填“真”或“假”)命题,并说明理由;(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.26.(12分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组x7 8 9 10 11 12 13 14 15 16 17男生平均身高y115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?27.(12分)如图,ABC△中AB AC=,AD BC⊥于D,点E F、分别是AB CD、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A 选项:年最高温度呈上升趋势,正确;B 选项:2014年出现了这6年的最高温度,正确;C 选项:年的温差成下降趋势,错误;D 选项:2016年的温差最大,正确;故选C .【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键.2.B【解析】【分析】由EF ∥BC ,可证明△AEF ∽△ABC ,利用相似三角形的性质即可求出S △ABC 的值.【详解】∵EF ∥BC ,∴△AEF ∽△ABC ,∵AB=3AE ,∴AE :AB=1:3,∴S △AEF :S △ABC =1:9,设S △AEF =x ,∵S 四边形BCFE =16, ∴1169x x =+, 解得:x=2,∴S △ABC =18,故选B .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.3.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A 、不等式组53x x ≥-⎧⎨>-⎩的解集为x >-3,故A 错误; B 、不等式组53x x >-⎧⎨≥-⎩的解集为x≥-3,故B 正确; C 、不等式组53x x <⎧⎨<-⎩的解集为x <-3,故C 错误; D 、不等式组53x x <⎧⎨>-⎩的解集为-3<x <5,故D 错误. 故选B .【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.4.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.5.C【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:a 2-a-1=0,∴a 2-a=1,或a 2-1=a∴a 3-2a+1=a 3-a-a+1=a (a 2-1)-(a-1)=a 2-a+1=1+1=2故选:C .【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.6.C【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB . ∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭.∵在△CMN 中,∠C=90°,MC=6,NC=CMN 11S ?CM CN 622∆=⋅=⨯⨯=∴CAB CMN S 4S 4∆∆==⨯=.∴CAB CMN MABN S S S ∆∆=-==四边形C . 7.A【解析】【分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A ,是轴对称图形,不是中心对称图形,故可以选;选项B ,是轴对称图形,也是中心对称图形,故不可以选;选项C ,不是轴对称图形,是中心对称图形,故不可以选;选项D ,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义. 错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.8.D【解析】【分析】【详解】解:设方程的另一个根为a a =解得a=故选D.9.A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..10.C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.11.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A【解析】【分析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.【详解】解:圆锥的侧面积=12•5•5=252.故选A.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6﹣3【解析】【分析】。
2021年中考数学模拟试卷三(含答案)

2021年中考数学模拟试卷三一、选择题1.3的相反数是( )A.﹣3 B. C.3 D.±32.据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为( )A.7.01×104 B.7.01×1011 C.7.01×1012 D.7.01×10133.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()4.下表表示对x的每个取值某个代数式所对应的值,则满足表中所列条件的代数式是( )A.x+2B.2x - 3C.3x - 10D. - 3x+25.下列运算正确的是( )A.a•a2=a3 B.a6÷a2=a3 C.2a2﹣a2=2 D.(3a2)2=6a46.若※是新规定的运算符号,设a*b=ab+ab+b,则在2*x=-16中,x的值( )A.-8B.6C.8D.-67.如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.如果∠ABC=135°,∠BCD=65°,则∠CDE的度数应为( )A.135°B.115°C.110°D.105°8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与D重合,折痕为EF,则BE的长为()A.3cmB.4cmC.5cmD.6cm9.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为( )A. B. C. D.10.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°11.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A. B. C. D.12.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题13.使式子有意义,则x的值为.14.已知一次函数y=2x+b,它的图象与两坐标轴围成的面积等于4,则b= .15.把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-3x+5,则a+b+c= .16.若数据1、﹣2、3、x的平均数为2,则x= .17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为 .三、解答题19.计算:﹣14+(2022﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.20.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.21.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.22.某班数学兴趣小组为了测量建筑物AB的高度,他们选取了地面上一点E,测得DE的长度为8.65米,并以建筑物CD的顶端点C为观测点,测得点A的仰角为45°,点B的俯角为37°,点E的俯角为30°.(1)求建筑物CD的高度;(2)求建筑物AB的高度.(参考数据:≈1.73,sin37°≈0.6,cos37°≈0.6,tan37°≈0.75)23.为了抓住文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件, B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.如图,直线y=kx+1分别交x轴,y轴于点A、B,交反比例函数y2=(x>0)的图象于点C,1CD⊥y轴于点D,CE⊥x轴于点E,S△OAB=1,=.(1)点A的坐标为;(2)求直线和反比例函数的解析式;(3)根据图象直接回答:在第一象限内,当x取何值时,y1≥y2.25.如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案27.答案为:A.28.答案为:C.29.A.30.答案为:D31.答案为:A.32.答案为:D.33.答案为:C;34.C.35.答案为:D.36.答案为:D37.答案为:A.38.A39.答案为:x≥﹣2且x≠1.40.答案为:4或﹣4.41.答案:1142.答案为:6.43.答案为:.44.答案为:45.解:原式=1.46.证明:过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.47.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.48.49.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8a+3b=950,5a+6b=800解方程组得a=100,b=50.∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元.(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100-x)∴100x+50(100-x)≥7500,100x+50(100-x)≤7650解得50≤x≤53∵x为正整数,∴共有4种进货方案.(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,获最大利润是2500元.50.解:(1)当x=0时,y=kx+1=1,即OB=1.∵S△OAB=1,∴OA=2.∴A点的坐标为(﹣2,0).故答案为(﹣2,0);(2)把A(﹣2,0)代入y1=kx+1,得k=.∴直线解析式为y1=x+1.∵OB∥CE,∴△AOB∽△AEC.∴.所以CE=,OE=3,∴点C坐标为(3,).∴m=3×=7.5.∴反比例函数解析式为y2=.(3)从图象可看出当x≥3时,y1≥y2.51.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,52.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).。
2021年安徽省六安市霍邱县中考一模数学试题含答案

2021年安徽省六安市霍邱县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的1.下列各数中,最小的数是()A.﹣B.﹣1C.0D.2.下列各式中,运算结果为a6的是()A.a3•a3B.(a3)3C.a3+a3D.a12÷a23.如图是由6个完全一样的小正方体搭成的几何体,则它的俯视图是()A.B.C.D.4.下列各多项式中,能因式分解的是()A.a2+b2B.a2﹣ab+b2C.﹣a2﹣4D.a2﹣a+5.数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是()A.点A和点B B.点B和点C C.点C和点D D.点A和点C6.某家用电器商城销售一款每台进价为a元的空调,标价比进价提高了30%,因商城销售方向调整,决定打九折降价销售,则每台空调的实际售价为()元.A.90%(1+30%)a B.(1+30%)(1﹣90%)aC.(1+30%)a÷90%D.(1+30%﹣10%)a7.若一组数据3,4,5,x,8的平均数是4.4,则这组数据的中位数为()A.5B.4C.3D.4.48.据统计,2018年底某款APP用户数约为5千万,2020年底达到7千万.假设未来几年内仍将保持相同的增长率,则该款APP用户数首次突破1亿的年份是()A.2022年B.2023年C.2024年D.2025年9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.∠AEC=∠CBD C.EF=BF D.∠AEB=∠BCD10.已知等腰直角△ABC的斜边AB=4,正方形DEFG的边长为,把△ABC和正方形DEFG 如图放置,点B与点E重合,边AB与EF在同一条直线上,将△ABC沿AB方向以每秒个单位的速度匀速平行移动,当点A与点E重合时停止移动在移动过程中,△ABC与正方形DEFG 重叠部分的面积S与移动时间t(s)的函数图象大致是()A.B.C.D.二、填空(本大题共4小题,每小题5分,满分20分)11.2020年12月22日开通运营的“合安高铁(合肥一安庆)总投资约334.5亿元,将334.5亿元用科学记数法表示为元.12.不等式组的解集是.13.如图,从一块半径是cm的圆形铁皮(⊙O面)上剪出一个圆心角(∠BAC)为60°的扇形BAC,点B和点C在⊙O的圆周上,若OA=2cm,则所剪出扇形的面积等于cm2.14.将矩形ABCD按如图所示的方式折叠、BE、EG、FG为折痕,若顶点A,G,D恰好都落在点O 处(1)的值为.(2)若AD=4,则四边形BEGF的面积为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣3)2+()﹣1﹣2cos45°+|﹣|.16.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,则需要215元;若购进A种纪念品5件,B种纪念品10件,则需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费450元,那么该商店购进这两种纪念品有几种可能的方案,请直接写出所有的具体购买方案.四、(本大题共2小题,每小题8分,满分16分)17.如图,每一个小方格正方形的边长均为一个单位长度,△ABC的顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于原点O的中心对称图形△A1B1C1.(2)以点O为位似中心,位似比为2:1将△ABC放大得到△A2B2C2,请在网格中画出△A2B2C2不要超出方格区域)(3)求△A2B2C2的面积.18.我们把按一定规律排列的一列数称为数列.若对于一个数列中任意相邻有序的三个数a,b,c 总满足c=ab+2a﹣b,则称这个数列为“梦数列”.(1)若0,1,﹣1,2,y是“梦数列”,则y=;(2)如果数列…,x,3,6x﹣1,…是“梦数列”,求x的值;(3)如果数列…,2m,n,5…是“梦数列”,求代数式8m﹣2n+4mn﹣9的值.五、(本大题共2小题,每小题10分,满分20分)19.如图,小强利用学到的数学知识测量某大桥主架在水面以上部分AB的高度,他在C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,C处与大桥主架的水平距离CM为60米,且AB垂直于水面(点A,B,C,M在同一平面内).求AB的高度(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)20.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a).(1)求一次函数和反比例函数的表达式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.六、(本题满分12分)21.新学期,某校开设了“国学经典”课程为了解学生对“国学经典”课程的掌握情况,从八年级学生中随机抽取了部分学生进行一次综合测试,测试结果分为四个等级:A级为优秀,B级为良好,C级为合格,D级待进步,将测试结果绘制成了如图所示的两幅不完整的统计图,根据统计图中的信息解答下列问题:(1)本次抽样测试的人数是名;(2)扇形统计图中表示A级的扇形圆心角α的度数是,请把条形统计图补充完整;(3)若该校八年级共有学生500名,且全部参加这次测试,估计优秀的人数为;(4)某班有4名得优秀的学生:甲、乙、丙、丁班主任要从中随机抽取两名同学进行经验分享,请利用列表法或画树状图,求甲被选中的概率.七、(本题满分12分)22.一段长为30m的墙MN前有一块矩形ABCD空地,用100m长的篱笆围成如图所示的图形,(靠墙的一边不用篱笆,篱笆的厚度忽略不计),其中四边形AEFH和四边形CDHG是矩形,四边形EBGF是边长为10m的正方形,设CD=xm.(1)若矩形CDHG面积为125m2,求CD长;(2)当CD长为多少m时,矩形ABCD的面积最大,最大面积是多少?八、(本题满分14分)23.在Rt△ABC中,AC=BC,∠ACB=90°,是AB的中点,∠EDF=45°,∠EDF绕顶点D旋转,角的两边分别与AC、BC的延长线相交于点E,F,DF交AC于M,DE交BC于N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,求证:CD2=CE•CF;(3)若CD=2,CF=,求DN的长.2020—2021学年度九年级第一次模拟考试数学学科参考答案一、选择题(本大题共10题,每小题4分,满分40分)二、填空(本大题共分,每小题分,满分分)11.103.34510⨯ 12.31x -<≤ 13.92π ;(2)2(第1小题3分,第2小题2分) 三、(本大共2小题,每小题8分,满分16分)15.解:原式=9222+-⨯+ (4)=11 ............ 6 =11 (8)16.解:(1)设A 种纪念品的购进单价为x 元,B 种纪念品的购进单价为y 元, 依题意,得:105215510205x y x y +=⎧⎨+=⎩, (3)解得:1513x y =⎧⎨=⎩. (4)答:A 种纪念品的购进单价为15元,B 种纪念品的购进单价为13元.…………… 4 (2)该商店共有2种进货方案方案1:购进4件A 种纪念品,30件B 种纪念品;方案2:购进17件A 种纪念品,15件B 种纪念品; ..................... 8 四、(本大共2小题,每小题8分,满分16分) 17.解:(1)△111A B C 如图所示;..................... 3 (2)△222A B C 如图所示; (6)(3)△222A B C 的面积1114(43413132)22222=⨯-⨯⨯-⨯⨯-⨯⨯=. (8)18.解:(1)﹣6; (2)(2)∵数列 …,x ,3,6x ﹣1,… 是“梦数列”,∴6x ﹣1=3x+2x ﹣3,解得x =﹣2,即x 的值为﹣2; (5)(3)∵数列…,2m ,n ,5…是“梦数列”, ∴5=2mn+4m ﹣n , ∴8m ﹣2n+4mn ﹣9=2(2mn+4m ﹣n )﹣9=2×5﹣9=1.…………… 8 五、(本大共2小题,每小题10分,满分20分) 19.解:AB 垂直于桥面,90AMC BMC ∴∠=∠=︒,在Rt AMC ∆中,60CM =,30ACM ∠=︒, tan AMACM CM∠=, tan AM CM ACM ∴=∠=⨯=3602033(米),…………… 4 在Rt BMC ∆中,60CM =,14BCM ∠=︒,tan BMBCM CM∠=, tan .MB CM BCM ∴=∠=⨯=6002515(米), (8)1520350AB AM MB ∴=+=+≈(米) (9)答:大桥主架在水面以上部分AB 的高度约为50米.… 10 20. 解:(1)∵点A (1,3)在反比例函数1ky x=的图象上, ∴k =1×3=3,∴反比例函数的解析式为13y x=,.…………3 ∵点B (﹣3,a )在反比例函数13y x=的图象上,∴﹣3a =3,∴a =﹣1,∴B (﹣3,﹣1),∵点A (1,3),B (﹣3,﹣1)在一次函数2y mx n =+的图象上,∴331m n m n +=⎧⎨-+=-⎩,∴12m n =⎧⎨=⎩,∴一次函数的解析式为22y x =+; (7)(2)点P 的坐标为(﹣10,0)或(2,0)或(10,0).………… 10 六、(本题满分12分) 21.解:(1)40 …………… 2 (2)54°…………1把条形统计图补充完整如图: (4)(3)75 (6)(4)把甲、乙、丙、丁分别记为A 、B 、C 、D , 画树状图如下: (10)从以上树状图可以看出共有12种等可能的结果,其中甲被选中的结果有6个, ∴P (甲被选中)==. (12)七、(本题满分12分)22.解:(1)由题意得:320100x GC ++=, ∴(803)GC x m =-, (1)10803903BC BG GC x x =+=+-=-,而030BC <,即090330x <-≤,解得2030x ≤<,………… 2 矩形CDHG 的面积()GC CD x x =⋅=-=803125,…………4 解得25x =或53(舍去) (5)答:CD 长为25m .…………6 (2) 设矩形ABCD 的面积为S 2m ,则S BC CD =⋅=()()2903315675x x x -=--+ (9)-<30,故抛物线开口向下,而2030x <,当15x >时,S 随x 的增大而减小,所以当x 取小值20时,S 取得最大值600. (11)答:当CD 长为20m 时,矩形ABCD 的面积最大,最大面积为6002m .……………12 八、(本题满分14分) 23.(1)证明:ACB ∠=90,AC BC =,CD 是AB 边上的中线,45ACD BCD ∴∠=∠=︒,90ACF BCE ∠=∠=︒, 135DCF DCE ∴∠=∠=︒,在DCF ∆和DCE ∆中, CF CE DCF DCE DC DC =⎧⎪∠=∠⎨⎪=⎩,()DCF DCE SAS ∴∆≅∆ DE DF ∴=; …………………… 4 (2)证明:DCF ∠=135, 45F CDF ∴∠+∠=︒,FDE ∠=45,45CDE CDF ∴∠+∠=︒, F CDE ∴∠=∠,DCF DCE ∠=∠,F CDE ∠=∠, FCD DCE ∴∆∆∽, …………………… 7 ∴CF CD CD CE=, CD CE CF ∴=⋅2; …………………… 8 (3)解:过点D 作DG BC ⊥于G , DCB ∠=45,22GC GD ∴=== 由(2)可知, CD CE CF =⋅2,222CD CE CF∴==, ECN DGN ∠=∠,ENC DNG ∠=∠, ENC DNG ∴∆∆∽, ∴CN CE NG DG =2222NG -=, 解得,2NG =, 由勾股定理得,2225DN DG NG +. (14)。
2021年中考数学模拟试卷含答案解析 (15)

2021年中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.37.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥1208.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.109.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.6410.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.212.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为元.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球只.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是元.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为、;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是A.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.26.(8分)综合与探究:如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x 轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.(1)求点C的坐标及抛物线的表达式;(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F (点F在第一象限).设点G的横坐标为m.①点G的纵坐标用含m的代数式表示为;②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个【分析】根据分数的定义解答即可.【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.【解答】解:如图所示:它的俯视图是:.故选:C.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)【分析】二次函数的顶点式方程:y=a(x﹣h)2+k,其顶点坐标是P(h,k).【解答】解:∵二次函数的顶点式方程是:y=2(x﹣1)2﹣3,∴该函数的顶点坐标是:(1,﹣3);故选:D.4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时【分析】过点C作CD⊥AB,交AB的延长线于点D.设CD=x海里.解Rt△CAD,得出AD=x海里.解Rt△CBD得出BD=x海里.根据AD﹣BD=AB列出方程x﹣x =20(﹣1),求出x=20,那么BC=CD=20海里,再利用时间=路程÷速度求解.【解答】解:如图,过点C作CD⊥AB,交AB的延长线于点D.由题意,得∠CAD=30°,设CD=x海里.在Rt△CAD中,∵∠CAD=30°,∴AC=2CD=2x海里,AD=CD=x海里.在Rt△CBD中,∵∠CBD=45°,∴BD=CD=x海里.∵AD﹣BD=AB,∴x﹣x=20(﹣1),解得x=20,∴BC=CD=20海里,∵救援艇的速度为30海里/小时,∴救援艇到达C处所用的时间为=(小时).故选:C.6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.3【分析】先估算和的大小,然后求出a、b的值,代入所求式子计算即可.【解答】解:∵2<﹣1<3,∴a=2,又∵7<5+<8,∴5+的整数部分为7∴b=5+﹣7=﹣2;∴a(﹣b)=2×(﹣+2)=4.故选:B.7.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥120【分析】将答对题数所得的分数减去答错或不答所扣的分数,在由题意知小亮答题所得的分数大于等于120分,列出不等式即可.【解答】解:设他答对了x道题,根据题意可得:10x﹣3(30﹣x)≥120.故选:D.8.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.10【分析】根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y的值.【解答】解:∵x=﹣2,不满足x≥1∴对应y=﹣x+5,故输出的值y=﹣x+5=﹣×(﹣2)+5=1+5=6.故选:B.9.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.64【分析】设第n幅图案中黑、白色瓷砖共a n块(n为正整数),观察图形,根据各图案中黑、白色瓷砖数量的变化可得出变化规律“a n=n2+4n(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n幅图案中黑、白色瓷砖共a n块(n为正整数).观察图形,可知:a1=12+1×4=5,a2=22+2×4=12,a3=32+3×4=21,…,∴a n=n2+4n(n为正整数),∴a6=62+4×6=60.故选:C.10.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.【分析】连结OE,OF,则四边形OFCE为正方形,可证明△AFG∽△ACB,可求出OG 长,证明△OGP∽△ABC可求出OP的长.【解答】解:连结OE,OF,∵⊙O分别与AC、BC相切于点F、E,∴OE⊥BC,OF⊥AC,∵OE=OF,∴四边形OFCE为正方形,设FG=x,∵FG∥BC,∴△AFG∽△ACB,∴,∴,解得x=,∴OG=,∵∠OGP=∠AGF=∠ABC,∴△OGP∽△ABC,∴,∴,∴.故选:B.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.2【分析】延长AB交DC的延长线于H,根据坡度的概念分别求出CH、BH,根据正切的定义求出AH,结合图形计算得到答案.【解答】解:延长AB交DC的延长线于H,则AH⊥DC,设CH=3x米,∵石台侧面BC的坡度i=1:0.75,∴BH=4x米,在Rt△BCH中,BC2=CH2+BH2,即152=(3x)2+(4x)2,解得,x=3,则CH=3x=9,BH=4x=12,∴DH=DC+CH=25,在Rt△ADH中,tan∠ADH=,∴AH=DH•tan∠ADH≈25×2.05=51.25,∴AB=AH﹣BH=39.25≈39.3,故选:C.12.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6【分析】根据分式方程的解为正数即可得出a<2且a≠1,根据不等式组有解,即可得出a>﹣5,找出﹣5<a<2且a≠1中所有的整数,将其相加即可得出结论.【解答】解:解分式方程得x=,因为分式方程的解为正数,所以>0且≠4,解得:a<2且a≠1,解不等式,得:x≤a+5,∵不等式组有解,∴a+5>0,解得:a>﹣5,综上,﹣5<a<2,且a≠1,则满足上述要求的所有整数a的和为﹣4+(﹣3)+(﹣2)+(﹣1)+0=﹣10,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为7.2×1010元.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:720亿=72000000000=7.2×1010.故答案为:7.2×1010.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球10只.【分析】直接利用概率公式计算.【解答】解:设袋中共有小球只,根据题意得=,解得x=10,所以袋中共有小球10只.故答案为10.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE =FG,得出四边形AFGE是平行四边形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出结果.【解答】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是平行四边形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案为:.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.【分析】小飞全程匀速,速度为10200÷34=300米/分,经过2分小飞追上小林,因此速度差为200÷2=100米/分,小林的速度为300﹣100=200米/分,小林15分钟行15×200=3000米,15分钟以后的速度为200+40=240米/分,以后行至C地所用时间为(10000﹣3000)÷240=分,因此行完全程的时间为15+=分.【解答】解:小飞的速度:10200÷34=300米/分,速度差为:200÷2=100米/分,小林的原速度为300﹣100=200米/分,小林后速度为:200+40=240米/分,小林前15分钟行驶的路程200×15=3000米,小林行完剩下路程需要时间(10000﹣3000)÷240=分,因此小林从出发到完成比赛,共用时15+=分,故答案为:.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是760元.【分析】设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x 瓶、2x瓶,A、B、C三种饮料周六数量分别为:6x(瓶),3.2x(瓶),1.5x(瓶),设变化了y元,得10.1x+y=403,其中x为整数,即可求得y的值,进而求得工作日销售额.【解答】解:设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x瓶、2x瓶,A、B、C三种饮料周六数量分别为:4x(1+50%)=6x(瓶),2x(1+60%)=3.2x(瓶),x(1+50%)=1.5x(瓶),∴工作日钱数:2×4x+3×2x+5x=19x(元),周六钱数:2×6x+3×3.2x+5×1.5x=29.1x(元),当不发生任何故障时,多出29.1x﹣19x=10.1x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则10.1x+y=403,其中x为整数,y=1、2、3、﹣1、﹣2、﹣3,得y=﹣1时,x=40,所以工作日销售额为:19×40=760(元).故答案为760.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+4xy+4y2﹣(x2﹣4xy﹣xy+4y2)=x2+4xy+4y2﹣x2+4xy+xy﹣4y2=9xy;(2)原式=÷=•=﹣.20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC 于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.【分析】(1)根据角平分线的性质得到∠ABE=∠CBE=30°,根据等腰三角形的性质得到∠ACD=∠ADC=75°,根据三角形的外角性质计算,得到答案;(2)根据含30度角的直角三角形的性质,等腰直角三角形的性质计算,即可证明.【解答】(1)解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE是∠ABC的角平分线,∴∠ABE=∠CBE=30°,∵∠A=30°,AC=AD,∴∠ACD=∠ADC=75°,∴∠DMB=∠ADC﹣∠ABE=45°;(2)证明:∵∠ACB=90°,∠A=30°,∴AB=2BC,∵CH⊥BE,∠CBE=30°,∴BC=2CH,∴AB=4CH,在Rt△CHM中,∠CMH=45°,∴CH=MH,∴AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有②、③.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°;②估计全年级A、B类学生大约一共有432名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.【分析】(1)根据抽样调查的代表性和可靠性求解可得;(2)①用360°分别乘以C、D类人数所占比例即可得;②用总人数乘以A、B的频率和可得;(3)根据极差、方差和A、B的频率的意义给出合理解释即可(答案不唯一).【解答】解:(1)抽样方法中比较合理的有②、③,故答案为:②、③;(2)①C类部分的圆心角度数为360°×=60°,D类部分的圆心角度数为360°×=30°;②估计全年级A、B类学生大约一共有12×48×(0.5+0.25)=432名.故答案为:60°,30°,432;(3)第一中学教学效果好,极差、方差小于第二中学,说明第一中学学生两极分化,学生之间的差距较第二中学好.第二中学教学效果好,A、B类的频率和大于第一中学,说明第二中学学生及格率较第一中学学生好.(答案不唯一).22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.【分析】(1)设购进甲、乙两款亲子装分别为x、y套,根据甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意先分别求出促销活动中甲、乙两款亲子装单件利润和销售总量(用a表示),然后由促销活动共获利5200元,可以列出相应的方程,从而可以求得a的值.【解答】解:(1)设购进甲、乙两款亲子装分别为x、y套.依题意得,解得:,答:购进甲款亲子装60套,乙款亲子装40套.(2)依题意可知:第二批甲亲子装每件利润为:200(a+10)%=(2a+20)(元),第二批乙款亲子装售价为:240•(1﹣a%)=240﹣1.2a(元),乙亲子装每件利润为:(240﹣1.2a﹣160)=(80﹣1.2a)元第二批甲款亲子装的销售量为:60•(1﹣a%)=(60﹣0.6a)(件)第二批乙款亲子装的销售量为:40×(1+25%)=50(件)依题意得:(2a+20)(60﹣0.6a)+50(80﹣1.2a)=5200解得:a1=0(不合题意舍去),a2=40,∴a的值为40.答:a的值为40.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=5;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.【分析】(1)根据新定义和绝对值的意义计算;(2)利用题意得到|x|+|y|=6和y=﹣2x,然后解方程组求出x和y即可得到P点坐标;(3)利用题意得到所有满足条件的点P构成的图形为正方形ABCD,然后计算它的面积即可.【解答】解:(1)点P到坐标原点O的“折线距离”d(﹣2,3)=|﹣2|+|3|=2+3=5;故答案为5;(2)根据题意得|x|+|y|=6,而2x+y=0,即y=﹣2x,∴|x|+|﹣2x|=6,∴3|x|=6,解得x=2或﹣2,当x=2时,y=﹣2x=﹣4;当x=﹣2时,y=﹣2x=4,∴P点坐标为(2,﹣4),(﹣2,4);(3)如图,所有满足条件的点P构成的图形为正方形ABCD,该图形的所围成封闭区域的面积=×6×6=18.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是CA.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.【分析】(1)利用题中的新定义判断即可;(2)①原式利用多项式乘以多项式法则,完全平方公式化简,再利用题中的新定义计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算,再利用新定义化简即可求出值.【解答】解:(1)A.i4=i2•i2=(﹣1)×(﹣1)=1,不符合题意;B.复数(1+i)2=1+2i﹣1=2i,实数部分为0,不符合题意;C.(1+i)×(3﹣4i)=3﹣4i+3i+4=7﹣i,符合题意;D.i+i2+i3+i4+…+i2019=i﹣1﹣i+1+…+i﹣1﹣i=﹣1,不符合题意,故选C;(2)①原式=2﹣i+4i+2+4﹣4i﹣1=7﹣i;②原式=27(﹣3﹣4i)(1﹣2i)=27(﹣3+6i﹣4i﹣8)=27(﹣11+2i)=﹣297+54i.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.【分析】(1)过点E作EG⊥AC于点G,由平行四边形的性质BC=AD=6,由等腰直角三角形的性质可得GE=FC=3,由勾股定理可求AG的长,即可求AF的长;(2)通过证明△DAC∽△BGE,可得=,AC=2BG,即可得结论.【解答】解:(1)如图,过点E作EG⊥AC于点G,∵四边形ABCD是平行四边形∴BC=AD=6,∵BC的垂直平分线交AC于F,∴BF=CF,且∠BFC=90°,BC=6∴BF=CF=6,EF=BE=EC=3,∵EF=CE,EG⊥AC∴GE=FC=3在Rt△AEG中,AG==6,。
2021年中考数学模拟试卷(含答案解析) (18)
2021年中考模拟试题数学一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C 在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70380.3870≤m<80a0.3280≤m<90b c90≤m≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D 点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE 的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2021-2022学年安徽省合肥四十五中学中考联考数学试题含解析
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有()A.1个B.2个C.3个D.4个2.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.成绩人数(频数)百分比(频率)5 0.210 515 0.420 5 0.1根据表中已有的信息,下列结论正确的是()A.共有40名同学参加知识竞赛B.抽到的同学参加知识竞赛的平均成绩为10分C .已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D .抽到同学参加知识竞赛成绩的中位数为15分3.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于( )A .30°B .35°C .40°D .50°4.下列各数中,无理数是( ) A .0B .227C .4D .π5.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB =20cm ,则△ABC 的周长为( )A .31cmB .41cmC .51cmD .61cm6.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .7.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .98.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( ) A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1089.如图,矩形ABCD 中,AB=3,3,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形EBGF ,此时恰好四边形AEHB 为菱形,连接CH 交FG 于点M ,则HM=( )A.12B.1 C.22D.3210.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的二、填空题(本大题共6个小题,每小题3分,共18分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.112.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.14.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为________.15.函数23x+x的取值范围是_____.16.已知一个正六边形的边心距为3,则它的半径为______ . 三、解答题(共8题,共72分)17.(8分)如图,在△ABC 中,AB=AC=1,BC=,在AC 边上截取AD=BC ,连接BD .(1)通过计算,判断AD 2与AC•CD 的大小关系; (2)求∠ABD 的度数.18.(8分)解方程:3xx --239x -=1 19.(8分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 、B 和D (4,).(1)求抛物线的表达式.(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ 2(cm 2). ①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取时,在抛物线上是否存在点R,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M 到D 、A 的距离之差最大,求出点M 的坐标. 20.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m +-的解集(请直接写出答案).21.(8分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点, (1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.22.(10分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.23.(12分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A ,B ,C ,D 四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整; (2)求扇形统计图中的A 等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A 等的学生有多少人?24.已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】由图象可得,出租车的速度为:600÷6=100千米/时,故(1)正确,客车的速度为:600÷10=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.2、B【解析】根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同学参加知识竞赛的平均成绩为:0505030010050++++=10,故选项B正确;∵0分同学10人,其频率为0.2,∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;∵第25、26名同学的成绩为10分、15分,∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.故选:B.【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.3、C【解析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.4、D【解析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.5、C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.6、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63 =84;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a ≈1.6,取最大整数,即a=1.故选C . 8、A 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:将0.0000000076用科学计数法表示为97.610-⨯. 故选A. 【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定. 9、D 【解析】由旋转的性质得到AB=BE ,根据菱形的性质得到AE=AB ,推出△ABE 是等边三角形,得到AB=3,三角函数的定义得到∠BAC=30°,求得AC ⊥BE ,推出C 在对角线AH 上,得到A ,C ,H 共线,于是得到结论. 【详解】如图,连接AC 交BE 于点O ,∵将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形EBGF , ∴AB=BE ,∵四边形AEHB 为菱形, ∴AE=AB , ∴AB=AE=BE ,∴△ABE 是等边三角形,∵AB=3,∴tan ∠CAB=BC AB =, ∴∠BAC=30°, ∴AC ⊥BE ,∴C 在对角线AH 上, ∴A ,C ,H 共线,∴AO=OH=32AB=332,∵O C=12BC=32,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=3,∴HM=OH﹣OM=32,故选D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.10、C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.12r<<【解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ON⊥AE,OM⊥AF.AN=12AE=1,AM=12AF=2,MD=AD-AM=3∵四边形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN是矩形∴OM=AN=1∴==∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交r<<【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.13、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14、5【解析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10,∴EF=12×10=5.故答案为5. 【点睛】本题主要考查三角形中位线定理,直角三角形斜边上的中线,熟悉掌握是关键.15、x≥﹣32且x≠1.【解析】根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-32且x≠1,故答案为:x≥-32且x≠1.【点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.16、2【解析】试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.解:如图所示,在Rt△AOG中,OG3,∠AOG=30°,∴OA=OG÷cos 30°3÷3;故答案为2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.三、解答题(共8题,共72分)17、(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到=,再计算AC·CD ,比较即可得到结论;(2)由,得到,即,从而得到△ABC ∽△BDC ,故有,从而得到BD=BC=AD ,故∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=2x ,∠ABC=∠C=∠BDC=2x ,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C ,∴△ABC ∽△BDC ,∴,又∵AB=AC ,∴BD=BC=AD ,∴∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=∠A+∠ABD=2x ,∴∠ABC=∠C=∠BDC=2x ,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.18、2x =-【解析】【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.【详解】解:去分母得:()2x x 33x 9+-=- 解得:x 2=-检验:把x 2=-代入2x 950-=-≠所以:方程的解为x 2=-【点睛】本题考核知识点:解方式方程. 解题关键点:去分母,得到一元一次方程,.验根是要点.19、(1)抛物线的解析式为:;(2)①S 与运动时间t 之间的函数关系式是S=5t 2﹣8t+4,t 的取值范围是0≤t≤1;②存在.R 点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB, 则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=﹣,∴y=x﹣,抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M的坐标为(1,﹣);答:M的坐标为(1,﹣).考点:二次函数综合题.20、(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B (2,﹣4)在y=m x 上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x . ∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4), ∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 21、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC ,CE=CD ,∠ACB=∠ECD=90°,得出∠BCD=∠ACE ,根据SAS 推出△ACE ≌△BCD 即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt △AED 中,由勾股定理求出DE 即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.22、15元.【解析】首先设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x-5)元.根据题意,列方程得:200=120(25)x x ,解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23、(1)图见解析;(2)126°;(3)1.【解析】(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.【详解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×42120=1(人).答:该校学生对政策内容了解程度达到A等的学生有1人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.24、(1)证明见解析(2)142-(3)EP+EQ= 2EC【解析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求PQ=22,可得CH=2,根据勾股定理可求AH=14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴2,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,22AC CH-= 14∴PA=AH﹣PH= 142解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,2EN,∴2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.。
2021年中考一模考试《数学卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年中考数学模拟试题含答案(精选5套解析版)(1)(1)
中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( ) A. 5个 B. 4个 C. 3个 D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .(第9题图)(第11题图) (第12题图)(第7题图)15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3; (2)化简:(1 -n m n+)÷22nm m -. 20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下: (1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方(第17题图)(第18题图) (第21题图)(第23题图)(第24题图)°案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案D ACBCBDABCAC题号 1 2 3 4 5 6 7 8 9 10 答案 BD AA BC BB B D题号 11121314 1516答案360°-m ²3()()x y x y +-3509 132A .B . ﹣3C .﹣D . 3考点: 相反数.分析: 根据只有符号不同的两个数互为相反数解答. 解答: 解:﹣3相反数是3.故选D .点评: 本题主要考查了互为相反数的定义,熟记定义是解题的关键. A .B . (m 2)3=m 5C . a 2•a 3=a 5D . (x+y )2=x 2+y 2 考点: 完全平方公式;算术平方根;同底数幂的乘法;幂的乘方与积的乘方. 专题: 计算题.分析: A 、利用平方根定义化简得到结果,即可做出判断;B 、利用幂的乘方运算法则计算得到结果,即可做出判断;C 、利用同底数幂的乘法法则计算得到结果,即可做出判断;D 、利用完全平方公式展开得到结果,即可做出判断.解答: 解:A 、=3,本选项错误;B 、(m 2)3=m 6,本选项错误;C 、a 2•a 3=a 5,本选项正确;D 、(x+y )2=x 2+y 2+2xy ,本选项错误, 故选C点评: 此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式及法则是解本题的关键.A . 矩形B . 菱形C . 正五边形D . 正八边形 考点: 中心对称图形.捐款 人数 0~20元 21~40元 41~60元 61~80元 6 81元以上 4(第26题图)分析:根据中心对称图形的概念和各图形的特点即可解答.解答:解:只有正五边形是奇数边形,绕中心旋转180度后所得的图形与原图形不会重合.故选C.点评:本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,正奇边形一定不是中心对称图形.A.6B.7C.8D.10考点:多边形内角与外角.分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解答:解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选C.点评:本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定甲D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件考点:概率公式;全面调查与抽样调查;标准差;随机事件;可能性的大小.专题:压轴题.分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.解答:解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.点评:用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不发生;标准差越小,数据越稳定;一定不会发生的事件是不可能事件.A.﹣1 B.0C.1D.2考点:反比例函数的性质.专题:压轴题.分析:对于函数来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.解答:解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,所以1﹣k<0,解得k>1.故选D.点评:本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不理解,直接认为k<0,错选A.A.10πB.15πC.20πD.30π考点: 圆锥的计算;由三视图判断几何体. 分析: 根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.解答: 解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B .点评: 本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.A .B .C .D .考点:反比例函数综合题.专题:压轴题;探究型. 分析:首先设出点A 和点B 的坐标分别为:(x 1,)、(x 2,﹣),设线段OA 所在的直线的解析式为:y=k 1x ,线段OB 所在的直线的解析式为:y=k 2x ,然后根据OA ⊥OB ,得到k 1k 2=•(﹣)=﹣1,然后利用正切的定义进行化简求值即可.解答:解:设点A 的坐标为(x 1,),点B 的坐标为(x 2,﹣),设线段OA 所在的直线的解析式为:y=k 1x ,线段OB 所在的直线的解析式为:y=k 2x , 则k 1=,k 2=﹣,∵OA ⊥OB , ∴k 1k 2=•(﹣)=﹣1整理得:(x 1x 2)2=16,∴tanB=======.故选B .点评: 本题考查的是反比例函数综合题,解题的关键是设出A 、B 两点的坐标,然后利用互相垂直的两条直线的比例系数互为负倒数求解.考点: 科学记数法—表示较小的数.分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:根据二次根式的意义,有x﹣1≥0,解不等式即可.解答:解:根据二次根式的意义,有x﹣1≥0,解可x≥1,故自变量x的取值范围是x≥1.点评:本题考查了二次根式的意义,只需保证被开方数大于等于0即可.考点:提公因式法与公式法的综合运用.分析:先提取公因式m,再对余下的多项式利用完全平方公式继续分解.解答:解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.考点:圆与圆的位置关系.分析:两圆相交,圆心距是7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一圆的半径的取值范围,继而求得答案.解答:解:∵⊙O1与⊙O2相交,圆心距是7,又∵7﹣2=5,7+2=9,∴半径m的取值范围为:5<m<9.故答案为:5<m<9.点评:此题考查了圆与圆的位置关系.解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.考点:一次函数图象上点的坐标特征.分析:先把点(a,b)代入一次函数y=2x﹣3求出2a﹣b的值,再代入代数式进行计算即可.解答:解:∵点(a,b)在一次函数y=2x﹣3上,∴b=2a﹣3,即2a﹣b=3,∴原式=﹣3(2a﹣b)+1=(﹣3)×3+1=﹣8.故答案为:﹣8.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,观察可得方程最简公分母为x(x﹣3),去分母,转化为整式方程求解.结果要检验.解答:解:方程两边同乘x(x﹣3),得2x=3(x﹣3),解得x=9.经检验x=9是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.考点:圆周角定理;垂径定理.分析:由⊙O的直径CD⊥EF,由垂径定理可得=,又由∠OEG=30°,∠EOG的度数,又由圆周角定理,即可求得答案.解答:解:∵⊙O的直径CD⊥EF,∴=,∵∠OEG=30°,∴∠EOG=90°﹣∠OEG=60°,∴∠DCF=∠EOG=30°.故答案为:30°.点评:此题考查了圆周角定理与垂径定理.此题难度不大,注意掌握数形结合思想的应用.考点:二次函数与不等式(组).分析:根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.解答:解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.点评:本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.考点:翻折变换(折叠问题).分析:设正方形ABCD的边长为x,根据翻折变换的知识可知BE=EG=2,DF=GF=3,则EC=x﹣2,FC=x﹣3,在Rt△EFC中,根据勾股定理列出式子即可求得边长x的长度.解答:解:设正方形ABCD的边长为x,根据折叠的性质可知:BE=EG=2,DF=GF=3,则EC=x﹣2,FC=x﹣3,在Rt△EFC中,EC2+FC2=EF2,即(x﹣2)2+(x﹣3)2=(2+3)2,解得:x1=6,x2=﹣1(舍去),故正方形纸片ABCD的边长为6.故答案为:6.点评:本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用.考点:剪纸问题;一元二次方程的应用;正方形的性质.专题:几何图形问题;压轴题.分析:根据题中信息可得图2、图3面积相等;图2可分割为一个正方形和四个小三角形;设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,解得a=1.AB就知道等于多少了.解答:解:设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a)2,四个小三角形面积和为2a2,列式得(2a+a)2+2a2=8+4,解得a=1,则AB=1+.点评:解此题的关键是抓住图3中的AB在图2中是哪两条线段组成的,再列出方程求出即可.考点:分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=+×+5﹣1,再进行二次根式的乘法运算,然后进行有理数的加减运算;(2)先把括号内通分和把除法化为乘法,然后把分子分解后约分即可.解答:(1)解:原式=+×+5﹣1=++5﹣1=6;(2)原式=•=x.点评:本题考查了分式的混合运算:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,找出不等式组的解集即可.解答:解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.考点:折线统计图;条形统计图;算术平均数;中位数.分析:(1)从(1)可看出3℃的有3天.(2)中位数是数据从小到大排列在中间位置的数.(3)求加权平均数数,8天的温度和÷8就为所求.解答:解:(1)如图所示.(2)∵这8天的气温从高到低排列为:4,3,3,3,2,2,1,1∴中位数应该是第4个数和第5个数的平均数:(2+3)÷2=2.5.(3)(1×2+2×2+3×3+4×1)÷8=2.375℃.8天气温的平均数是2.375.点评:本题考查了折线统计图,条形统计图的特点,以及中位数的概念和加权平均数的知识点.考点:列表法与树状图法;等腰三角形的判定;平行四边形的判定.分析:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.解答:解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:(1),(2).点评:此题主要考查了利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关键.考点:解直角三角形.分析:过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.解答:解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.点评:本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.考点:反比例函数综合题.专题:综合题.分析:(1)设E(x1,),F(x2,),x1>0,x2>0,根据三角形的面积公式得到S1=S2=k,利用S1+S2=2即可求出k;(2)设,,利用S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=﹣+5,根据二次函数的最值问题即可得到当k=4时,四边形OAEF的面积有最大值,S四边形OAEF=5,此时AE=2.解答:解:(1)∵点E、F在函数y=(x>0)的图象上,∴设E(x1,),F(x2,),x1>0,x2>0,∴S1=,S2=,∵S1+S2=2,∴=2,∴k=2;(2)∵四边形OABC为矩形,OA=2,OC=4,设,,∴BE=4﹣,BF=2﹣,∴S△BEF=﹣k+4,∵S△OCF=,S矩形OABC=2×4=8,∴S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=+4,=﹣+5,∴当k=4时,S四边形OAEF=5,∴AE=2.当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5.点评:本题考查了反比例函数k的几何含义和点在双曲线上,点的横纵坐标满足反比例的解析式.也考查了二次的顶点式及其最值问题.考点:切线的性质;垂径定理;解直角三角形.专题:计算题.分析:(1)过O作OH垂直于AC,利用垂径定理得到H为AC中点,求出AH的长为4,根据同弧所对的圆周角相等得到tanA=tan∠BDC,求出OH的长,利用勾股定理即可求出圆的半径OA的长;(2)由AB垂直于CD得到E为CD的中点,得到EC=ED,在直角三角形AEC中,由AC 的长以及tanA的值求出CE与AE的长,由FB为圆的切线得到AB垂直于BF,得到CE与FB平行,由平行得比例列出关系式求出AF的长,根据AF﹣AC即可求出CF的长.解答:解:(1)作OH⊥AC于H,则AH=AC=4,在Rt△AOH中,AH=4,tanA=tan∠BDC=,∴OH=3,∴半径OA==5;(2)∵AB⊥CD,∴E为CD的中点,即CE=DE,在Rt△AEC中,AC=8,tanA=,设CE=3k,则AE=4k,根据勾股定理得:AC2=CE2+AE2,即9k2+16k2=64,解得:k=,则CE=DE=,AE=,∵BF为圆O的切线,∴FB⊥AB,又∵AE⊥CD,∴CE∥FB,∴=,即=,解得:AF=,则CF=AF﹣AC=.点评:此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.考点:一次函数的应用.分析:(1)设客车的速度为a km/h,则货车的速度为km/h,根据题意列出有关v的一元一次方程解得即可;(2)根据货车两小时到达C站,可以设x小时到达C站,列出关系式即可;(3)两函数的图象相交,说明两辆车相遇,即客车追上了货车.解答:解:(1)设客车的速度为a km/h,则货车的速度为km/h,由题意列方程得:9a+×2=630,解之,a=60,∴=45,答:客车的速度为60 km/h,货车的速度为45km/h(2)方法一:由(1)可知P(14,540),∵D (2,0),∴y2=45x﹣90;方法二:由(1)知,货车的速度为45km/h,两小时后货车的行驶时间为(x﹣2),∴y2=45(x﹣2)=45x﹣90,(3)方法一:∵F(9,0)M(0,540),∴y1=﹣60x+540,由,解之,∴E (6,180)点E的实际意义:行驶6小时时,两车相遇,此时距离C站180km;方法二:点E表示两车离C站路程相同,结合题意,两车相遇,可列方程:45x+60x=630,x=6,∴540﹣60x=180,∴E (6,180),点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.考点:相似形综合题.分析:(1)首先利用勾股定理求得AB=10,然后表示出AP,利用平行四边形对角线互相平分表示出线段AE即可;(2)利用矩形的性质得到△APQ∽△ABC,利用相似三角形对应边的比相等列出比例式即可求得t值;(3)利用菱形的性质得到.解答:解:(1)∵Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.∴由勾股定理得:AB=10cm,∵点P由B出发沿BA方向向点A匀速运动,速度均为2cm/s,∴BP=2tcm,∴AP=AB﹣BP=10﹣2t,∵四边形AQPD为平行四边形,∴AE==5﹣t;(2)当▱AQPD是矩形时,PQ⊥AC,∴PQ∥BC,∴△APQ∽△ABC∴即解之t=∴当t=时,▱AQPD是矩形;(3)当▱AQPD是菱形时,DQ⊥AP,则COS∠BAC==即解之t=∴当t=时,□AQPD是菱形.点评:本题考查了相似形的综合知识,正确的利用平行四边形、矩形、菱形的性质得到正方形是解决本题的关键.考点:二次函数综合题.专题:代数几何综合题;压轴题;动点型.分析:(1)由直线与x轴,y轴分别交于B,C两点,分别令x=0和y=0求出B与C的坐标,又抛物线经过B,C两点,把求出的B与C的坐标代入到二次函数的表达式里得到关于b,c的方程,联立解出b和c即可求出二次函数的解析式.又因A点是二次函数与x轴的另一交点令y=0即可求出点A的坐标.(2)连接OM,PM与⊙O′相切作为题中的已知条件来做.由直径所对的圆周角为直角可得∠OMC=90°从而得∠OMB=90°.又因为O′O是⊙O′的半径,O′O⊥OP得到OP为⊙O′的切线,然后根据从圆外一点引圆的两条切线,切线长相等可得OP=PM,根据等边对等角得∠POM=∠PMO,然后根据等角的余角相等可得∠PMB=∠OBM,再根据等角对等边得PM=PB,然后等量代换即可求出OP的长,加上OA的长即为点P运动过的路程AP,最后根据时间等于路程除以速度即可求出时间t的值.(3)①由路程等于速度乘以时间可知点P走过的路程AP=3t,则BP=15﹣3t,点Q走过的路程为BQ=3t,然后过点Q作QD⊥OB于点D,证△BQD∽△BCO,由相似得比列即可表示出QD的长,然后根据三角形的面积公式即可得到S关于t的二次函数关系式,然后利用t=﹣时对应的S的值即可求出此时的最大值.②要使△NCQ为直角三角形,必须满足三角形中有一个直角,由BA=BC可知∠BCA=∠BAC,所以角NCQ不可能为直角,所以分两种情况来讨论:第一种,当角NQC为直角时,利用两组对应角的相等可证△NCQ∽△CAO,由相似得比例即可求出t的值;第二种当∠QNC=90°时,也是证三角形的相似,由相似得比例求出t的值.解答:解:(1)在y=﹣x+9中,令x=0,得y=9;令y=0,得x=12.∴C(0,9),B(12,0).又抛物线经过B,C两点,∴,解得∴y=﹣x2+x+9.于是令y=0,得﹣x2+x+9=0,解得x1=﹣3,x2=12.∴A(﹣3,0).(2)当t=3秒时,PM与⊙O′相切.连接OM.∵OC是⊙O′的直径,∴∠OMC=90°.∴∠OMB=90°.∵O′O是⊙O′的半径,O′O⊥OP,∴OP是⊙O′的切线.而PM是⊙O′的切线,∴PM=PO.∴∠POM=∠PMO.又∵∠POM+∠OBM=90°,∠PMO+∠PMB=90°,∴∠PMB=∠OBM.∴PM=PB.∴PO=PB=OB=6.∴PA=OA+PO=3+6=9.此时t=3(秒).∴当t=3秒,PM与⊙O′相切.(3)①过点Q作QD⊥OB于点D.∵OC⊥OB,∴QD∥OC.∴△BQD∽△BCO.∴=.又∵OC=9,BQ=3t,BC=15,∴=,解得QD=t.∴S△BPQ=BP•QD=.即S=.S=.故当时,S最大,最大值为.②存在△NCQ为直角三角形的情形.∵BC=BA=15,∴∠BCA=∠BAC,即∠NCM=∠CAO.∴△NCQ欲为直角三角形,∠NCQ≠90°,只存在∠NQC=90°和∠QNC=90°两种情况.当∠NQC=90°时,∠NQC=∠COA=90°,∠NCQ=∠CAO,∴△NCQ∽△CAO.∴=.∴=,解得t=.当∠QNC=90°时,∠QNC=∠COA=90°,∠QCN=∠CAO,∴△QCN∽△CAO.∴=.∴=,解得.综上,存在△NCQ为直角三角形的情形,t的值为和.点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法,以及圆的切线的有关性质.在求有关动点问题时要注意分析题意分情况讨论结果.A.点P B.点Q C.点M D.点N考点:数轴;相反数.分析:根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.解答:解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.点评:本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.A.40°B.50°C.60°D. 70°考点:平行线的性质.分析:由AB∥CD,∠B=20°,根据两直线平行,内错角相等,即可求得∠C的度数,又由三角形外角的性质,即可求得∠BOD的度数.解答:解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,∵∠D=40°,∴∠BOD=∠C+∠D=60°.故选C.点评:此题考查了平行线的性质、三角形外角的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等定理的应用.A.x<1 B.x>﹣4 C.﹣4<x<1 D. x>1考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.解答:解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;由以上可得﹣4<x<1.故选C.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).A.王老师去时所用的时间少于回家的时间B.王老师在公园锻炼了40分钟C.王老师去时走上坡路,回家时走下坡路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.数轴上表示﹣5的点到原点的距离为()A.5 B.﹣5 C.D.﹣2.若式子在实数范围内有意义,则x的取值范围是()A.x<7 B.x≤7 C.x>7 D.x≥73.下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b4.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°5.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.6.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗7.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.10.如图1,圆上均匀分布着11个点A1,A2,A3,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”.那么当∠A1+∠A2+…+∠A11=540°时,k的值为()A.3 B.3或6 C.2或6 D.2二、填空题(共4小题,每小题5分,满分20分)11.已知空气的单位体积质量为1.24×10﹣3g/cm3,将1.24×10﹣3g/cm3用小数表示为.12.分解因式:m3﹣4m2+4m= .13.若a+b=5,ab=6,则a﹣b= .14.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是.(把你认为正确结论的序号都填上)三、解答题(共2小题,满分16分)15.计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.16.解不等式组请结合题意,完成本题解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式组的解集在数轴上表示出来.四、解答题(共2小题,满分16分)17.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?18.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).19.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A的距离.20.如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?六、解答题(共1小题,满分12分)21.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 20 0.1070≤x<80 30 b80≤x<90 a 0.3090≤x≤100 80 0.40请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?七、解答题(共1小题,满分12分)22.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.八、解答题(共1小题,满分14分)23.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.数轴上表示﹣5的点到原点的距离为()A.5 B.﹣5 C.D.﹣【考点】数轴.【分析】根据数轴上各点到原点距离的定义进行解答即可.【解答】解:∵在数轴上,表示数a的点到原点的距离可表示为|a|,∴数轴上表示﹣5的点到原点的距离为|﹣5|=5.故选:A.【点评】本题考查的是数轴,熟知数轴上各点到原点的距离等于数轴上各点表示的数的绝对值是解答此题的关键.2.若式子在实数范围内有意义,则x的取值范围是()A.x<7 B.x≤7 C.x>7 D.x≥7【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣7≥0,解得x≥7.故选:D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b【考点】去括号与添括号;算术平方根;合并同类项;负整数指数幂.【分析】分别利用合并同类项法则和算术平方根、去括号法则分别化简求出即可.【解答】解;A、6a﹣5a=a,故此选项错误;B、=6,故此选项错误;C、()﹣1=2,故此选项错误;D、2(a+b)=2a+2b,正确.故选:D.【点评】此题主要考查了合并同类项法则和算术平方根、去括号法则等知识,正确掌握运算法则是解题关键.4.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【考点】平行线的性质.【分析】如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.5.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A.B.C.D.【考点】特殊角的三角函数值;三角形内角和定理.【专题】计算题.【分析】根据比例设三个内角分别为k、2k、3k,然后根据三角形内角和等于180°列出方程求出最小角,继而可得出答案.【解答】解:∵三角形三个内角度数的比为1:2:3,∴设三个内角分别为k、2k、3k,∴k+2k+3k=180°,解得k=30°,最小角的正切值=tan30°=.故选:C.【点评】本题主要考查了三角形的内角和定理,利用“设k法”求解更加简单.6.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【考点】概率公式.【分析】先根据白色棋子的概率是,得到一个方程,再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,再得到一个方程,求解即可.【解答】解:由题意得,解得.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;关键是得到两个关于概率的方程.7.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE=cm,故选D.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.9.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】应用题;压轴题.【分析】正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案.【解答】解:DF=x,正方形ABCD与正方形EFGH重叠部分的面积为y①y=DF2=x2(0≤x<);②y=1(≤x<2);③∵BH=3﹣x∴y=BH2=x2﹣3x+9(2≤x<3).综上可知,图象是故选:B.图:①②③【点评】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.10.如图1,圆上均匀分布着11个点A1,A2,A3,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”.那么当∠A1+∠A2+…+∠A11=540°时,k的值为()A.3 B.3或6 C.2或6 D.2【考点】多边形内角与外角.【专题】新定义.【分析】分(9﹣2k)×=2×,(2k﹣9)×=2×两种情况讨论,可得当∠A1+∠A2+…+∠A11=540°时,k的值.【解答】解:如图2,设圆心为O,则优角A10OA3的度数为角A1的2倍.而优角A10OA3=∠A10OA9+∠A9OA8+∠A8OA7+…+∠A4OA3,而每个∠A k OA k﹣1=,所以,优角A10OA3=7×,由题意,∠A1即为2∠A k+1A1A12﹣k,当k<6时,可计算得那个优角的度数为(9﹣2k)×,因此,(9﹣2k)×=2×,解得k=3,当k>6时,优角的度数为(2k﹣9)×,因此(2k﹣9)×=2×,解得k=6.综上所述,k=3或6.【点评】考查了多边形内角与外角,有一定难度,进行分类讨论是解题的关键.二、填空题(共4小题,每小题5分,满分20分)11.已知空气的单位体积质量为1.24×10﹣3g/cm3,将1.24×10﹣3g/cm3用小数表示为0.00124 .【考点】科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:1.24×10﹣3g/cm3用小数表示为:0.00124.故答案为:0.00124.【点评】本题考查了写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.12.分解因式:m3﹣4m2+4m= m(m﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.若a+b=5,ab=6,则a﹣b= ±1 .【考点】完全平方公式.【分析】首先根据完全平方公式将(a﹣b)2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=1,则a﹣b=±1.故答案是:±1.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是①②③④.(把你认为正确结论的序号都填上)【考点】圆的综合题;全等三角形的判定与性质;直角三角形斜边上的中线;圆周角定理;相似三角形的判定与性质;特殊角的三角函数值.【专题】推理填空题.【分析】①延长CO交⊙O于点G,如图1.在Rt△BGC中,运用三角函数就可解决问题;②只需证到△BEF≌△CEA即可;③易证△AEC∽△ADB,则=,从而可证到△AED∽△ACB,则有=.由∠A=60°可得到=,进而可得到ED=;④取BC中点H,连接EH、DH,根据直角三角形斜边上的中线等于斜边的一半可得EH=DH=BC,所以线段ED的垂直平分线必平分弦BC.【解答】解:①延长CO交⊙O于点G,如图1.则有∠BGC=∠BAC.∵CG为⊙O的直径,∴∠CBG=90°.∴sin∠BGC===.∴∠BGC=60°.∴∠BAC=60°.故①正确.②如图2,∵∠ABC=45°,CE⊥AB,即∠BEC=90°,∴∠ECB=45°=∠EBC.∴EB=EC.∵CE⊥AB,BD⊥AC,∴∠BEC=∠BDC=90°.∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.∵∠EFB=∠DFC,∴∠EBF=∠DCF.在△BEF和△CEA中,.∴△BEF≌△CEA.∴AE=EF.故②正确.③如图2,∵∠AEC=∠ADB=90°,∠A=∠A,∴△AEC∽△ADB.∴=.∵∠A=∠A,∴△AED∽△ACB.∴=.∵cosA==cos60°=,∴=.∴ED=BC=.故③正确.④取BC中点H,连接EH、DH,如图3、图4.∵∠BEC=∠CDB=90°,点H为BC的中点,∴EH=DH=BC.∴点H在线段DE的垂直平分线上,即线段ED的垂直平分线平分弦BC.故④正确.故答案为:①②③④.【点评】本题考查了圆周角定理、锐角三角函数的定义、特殊角的三角函数值、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、到线段两个端点距离相等的点在线段的垂直平分线上等知识,综合性比较强,是一道好题.三、解答题(共2小题,满分16分)15.计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和绝对值的性质分别化简求出答案.【解答】解:(﹣3)0﹣+|1﹣|+×+(+)﹣1=1﹣3+﹣1+2+﹣=3﹣3.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.16.解不等式组请结合题意,完成本题解答.(1)解不等式①,得x>2 ;(2)解不等式②,得x≤4 ;(3)把不等式组的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】(1)一次项系数化成1即可求得;(2)移项、合并同类项、系数化成1即可求解;(3)把(1)和(2)中求得的不等式的解集在数轴上表示出来即可.【解答】解:(1)系数化成1得x>2,故答案是:x>2;(2)移项,得﹣x≥﹣3﹣1,合并同类项,得﹣x≥﹣4,系数化成1得x≤4.故答案是:x≤4.(3)在数轴上表示出来为:.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.四、解答题(共2小题,满分16分)17.在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?【考点】分式方程的应用.【分析】首先设原来每天改造管道x米,则引进新设备前工程队每天改造管道(1+20%)x米,由题意得等量关系:原来改造360米管道所用时间+引进了新设备改造540米所用时间=27天,根据等量关系列出方程,再解即可.【解答】解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,答:引进新设备前工程队每天改造管道30米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.18.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).19.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A的距离.【考点】解直角三角形的应用-方向角问题.【分析】作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=20海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40(海里),∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20(海里).在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).答:C处与灯塔A的距离是海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=20海里是解题的关键.20.如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?【考点】反比例函数与一次函数的交点问题.【分析】(1)利用函数图象上点的坐标性质分别代入解析式求出即可;(2)利用函数图象,结合交点左侧时y1<y2.【解答】解:(1)将点A(1,2)代入正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)得,2=k,m=1×2=2,故y1=2x(k≠0),反比例函数y2=;(2)如图所示:当0<x<1时,y1<y2.【点评】此题主要考查了一次函数与反比例函数交点,利用数形结合得出是解题关键.六、解答题(共1小题,满分12分)21.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 20 0.1070≤x<80 30 b80≤x<90 a 0.3090≤x≤100 80 0.40请根据所给信息,解答下列问题:(1)a= 60 ,b= 0.15 ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.七、解答题(共1小题,满分12分)22.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.【考点】相似形综合题.【专题】压轴题.【分析】根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC ﹣S△BPH”列出S与t的关系式S=(t﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.【解答】解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC ﹣S△BPN,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.【点评】本题综合考查了相似三角形的判定与性质、平行线分线段成比例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.八、解答题(共1小题,满分14分)23.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF ,QE与QF的数量关系是QE=QF ;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.【解答】解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF,QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.【点评】本题考查了平行线的性质和判定,全等三角形的性质和判定,直角三角形的性质的应用,解此题的关键是求出△AEQ≌△BDQ,用了运动观点,难度适中.。