江西省南昌三中2013届高三第三次模拟测试数学理试题(WORD解析版)

合集下载

江西省南昌市第三中学2018届高三第三次模拟数学理试题

江西省南昌市第三中学2018届高三第三次模拟数学理试题

南昌三中2018—2018学年度第三次模拟考试高三数学(理)试卷一、选择题(每小题5分,共60分) 1.设集合错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

中元素的个数是( )A .1B .2C .3D .42.复数z 满足()1i z i +=,则z =( )A .1+iB .1i -C .1i --D .1+i -3.有3个不同的社团,甲、乙两名同学各自参加其中1个社团,每位同学参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为( )A .13 B .12 C .23 D .344.下列判断错误的是( )A .若q p ∧为假命题,则q p ,至少之一为假命题 B. 命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ” C .“若//且//,则//”是真命题 D .“若22bm am <,则b a <”的否命题是假命题5.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点与抛物线x y 202=的焦点重合,且其渐近线方程为x y 34±=,则双曲线C 的方程为( ) A .221916x y-= B .221169x y -= C .2213664x y -= D .2216436x y -= 6.二项式3(ax -(0a >)的展开式的第二项的系数为22ax dx -⎰的值为( )(A) 73 (B) 3 (C)3或73 (D)3或103-7. 已知n S 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,则231a a a +等于( ) A .4 B .6 C .8 D .10 8.已知实数x y ,满足52180,20,30,x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩若直线10kx y -+=经过该可行域,则实数k 的最大值是( )A .1B .32C .2D .39. 已知一个空间几何体的三视图如图所示,这个空间几何体的顶点均在同一个球面上,则此球的体积与表面积之比为( )A .31B .13C .41D .3210. 某程序框图如图所示,该程序运行后输出的S 的值是( )A .1007B .2015C .2016D .302411.已知椭圆:2221(02)4x y b b+=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22||||BF AF +的最大值为5,则b 的值是( )A .1BC .32D 12. 若直角坐标平面内A 、B 两点满足:①点A 、B 都在函数f (x )的图象上;②点A 、B 关于原点对称,则称点(A ,B )是函数f (x )的一个“姊妹点对”.点对(A ,B )与(B ,A )可看作是同一个“姊妹点对”,已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0)2ex (x ≥0), 则f (x )的“姊妹点对”有( )A .0个B .1个C .2个D .3个二、填空题:本大题共4小题,每小题5分,共20分.13.已知x ,y 取值如下表:从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +a ,则a =________.14.已知偶函数f(x),当 [)0,2x ∈时, ()2sin f x x =,当 [)2,x ∈+∞时, 2()log f x x = 则 ()(4)3f f π-+= .15.已知正项数列{n a },1a =2,(n a +1)n a +2=1,2a =6a ,则11a +12a =________. 16.已知O 是锐角△ABC 的外心,B =30°,若cos sin A C BA +cos sin CABC =λBO ,则λ=_________.三、解答题:解答应写出文字说明.证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2co s 2B C --sinB ·sinC =24. (Ⅰ)求A ; (Ⅱ)若a =4,求△ABC 面积的最大值.18(本小题满分12分)2018年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[]2000,0,(]4000,2000,(]6000,4000,(]8000,6000,(]10000,8000五组,并作出如下频率分布直方图(图1): (Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如右下表格,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?(Ⅱ)将上述调查所得到的频率视为概率. 现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ. 若每次抽取的结果是相互独立的,求ξ的分布列,期望()E ξ和方差()D ξ.附:临界值表随机量变22()()()()()()a b c d a d b c K a b c d a c b d +++-=++++19.(本小题满分12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD , △PAD 是等边三角形,四边形ABCD 为平行四边形, ∠ADC =120°,AB =2AD .(Ⅰ)求证:平面PAD ⊥平面PBD ; (Ⅱ)求二面角A -PB -C 的余弦值.20.已知椭圆2222:1x y C a+=(0)a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点(4,0)P 且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程;(2)求OA OB ⋅的取值范围;(3)若B 点关于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点.21(本小题满分12分)已知函数()x exf x e=,()2ln g x ax x a =--(,a R e ∈为自然对数的底数). (1)求()f x 的极值;(2)在区间(0,]e 上,对于任意的0x ,总存在两个不同的12,x x ,使得120()()()g x g x f x ==,求a 的取值范围.请考生在第22—24三题中任选一题做答,如果多做,则按所做的第一题记分 22.选修4-4 几何证明选讲如图,BC 是圆O 的直径,点F 在弧BC 上,点A 为弧BF 的中点,作AD BC ⊥于点D ,BF 与AD 交于点E ,BF 与AC 交于点G . (1)证明:AE BE =;(2)若9AG =,7GC =,求圆O 的半径.23.选修4-4 极坐标与参数方程已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,曲线13cos :2sin x C y αα=⎧⎨=⎩(α为参数).(1)求曲线1C 的普通方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.24.已知函数()|||2|f x x m x =---.(1)若函数()f x 的值域为[4,4]-,求实数m 的值;(2)若不等式()|4|f x x ≥-的解集为M ,且[2,4]M ⊆,求实数m 的取值范围.高三数学(理)答案一、选择题(每小题5分,共60分)1. A2. B 3. A 4. C 5. A 6. B 7. C 8. B 9. B 10. D 11.D A . 12. C 二、填空题:本大题共4小题,每小题5分,共20分. 13.1.4514. 215.2591+16.1三、解答题:解答应写出文字说明.证明过程或演算步骤.17.解:(I )由422s in s in 2cos2-=⋅--C B C B ,得()cos sin sin 2B C B C --⋅=,所以()cos B C +=所以)cos 0A A π=<<,即4π=A . (Ⅱ)由余弦定理A bc c b a cos 2222-+=,得()bc bc c b 2221622-≥-+=,当且仅当c b =时取等,即()228+≤bc . 所以)1sin 424ABC S bc A ∆==≤.所以ABC ∆面积的最大值为)4.18(本小题满分12分)(Ⅰ)由频率分布直方图可知,在抽取的100人中,经济损失不超过4000元的有70人,经济损失超过4000元的有30人,则表格数据如下22100(60101020)=4.76280207030K ⨯⨯-⨯=⨯⨯⨯.因为4.762 3.841>,( 3.841)0.05p k ≥=.所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关. (Ⅱ)由频率分布直方图可知抽到自身经济损失超过4000元居民的频率为0.3,将频率视为概率.由题意知ξ的取值可能有0,1,2,3,3~(3,)10B ξ,()100034310710303003=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ,()100044110710312113=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ,()1000189********223=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛==C P ξ,()10002710710330333=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ,从而ξ的分布列为3()30.910E np ξ==⨯=,37()(1)30.631010D np p ξ=-=⨯⨯=19.(本小题满分12分)(I )证明:在平行四边形ABCD 中,令1=AD ,则BD ==,在ABD ∆中,222AB BD AD =+,所以BD AD ⊥. 又平面⊥PAD 平面ABCD , 所以BD ⊥平面PAD .所以平面⊥PAD 平面PBD . (II )由(I )得BD AD ⊥,以D 为空间直角原点, 建立空间直角坐标系xyz D -,如图所示,令1=AD ,()()()1100,01022A B C P ⎛- ⎝⎭,,,,,,, ()()1313031002AB PB BC ⎛⎫=-=--=- ⎪ ⎝⎭,,,,,,,,, 设平面PAB 的法向量为()111,,x y z =n ,则0,0,AB PB ⎧⋅=⎪⎨⋅=⎪⎩n n得111110,10,2x x ⎧-=⎪⎨-=⎪⎩令11y =,得111x z ==, 所以平面PAB 的法向量为)=n ; 设平面PBC 的法向量为()222,,x y z =m ,0,0,BC PB ⎧⋅=⎪⎨⋅=⎪⎩m m即22220,10,2x x z =⎧⎪⎨-+=⎪⎩令22z =,得21y =, 所以平面PBC 的法向量为()0,1,2=m . 所以3cos ,5⋅<>==n m n m n m ,所以所求二面角C PB A --的余弦值为35-.20.试题解析:(1)由题意知12c e a ==,∴22222214c a b e a a -===,即2243a b =,又b ==224,3a b ==,故椭圆的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设直线l 的方程为(4)y k x =-, 由22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,得:2222(43)3264120k x k x k +-+-=,由2222(32)4(43)(6412)0k k k ∆=--+->,得:214k <,设1122(,),(,)A x y B x y ,则21223243k x x k +=+,2122641243k x x k -=+,①∴22212121212(4)(4)4()16y y k x k x k x x k x x k =--=-++∴22222121222264123287(1)41625434343k k OA OB x x y y k k k k k k -⋅=+=+-+=-+++∵2104k ≤<,∴28787873434k -≤-<-+,∴13[4,)4OA OB ⋅∈-,∴OA OB ⋅的取值范围是13[4,)4-.(3)证明:∵B E 、两点关于x 轴对称,∴22(,)E x y -,直线AE 的方程为121112()y y y y x x x x +-=--,令0y =得:112112()y x x x x y y -=-+,又11(4)y k x =-,22(4)y k x =-,∴12121224()8x x x x x x x -+=+-,由将①代入得:1x =,∴直线AE 与x 轴交于定点(1,0).21(本小题满分12分)试题解析:(1)因为e ()e x xf x =,令()0f x '=,得1x =. 当(),1x ∈-∞时,()0f x '>,()f x 是增函数;当()1,x ∈∞+时,()0f x '<,()f x 是减函数.所以()f x 在1x =时取得极大值()11f =,无极小值. (2)由(1)知,当(0,1)x ∈时,()f x 单调递增;当(]1,e x ∈时,()f x 单调递减.又因为1e(0)0,(1)1,(e)e e 0f f f -===⋅>,所以当(0,e]x ∈时,函数()f x 的值域为(]0,1. 当0a =时,()2ln g x x =-在(0,e]上单调,不合题意;当0a ≠时,所以对任意给定的(]00,e x ∈,在区间(]0,e 上总存在两个不同的1x , 2x请考生在第22—24三题中任选一题做答,如果多做,则按所做的第一题记分 22.选修4-4 几何证明选讲如图,BC 是圆O 的直径,点F 在弧BC 上,点A 为弧BF 的中点,作AD BC ⊥于点D ,BF 与AD 交于点E ,BF 与AC 交于点G . (1)证明:AE BE =;(2)若9AG =,7GC =,求圆O 的半径.22.试题解析:(1)连接AB ,因为点A 为的中点, 故BA AF =,ABF ACB ∴∠=∠又因为AD BC ⊥,BC 是O 的直径,BAD ACB ∴∠=∠ ABF BAD ∴∠=∠ AE BE ∴=(2)由ABG ACB ∆∆知2916AB AG AC =⋅=⨯ 12AB =直角ABC ∆中由勾股定理知20BC =圆的半径为1023.选修4-4 极坐标与参数方程已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,曲线13cos :2sin x C y αα=⎧⎨=⎩(α为参数). (1)求曲线1C 的普通方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值. 23.试题解析:(1)由3cos 2sin x y αα=⎧⎨=⎩得cos 3sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,代入22cos sin 1a α+=得22194x y += (2)曲线C 的普通方程是:2100x y +-=设点(3cos ,2sin )M αα,由点到直线的距离公式得:)10d αϕ==--其中34cos ,sin 55ϕϕ== 0αϕ∴-=时,min d =98(,)55M 24.已知函数()|||2|f x x m x =---.(1)若函数()f x 的值域为[4,4]-,求实数m 的值;(2)若不等式()|4|f x x ≥-的解集为M ,且[2,4]M ⊆,求实数m 的取值范围.24.试题解析:(1) 由不等式的性质得:222x m x x m x m ---≤--+=- 因为函数()f x 的值域为[]4,4-,所以24m -=,即24m -=-或24m -=所以实数=2m -或6.(2) ()4f x x ≥-,即24x m x x ---≥-当24x ≤≤时,4+2+4+22x m x x x m x x -≥--⇔-≥--=, 2x m -≥,解得:2x m ≤-或2x m ≥+,即解集为(],2m -∞-或[)2,m ++∞, 由条件知:+220m m ≤⇒≤或246m m -≥⇒≥所以m 的取值范围是(][),06+-∞∞,.。

江西省景德镇市2013届高三下学期第三次(期中)质检数学(文)试题 Word版含答案

江西省景德镇市2013届高三下学期第三次(期中)质检数学(文)试题 Word版含答案

景德镇市2013届高三第三次(期中)质检数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}ln(1)M x y x ==-,{}21N y y x ==+,则有( ). A .M N =B .MN M = C .M N M = D .M N R =2.关于复数的命题:(1)复数3222i i +>+ ;(2)复数a bi -的模为22a b +;(3)在复平面内纯虚数与y 轴上的点一一对应,其中真命题的个数是( ). A .0个 B .1个 C .2个 D .3个 3.一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为( ) . A .长方形B .直角三角形C .圆D .椭圆4.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有( ).A .1212,x x s s ><B .1212,x x s s =>C .1212,x x s s ==D .1212,x x s s =<5.设l 是直线,α,β是两个不同的平面,下列命题正确的是( ). A. 若//l α,//l β,则//αβ B. 若//l α,l β⊥,则αβ⊥ C. 若αβ⊥,l α⊥,则l β⊥ D. 若αβ⊥, //l α,则l β⊥ 6.函数()sin cos()6f x x x π=-+的值域为( ). A . [ -2 ,2] B .[-3,3] C .[-1,1 ] D .[-3 , 3] 7.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是3a 与7a 的等比中项,且1060S =,则20S =( ).A .80B .160C .320D .6408.定义在R 上的函数()y f x =,满足(1)()f x f x -=,1()()02x f x -'>,若12x x <且121x x +>,则有( ).A .12()()f x f x <B .12()()f x f x >C .12()()f x f x =D .不能确定 9. 倾斜角为60︒的直线l 经过抛物线22(0)y px p =>的焦点,且与抛物线相交于,A B 两点(点A 在x 轴上方),则AF BF的值为( ).A .1B . 2C .3D .4 10.如图:一个周长为1的圆沿着边长为2的正方形的边按逆时针方向滚动(无滑动),P 是圆上的一定点,开始时PA AB ⊥,当圆滚过正方形一周,回到起点时,点P 所绘出的图形大致是( ).二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量(cos ,sin ),(3,1),a b θθ==-则a b -的最大值为 . 12.下列程序框图输出的结果x = ,y = .AB13.设变量,x y 满足20403x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则32z x y =+的最大值为 .14.已知双曲线22221(0,0)x y a b a b-=>>,过其右焦点F 且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若0OM ON ⋅=,则双曲线的离心率为 . 15.已知函数2()log (212)f x x x m =+++-,若关于x 的不等式()1f x ≥的解集为R ,则m 的取值范围是 .三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知设ABC ∆的内角,,A B C 所对边分别为,,a b c ,且1cos 2a C cb +=. (1)求角A 的大小;(2)若2bc =,求边长a 的最小值.17.已知递增的等差数列{}n a 与等比数列{}(*)n b n N ∈, 满足:1122441,1,1a b a b a b ===+=- (1)求数列{}{},n n a b 的通项公式; (2)求数{}n n a b ⋅的前n 项和n S .18. (本小题满分12分)已知直角梯形ABCD 中,//AD BC ,122AD AB BC ===,90ABC ∠=︒,PAB ∆是等边三角形,平面PAB ⊥平面ABCD . (1)求证:BD DC ⊥;(2)求三棱锥P BCD -的体积.19.(本小题满分12分)某种产品按质量标准分为5,4,3,2,1五个等级.现从一批该产品中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:等级 12 3 4 5频率0.05m0.150.35n(1)在抽取的20个零件中,等级为5的恰有2个,求n m ,;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.20. (本小题满分13分)已知()f x 的定义域为R ,且满足312()()3f x f x x x +-=- (1)求()f x 及()f x 的单调区间;(2)设0b a >>,且(,())A a f a ,(,())B b f b ()a b <两点连线的斜率为k ,问是否存在常数(,)c a b ∈,有()f c k '=,若存在求出常数c ,不存在说明理由.21. (本小题满分14分)已知椭圆22221(0)x y a b a b+=>>的离心率32e =,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点,A B ,已知点A 的坐标为(,0)a -,点0(0,)Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=,求0y 的值.景德镇市2013届高三第三次质检试卷数学(文)参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(2)121112213252(21)2n n n n S a b a b a b n -=⋅++=+⋅+⋅+-⋅23223252(21)2n n S n =+⋅+⋅+-⋅231222(21)2n n n S n -=++++--⋅(23)23n n S n =-+18. 解:(1)∵2AD =,2AB =,45AD AB ADB DBC ⊥⇒∠=∠=︒ 过D 作DM BC ⊥,垂足为M ,则2DM AB MC ===∴45DCM ∠=︒,∴90BDC ∠=,∴BD DC ⊥ …………………6分(2)2116433(22)2232P BCD V -=== …………………12分 19.(1)解:由频率分布表得 0.050.150.351m n ++++=,即 0.45m n +=. 由抽取的20个零件中,等级为5的恰有2个,得 1.0202==n . 所以0.450.10.35m =-=. ………5分(2)22()()1()13f b f a k b ab a b a -==++--2()1f x x k '=-=,221()3x b ab a =±++取221()3c b ab a =++ 又0b a >>,2222211()()33c b ab a b b b b ∴=++<++=2222211()()33c b ab a a a a a ∴=++>++= 故存在常数221()3c b ab a =++.……………………………13分① 当0k ≠时,线段AB 的垂直平分线方程为222218()1414k k y x k k k -=-+++令0x = 解得02614ky k-=+ 由0(2,)QA y =--110(,)QB x y y =- 10102()QA QB x y y y ⋅=---222222(28)646()14141414k k k kk k k k --=++++++ 42224(16151)4(14)k k k +-==+ 272k ⇒=147k ⇒=±0145y ∴=± 综上022y =±02145y =± ……………14分。

江西省师大附中2013届高三第三次模拟考试理科综合试题(扫描版).pdf

江西省师大附中2013届高三第三次模拟考试理科综合试题(扫描版).pdf

生物答案 39.(除标注外,每空2分)(1)有机磷农药 稀释涂布平板法 (2)无菌技术(3)单核期(1分) (4)蒸馏法 增加水的比重使油水分层 (5)蛋白酶 多肽和氨基酸 40. [生物——选修3现代生物科技专题](除标注外,每空2分,共15分) (1)细胞核 内细胞团细胞(或胚胎干细胞) (2)核移植技术 转基因技术(或重组DNA技术) (3)基因表达载体 (4)基因(在特定的时间和空间条件下)的选择性表达 动物血清 (5)没有排斥反应(1分) 化学答案 7——13:D A D B B D C 26.(14分) 27.(共14分每空2分)(1)①2O3(g)=3O2(g) ΔH=-285.0 kJ·mol-1(2分) ② O2+2H+ +2e-=H2O2(2分) (2) ①0.009 mol·L-1·min-1(2分,没写单位不得分) ②K=0.56(2分) ③ C、D (2分,写对一个得1分,多些、错写不给分) ④减小 CO2 的浓度 (2分) ⑤不变 (2分) 28. (15分)(1在过量NaOH溶液中滴加数滴CuSO4溶液 (NaOH过量)(2分) (2)在烧杯中加入热水(对烧杯加热)(2分)c?(1分)(3)CH3CHO + 2Cu(OH)2 Cu2O↓+ CH3COONa + 3H2O (2分) (4)取少量溶液加入KSCN溶液,变红色,则有Fe3+(2分) b(2分) (5)b(2分) (6) (2分) 36.【化学—选修2:化学与技术】(第(1)问1分,其它每空2分,共计15分)(1)Na2CO3 ; (2)NH3;因为在CO2水中的溶解度小,而NH3溶解度大。

(3)NaCl+CO2+NH3+H2O=NaHCO3↓+NH4Cl (4)NH4Cl;增大溶液中的Cl-、NH4+的浓度,降低NH4Cl的溶解度,使NH4Cl大量析出。

(5)2NaHCO3Na2CO3+CO2↑+H2O; 。

2013届江西省南昌市10所省重点中学高三数学模拟突破冲刺卷(十)理

2013届江西省南昌市10所省重点中学高三数学模拟突破冲刺卷(十)理

江西省南昌市10所省重点中学命制2013届高三模拟突破冲刺数学理试题(十)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只1,{}0,1,2B =,则( )A 2.( ). A D 3.已知a>l ,22(),x xf x a+=则使()1f x <成立的一个充分不必要条件是( )\D.1+i.若OD aOE bOF =+,且D 、E 、F 三点共线(该直该不过点O ),则△ABC 周长的最小值是 ( )6.已知数列{}n a 满足1n n a a n ++=,若11,a =则84a a -=( ) A. —1 B. 1 C. 2 D. 47.已知数列{}n a 是单调递增的等差数列, 从7654321,,,,,,a a a a a a a 中取走任意三项, 则剩下四项依然构成单调递增的等差数列的概率是( )。

8.能够把()()22:221M x y -+-=的面积一分为二的曲线:(,)0C f x y =被称为M 的“八卦曲线”,下列对M 的“八卦曲线” C 的判断正确的是( )A. “八卦曲线”C 一定是函数B. “八卦曲线” C 的图象一定关于直线2x =成轴对称;C. “八卦曲线” C 的方程为2y =D. “八卦曲线” C 的图象一定关于点(2,2)成中心对称;9. 在平面直角坐标系xOy 中,表示的平面区域Ω中取一个点点P ,如果点P 恰好在不等式组则实数m的值为( ) A 、1B 、2CD 、310.若,当[0x ∈,1]时,()f x x =,若在区间(1-,1]内()()g x f x mx m =--有两个零点,则实数m 的取值范围是( )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把正确答案填写答题卡中的横线上 11.正偶数列有一个有趣的现象:①246+=;②810121416++=+;③18202224262830,+++=++按照这样的规律,则2012在第 个等式中。

高三第三次模拟数学(理科)试卷答案

高三第三次模拟数学(理科)试卷答案

银川一中2013届高三第三次模拟数学(理科)试题参考答案二、填空题: 13. 4或45-14. 1 15. D C B A V+++3 16. 2三、解答题:17.解:AB=)33(5+,∠D=105°,sinD=sin(60°+45°)=426+ 由DABDB sin 45sin =︒得BD=310在ΔDCB 中,BC=203,∠DBC=60°CD=30213103202)310()320(22=⋅⋅⋅-+∴救援船到达D 的时间为13030=小时 由︒=60sin sin CD DCB BD 得21sin =∠DCB∠DCB=30°∴救援船的航行方向是北偏东30°的方向。

18.解析:(1)满足条件的不等式共有49个…………1分 不等式解集为R 的条件是b a 42-<0…………2分 a=-2时b=2,3,4 a=-1时b=1,2,3,4 a=0时b=1,2,3,4 a=1时b=1,2,3,4 a=2时b=2,3,4 a=3时b=3,4所以满足等式)(x f >0的解集为R 的不等式有20个…………5分 故等式)(x f >0的解集为R 的概率是4920…………6分 (2)方程0)(=x f 两根都为负的条件是⎪⎩⎪⎨⎧<->≥-00042a b b a 即⎪⎪⎩⎪⎪⎨⎧>>≤00412a b a b …………8分 满足上述条件的区域A12141210==⎰da a S A …………10分 又满足⎩⎨⎧≤≤1||1||b a 的区域Ω的面积ΩS =4…………11分∴方程0)(=x f 的两根都为负的概率是P(A)=481=Ωs S A …………12分 19.解:(1)取AC 中点G ,连接FG 、BG ,则FG ∥DC ∥BE当BE=1时,有FG=BE ,即BEFG 为平行四边形故当BE=1时,EF ∥BG ,即EF ∥平面ABC ………5分(2)取BC 中点O ,过O 作OZ ⊥平面ABC如图,建立平面直角坐标系,则A(3,0,0) B(0,1,0) E(0,1,1) D(0,-1,2) 平面ABC 的法向量为)1,0,0(= 设平面ADE 法向量为),,(z y x = )1,1,0(),2,1,3(-=--=由⎩⎨⎧=-=+--02023z y z y x ,取z=2,则y=1,x=3∴)2,1,3(= ∴︒>=<>=<45,,22,cos ∴平面DAE 和平面ABC 所成角为45°或135°.20.解:(1)y=2x 2设1l :y-2=k(x-1)(k ≠0) 1l :y-2=)1(1--x k由⎩⎨⎧=-+=222xy k kx y 得2x 2-kx+k-2=0A 点坐标为)2)2(,22(2--k k 同理得B 点坐标为)2)21(,221(2----k k∴⎪⎪⎩⎪⎪⎨⎧+--+=--=8)1(4144)1(422k k k k y kk x消去k 得:y=4x 2+4x+25M 轨迹是抛物线,故存在一定点和一定直线,使得M 到定点的距离等于它到定直线的距离。

南昌三中届高三第三次模拟考试数学试题及答案(文)

南昌三中届高三第三次模拟考试数学试题及答案(文)

南昌三中2014届高三第三次模拟考试数学(文)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数i12i a +-是纯虚数,其中i 是虚数单位,则实数a 的值为( ) A. 12- B. 25- C. 15 D. 22.设全集U R =,集合{||1|1},A x x =-≤{|2,1},x B x y y ==>则()U A C B =( )A.∅B.{0}C.{|02}x x ≤≤D. {|2}x x ≤3.已知数据11221010(,)(,)(,)x y x y x y 、得到它们的线性回归方程y bx a =+,则“00(,)x y 满足线性回归方程y bx a =+”是“1210121000,1010x x x y y y x y +++++==”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4. 若某空间几何体的三视图如图所示,则该几何体的体积是( )A .32B .16C .24D .48 5. 下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立; ④“平面向量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”. (A)1 (B)2 (C)3 (D)4 6.若函数sin()3y x πω=+的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能是( )A .-1B .-2C .1D .27.若xxx f a b ln )(,3=>>,则下列各结论中正确的是( ) A.()()2a b f a f f +<< B.()()2a bf f f b +<<C .)()2()(a f b a f ab f <+<D .)()2()(ab f ba fb f <+<8.存在直线x m =±与双曲线22221(0,0)x y a b a b-=>>相交于A 、B 、C 、D 四点,若四边形ABCD 为正方形,则双曲线离心率的取值范围为.( )A.)+∞ B .)+∞ C. D.9.已知⊙O 的半径为1,PA 、PB 为其两条切线,A 、B 为两切点,则PB PA ⋅的最小值为( )A. 2-B. 2C. 223-D. 322-10. △ADP 为正三角形,四边形ABCD 为正方形平面PAD ⊥平面ABCD.点M 为平面ABCD 内的一个动点,且满足MP=MC.则点M 在正方形ABCD 内的轨迹为 ( )二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上. 11.等差数列{}1418161042,30,a a a a a a n -=++则中的值为 。

江西省宜丰县2013届高三数学第三次月考试题 理 新人教A版.doc

江西省宜丰中学2013届高三(上)第三次月考数学理科试卷一、选择题:(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求) 1.已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数( )A.3B.6C.8D.102.各项均为正数的等比数列{}n a 中,21431,9a a a a =-=-,则54a a +等于( )A.27B.15C.36D.-273.已知△ABC 的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是( )A.18B.21C. 15D. 24 4. 函数21()3coslog 22f x x x π=--的零点个数为 ( ) A .2B .3C .4D .55.已知0ω>,函数π()sin 4f x x ω⎛⎫=+⎪⎝⎭在π,π2⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A.15,24⎡⎤⎢⎥⎣⎦ B.13,24⎡⎤⎢⎥⎣⎦ C.10,2⎛⎤⎥⎝⎦D.(0,2]6. 已知函数2()sin 2()f x x ax a R =+∈,若对任意实数m ,直线l :0x y m ++= 都不是曲线()y f x =的切线,则a 的取值范围是( ) A .(,1)(1,0)-∞--U B . (,1)(0,)-∞-+∞U C .(1,0)(0,)-+∞U D .{|0,1}a R a a ∈≠≠7. 向量(2,0),(,),a b x y ==若b 与b —a 的夹角等于6π,则||b 的最大值为( )A .2B .C .4D8. 定义在(1,)+∞上的函数()f x 满足:①(2)()f x cf x =(c 为正常数);②当24x ≤≤时,2()1(3)f x x =--,若函数()f x 的图象上所有极大值对应的点均落在同一条直线上,则c 等于 ( ) A .1 B .2 C .2或4 D .1或29. 函数()sin()(0,0)11f x A x A x x ωϕω=+>>==-在和处分别取得最大值和最小值,且对于任意12121212()(),[1,1],,0,f x f x x x x x x x -∈-≠>-都有则( )A .函数(1)y f x =+一定是周期为2的偶函数B .函数(1)y f x =+一定是周期为2的奇函数C .函数(1)y f x =+一定是周期为4的奇函数D .函数(1)y f x =+一定是周期为4的偶函数 10.函数f(x)满足f (-1)=14.对于x,y ∈R ,有4()()()()22x y x yf f f x f y +-=+,则f (-2012)等于( ) A. 41-B. 41 C. 21- D. 21二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.()x f 是偶函数,且()x f 在[0,)+∞上是增函数,如果1,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()()21-≤+x f ax f 恒成立,则实数a 的取值范围是12. 设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c,满足3cos cos 5a B b A c -= 则tan tan AB的值是 。

江西南昌市2013届高三第一次模拟测试数学(理)试题(WORD版)

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

江西南昌市2013届高三第一次模拟测试数学(理)试题第Ⅰ卷—、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有—项是符合题目要求的。

1.已知集合A ,B ,则A B A B B ==是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若复数z 满足12ii z+=(i 为虚数单位),则z 的虚部为A .2iB .2C .-ID .-13.在数列{}n a 中,若12a =,且对任意的1*212n n n N a a +∈=+有,则数列{}n a 前10项的和为A .5B .10C .52D .544.已知函数()cos()f x A x ωθ=+的图象如图所示2(),()236f f ππ=则=A .23-B .12-C .23D .125.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .22cos sin y x x =-B .lg ||y x =C .2x xe e y --=D .3y x =6.双曲线22221x y b a-=与抛物线218y x =有一个公共焦点F ,双曲线上过点F 且垂直实轴的A .2B C D 7.设a ,b 是夹角为30°的异面直线,则满足条件“,,a b αβαβ⊆⊆⊥且”的平面,αβ5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

江西省南昌市高三数学第三次模拟试题 理 新人教A版

江西省南昌市2011—2012学年度高三第三次模拟测试数学(理)试题考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第1卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第1I 卷用0.5毫米的黑色墨水签字笔在答题卡上作答,若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式:锥体体积公式:y =13Sh ,其中S 为底面积,h 为高 第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.平面向量a 与b 的夹角为60°a= (2,0),|b|=l 则|a+2b|=A 3B .3C .4D .122.如图,水平放置的平面图形ABCD 的直观图,则其表示的图形ABCD 是 A .任意梯形 B .直角梯形C .任意四边形D .平行四边形3.设{|23},{|}A x x B x x a =<<=<,若A ⊆B 则a 的取值范围是 A .a ≥3B .a ≥2C .a ≤2D .a ≤34.已知函数sin()(0,||)2y x πωφωφ=+><的部分图象如图所示,则A .1,6πωφ==B .1,6πωφ==-C .2,6πωφ==-D .2,6πωφ==5.已知等差数列{n a }的前n 项和为n S ,a 2=4, S 10=110,则1064nS a +的最小值为A .7B .152C .8D .1726.“ab <0”是“方程ax 2+ by 2=c 表示双曲线”的 A .必要但不充分条件 B .充分但不必要条件 C .充分必要条件 D .既不充分也不必要条件 7.如果执行下面的程序框图,输入正整数m,n 满足n ≥m 那么输出的p 等于A .1m n C - B .1m nA - C .m n C D .mn A 8.函数()f x 在定义域R内可导,若11()(1),()()0,(0),(),(3)22f x f x x f x a f b f c f '=--<===设m 则A .a<b<cB .c<a<bC .c<b<aD .b<c<a9.已知函数y=()f x 的定义域为(4a -3,3- 2a 2),且y=f (2x-3)为偶函数,则实数a 的值为A .3或-1B .-3或l C.一1 D. 110.定义在R 上的函数()f x 满足下列三个条件:①1(3)()f x f x +=-;②对任意12,x x ∈[3,6],当12x x <时,都有f(x 1)<(x 2);@y=f(x+3)的图象关于y 轴对称,则下列结论正确的是 A .(3)(7)(4.5)f f f << B .(3)(4.5)(7)f f f << C .(7)(4.5)(3)f f f <<D .(7)(3)(4.5)f f f <<第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效. 二、填空题:本大题共5小题,每小题5分,共25分.11.已知复数z 满足(2)1z i i -=+(i 为虚数单位),则z 的模为 。

江西省南昌市2020届高三第三次模拟考试理科数学试题+Word版含答案byde

NCS20200707项目第三次模拟测试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()1i z i +=为虚数单位),则在复平面内,复数z 的共轭复数z 对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{A x =|||1},{1,0,}(0)x a B b b -==>,若A B ,则对应的实数(),a b 有 A .1对B .2对C .3对D .4对 3.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识竞赛,得分(10分制)的频数分布表如下设得分的中位数e m ,众数0m ,平均数x ,下列关系正确的是 A .0e m m x == B .0e m m x =< C .0e m m x <<D .0e m m x <<4.某几何体的三视图如图所示,则该几何体的体积为A .3πB .9πC .12π.36π5.在ABC ∆中,D 为线段AB 上一点,且BD=3AD ,若,CD CA CB λμ=+u u u r u u u r u u u r 则λμ=A.13 B .3 C. 14D .4 6.在ABC ∆中,角A ,B ,C 所对应的边分别为,,,1,c ba b c a b a c+=++则下列说法不一定成立的是A .△ABC 可能为正三角形B .角A ,B ,C 为等差数列C .角B 可能小于3πD .角B+C 为定值 7.已知函数()()2sin 0f x x ωω=>的最小正周期为π,若将其图像沿x 轴向右平移m(m>0)个单位,所得图像关于3x π=对称,则实数m 的最小值为A.4πB .3π C.34πD .π8.函数()s ,0(1co f x x x x x x ππ⎛⎫=--≤≠ ⎪⎝⎭且)…的图象可能为9.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3:1取得胜利的概率为 A .0.162 B .0.18 C .0.168 D .0.17410.已知双曲线C:()222210,0x y a b a b -=>>的左、右焦点分别为12,F F ,点M 在C 的右支上,1MF 与y 轴交于点2,A MAF ∆的内切圆与边2AF 切于点B ,若12||4||,F F AB =则C 的渐近线方程是A 30x y ±=B .30x ±= C.20x y ±=D .20x y ±=11.将正整数20分解成两个正整数的乘积有1×20,210,45⨯⨯=种,其中4×5是这三种分解中两数差的绝对值最小的.我们称4×5为20的最佳分解.当(),N p q p q q p +≤⨯∈且是正整数n 的最佳分解时,定义函数(),f n q p =-则数列(){}()N 3nf n +∈的前100项和100S为A .5031+ B .5031-C .50312-D .50312+12.已知函数()()|2|4ln1,()xf x eg x-=+=2,0,2,0a x xa x x+-≥⎧⎨--<⎩若存在a[](),1,Zn n n∈+∈使得方程()()f xg x=有四个不同的实根,则n的最大值是A.0 B.1 C.2 D.3二.填空题:本题共4小题,每小题5分共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年江西省南昌三中高考数学三模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)(2012•西区一模)集合P={x∈Z|0≤x<2},M{x∈Z|x2≤4},则P∩M等于()A.{1} B.{0,1} C.[0,2)D.[0,2]考点:交集及其运算.专题:计算题;不等式的解法及应用.分析:先化简集合P,M,再求P∩M即可.解答:解:∵P={x∈Z|0≤x<2}={0,1},M{x∈Z|x2≤4}={﹣2,﹣1,0,1,2},∴P∩M={0,1}故选B.点评:本题考查集合的运算,考查学生的计算能力,属于基础题.2.(5分)(2010•黑龙江模拟)某教师一天上3个班级的课,每班开1节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有排法有()A.474种B.77种C.462种D.79种考点:排列、组合的实际应用.专题:计算题.分析:根据题意,使用间接法,首先求得不受限制时,从9节课中任意安排3节排法数目,再求出其中上午连排3节和下午连排3节的排法数目,进而计算可得答案.解答:解:使用间接法,首先求得不受限制时,从9节课中任意安排3节,有A93=504种排法,其中上午连排3节的有3A33=18种,下午连排3节的有2A33=12种,则这位教师一天的课表的所有排法有504﹣18﹣12=474种,故选A.点评:本题考查排列的应用,注意分析事件之间的关系,使用间接法求解.3.(5分)复数z1=3+i,z2=1﹣i,则复数的虚部为()A.2B.﹣2i C.﹣2 D.2i考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法,将复数的分母实数化即可.解答:解:∵z1=3+i,z2=1﹣i,∴====1+2i,∴复数的虚部为2.故选A.点评:本题考查复数代数形式的乘除运算,将该复数的分母实数化是关键,属于基础题.4.(5分)(2013•太原一模)函数f(x)=sin(ωx+φ)()的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的奇偶性.专题:三角函数的图像与性质.分析:由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数y=sin (2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.解答:解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,故φ=﹣,故函数f(x)=sin(2x﹣),故当时,函数f(x)=sin=1,故函数f(x)=sin(2x ﹣)关于直线对称,故选C.点评:本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.5.(5分)(2010•温州二模)如图所示的算法流程图中输出的最后一个数为﹣55,则判断框中的条件为()A.n<11 B.n≥11 C.n<10 D.n≥10考点:设计程序框图解决实际问题.专题:常规题型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加(﹣1)n+1n2并输出.解答:解:程序在运行过程中各变量的聚会如下表示:是否继续循环n S循环前/1 1第一圈是2﹣3第二圈是 3 6第三圈是4﹣10第四圈是 5 15第五圈是6﹣21第六圈是7 28第七圈是8﹣36第八圈是9 45第九圈是10﹣55第十圈否故退出循环的条件应为:n<10故选C点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.(5分)(2012•咸阳三模)从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如图,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:先根据题目所给的几何体的三视图得出该几何体的直观图,然后计算该几何体的体积即可.解答:解:由题目所给的几何体的三视图可得该几何体的形状如下图所示:该几何体是一棱长为1的正方体切去如图所示的一角,∴剩余几何体的体积等于正方体的体积减去窃取的直三棱锥的体积,∴V=1﹣=.故选C.点评:本题主要以有三视图得到几何体的直观图为载体,考查空间想象能力,要在学习中注意训练.7.(5分)函数f(x)=cosπx与函数g(x)=|log2|x﹣1||的图象所有交点的横坐标之和为()A.2B.4C.6D.8考点:函数的零点;函数的图象.专题:作图题.分析:由图象变化的法则和余弦函数的特点作出函数的图象,由对称性可得答案.解答:解:由图象变化的法则可知:y=log2x的图象作关于y轴的对称后和原来的一起构成y=log2|x|的图象,在向右平移1个单位得到y=log2|x﹣1|的图象,再把x轴上方的不动,下方的对折上去可得g(x)=|log2|x﹣1||的图象;又f(x)=cosπx的周期为=2,如图所示:两图象都关于直线x=1对称,且共有ABCD4个交点,由中点坐标公式可得:x A+x D=2,x B+x C=2故所有交点的横坐标之和为4,故选B点评:本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.8.(5分)对于下列命题:①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;②已知a,b,c是△ABC的三边长,若a=2,b=5,,则△ABC有两组解;③设,,,则a>b>c;④将函数图象向左平移个单位,得到函数图象.其中正确命题的个数是()A.0B.1C.2D.3考点:命题的真假判断与应用.专题:计算题.分析:可根据三角函数的性质与正弦定理对四个结论逐一进行判断,即可得到正确的结论解答:解:①,∵△ABC中,若sin2A=sin2B,∴2A=2B或2A+2B=π,∴△ABC为等腰三角形或直角三角形,故①错误;②,∵a,b,c是△ABC的三边长,若a=2,b=5,,∴由正弦定理得:=,∴sinB=,这是不可能的,故②错误;③,∵=335×2π+,∴a=sin=sin=,同理可得b=cos=﹣,c=tan=﹣,故a>b>c,于是③正确;④,将函数y=2sin(3x+)图象向左平移个单位,得:y=2sin[3(x+)+]=2sin[+(3x+)]=2cos(3x+),故④正确;故选C.点评:本题考查的知识点是,判断命题真假,比较综合的考查了三角函数和正弦定理,属于中档题.9.(5分)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中双曲线的离心率是()A.B.C.D.2考点:双曲线的简单性质;椭圆的简单性质.专题:压轴题;新定义;圆锥曲线的定义、性质与方程.分析:设F1P=m,F2P=n,F1F2=2c,由余弦定理4c2=m2+n2﹣mn,设a1是椭圆的长半轴,a1是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m﹣n=2a1,由此能求出结果.解答:解:设F1P=m,F2P=n,F1F2=2c,由余弦定理得(2c)2=m2+n2﹣2mncos60°,即4c2=m2+n2﹣mn,设a1是椭圆的实半轴,a2是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m﹣n=2a2,∴m=a1+a2,n=a1﹣a2,将它们及离心率互为倒数关系代入前式得a12﹣4a1a2+=0,a1=3a2,e1•e2=•==1,解得e2=.故选A.点评:本题考查双曲线和椭圆的简单性质,解题时要认真审题,注意正确理解“相关曲线”的概念.10.(5分)函数y=f(x)为定义在R上的减函数,函数y=f(x﹣1)的图象关于点(1,0)对称,x,y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为()A.[12,+∞]B.[0,3]C.[3,12]D.[0,12]考点:简单线性规划的应用;平面向量数量积的运算.专题:计算题;压轴题;数形结合.分析:判断函数的奇偶性,推出不等式,利用约束条件画出可行域,然后求解数量积的范围即可.解答:解:函数y=f(x﹣1)的图象关于点(1,0)对称,所以f(x)为奇函数.∴f(x2﹣2x)≤f(﹣2y+y2)≤0,∴x2﹣2x≥﹣2y+y2,∴即,画出可行域如图,可得=x+2y∈[0,12].故选D.点评:本题考查函数的奇偶性,线性规划的应用,向量的数量积的知识,是综合题,考查数形结合与计算能力.二、填空题:本大题共4小题,每小题5分,共20分.11.(5分)(2011•上海)在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则=.考点:向量在几何中的应用.专题:计算题;数形结合;转化思想.分析:根据AB=3,BD=1,确定点D在正三角形ABC中的位置,根据向量加法满足三角形法则,把用表示出来,利用向量的数量积的运算法则和定义式即可求得的值.解答:解:∵AB=3,BD=1,∴D是BC上的三等分点,∴,∴===9﹣=,故答案为.点评:此题是个中档题.考查向量的加法和数量积的运算法则和定义,体现了数形结合和转化的思想.12.(5分)若a=,则二项式展开式中含x的项的系数是240.考点:定积分;二项式定理的应用.分析:由定积分的运算可得a=2,代入由二项式定理可得的通项T k+1=x3﹣k,令3﹣k=1,可得k=2,可得含x的项系数为:=240解答:解:由题意可得,a==﹣cosx=2,故=,其二项展开式的通项T k+1==x3﹣k,令3﹣k=1,可得k=2,故可得含x的项系数为:=240故答案为:240点评:本题考查定积分的求解和二项式定理的应用,属基础题.13.(5分)实数对(x,y)满足不等式组,则目标函数z=kx﹣y当且仅当x=3,y=1时取最大值,则k的取值范围是(﹣,1).考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部.将目标函数z=kx﹣y对应的直线进行平移,当且仅当l经过点C(3,1)时目标函数z达到最大值,由此观察直线斜率的范围结合斜率计算公式,即可得到l斜率k的取值范围.解答:解:作出不等式组,表示的平面区域,得到如图的△ABC及其内部,其中A(1,2),B(4,2),C(3,1)设z=F(x,y)=kx﹣y,将直线l:z=kx﹣y进行平移,可得直线在y轴上的截距为﹣z,因此直线在y轴上截距最小时目标函数z达到最大值∵当且仅当l经过点C(3,1)时,目标函数z达到最大值∴直线l的斜率应介于直线AC斜率与直线BC斜率之间,∵k AC==﹣,k BC==1∴k的取值范围是(﹣,1)故答案为:(﹣,1).点评:本题给出二元一次不等式组,讨论目标函数z=kx﹣y的最大值有唯一最优解的问题,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.(5分)设定义域为R的函数f(x)=,若关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,则符合题意的a的取值范围是1<a<或<a<2..考点:分段函数的解析式求法及其图象的作法;指数型复合函数的性质及应用;根的存在性及根的个数判断.专题:压轴题;数形结合.分析:程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解x,即要求f(x)=常数有3个不同的f(x),根据题意,先做出函数f(x)的图象,结合图象可知,只有当f(x)=a时,有3个根,再结合方程2f2(x)﹣(2a+3)f(x)+3a=0有2个不同的实数解,可求解答:解:方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,解:∵题中原方程2f2(x)﹣(2a+3)f(x)+3a=0有且只有5个不同实数解,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=a时,它有三个根.所以有:1<a<2 ①.再根据2f2(x)﹣(2a+3)f(x)+3a=0有两个不等实根,得:△=(2a+3)2﹣4×2×3a>0⇒②结合①②得:1<a<或a<2.故答案为:1<a<或a<2.点评:本题考查了函数的图象与一元二次方程根的分布的知识,采用数形结合的方法解决.数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.三、选做题:(请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分)15.(5分)在平面直角坐标系中,直线l的参数方程为(t为参数).若以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=.则直线l被曲线C所截得的弦长为.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:直线与圆.分析:画直线的参数方程为普通方程,化圆极坐标方程为直角坐标方程,求出圆心到直线的距离,利用勾股定理求出半弦长,则弦长可求.解答:解:由,得4x﹣3y+1=0.再由ρ=,得.即ρ2=ρsinθ+ρcosθ.所以曲线C的直角坐标方程为x2+y2=x+y.化为标准方程得,.圆心为C(),半径r=.圆心C到直线4x﹣3y+1=0的距离d=.则直线被圆截得的半弦长为.所以直线l被曲线C所截得的弦长为.故答案为.点评:本题考查了化参数方程为直角坐标方程,化极坐标方程为直角坐标方程,考查了直线与圆的位置关系,是中档题.16.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).若关于x的不等式f(x)≥2的解集是R,求m的取值范围m≤﹣1.考点:绝对值不等式的解法;对数函数的图像与性质.专题:压轴题;函数的性质及应用;不等式的解法及应用.分析:问题等价于|x+1|+|x﹣2|﹣m≥4对任意x恒成立,只需m≤|x+1|+|x﹣2|﹣4,y=|x+1|+|x﹣2|﹣4表示数轴上的点到点﹣1,2的距离之和再减掉4,由绝对值的意义可得.解答:解:关于x的不等式f(x)≥2的解集是R,等价于|x+1|+|x﹣2|﹣m≥4对任意x恒成立,变形可得m≤|x+1|+|x﹣2|﹣4,只需求函数y=|x+1|+|x﹣2|﹣4的最小值即可,由绝对值的几何意义可知:y=|x+1|+|x﹣2|﹣4表示数轴上的点到点﹣1,2的距离之和再减掉4,故可得y=|x+1|+|x﹣2|﹣4的最小值为y=3﹣4=﹣1,故只需m≤﹣1故答案为:m≤﹣1点评:本题考查绝对值不等式的意义,涉及对数函数的应用,属中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)△ABC中,角A,B,C的对边分别为a,b,c,且(1)求角A;(2)设函数f(x)=sinx+2sinAcosx将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得图象向右平移个单位,得到函数y=g(x)的图象,求函数y=g(x)的对称中心及单调递增区间.考点:余弦定理;函数y=Asin(ωx+φ)的图象变换.专题:解三角形.分析:(1)△ABC中,由余弦定理可得cosA=,再由已知可得sinA=,从而求得A 的值.(2)由(1)可得函数f(x)的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律求得函数y=g(x)=sin(2x﹣),由此求得函数g(x)的对称中心.令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,可得函数y=g(x)的单调递增区间.解答:解:(1)△ABC中,由余弦定理可得cosA=,再由已知可得tanA=,sinA=,∴A=,或A=.(2)由(1)可得函数f(x)=sinx+2sinAcosx=sin(x+),将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,可得y=sin(2x+)的图象;把所得图象向右平移个单位,得到函数y=g(x)=sin[2(x﹣)+]=sin(2x﹣)的图象.令2x﹣=kπ,k∈z,可得x=+,k∈z,故函数g(x)的对称中心为(+,0),k∈z.令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数y=g(x)的单调递增区间为[kπ﹣,kπ+],k∈z.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,对称性,余弦定理的应用,属于中档题.18.(12分)(2011•安徽模拟)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图,为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x的分布列和期望.考点:频率分布直方图;离散型随机变量的期望与方差.专题:应用题;综合题.分析:(1)求出Q>80时对应的三个矩形的纵坐标和乘以组距求出醉酒驾车的频率;再用频率乘以60求出醉酒驾车的人数.(2)利用分层抽样的特点求出8人中酒后驾车和醉酒驾车的人数;利用古典概型的概率公式求出随机变量取每一个值的概率;列出分布列,利用随机变量的期望公式求出期望.解答:解:(1)(0.032+0.043+0.050)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人.(2)易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x的所有可能取值为0,1,2;P(x=0)==,P(X=1)==,P(x=2)==X的分布列为X 0 1 2P.点评:本题考查频率分布直方图中分布在某范围内的频率等于纵坐标乘以组距、考查频率等于频数除以样本容量、考查分布列的求法及随机变量的期望公式.19.(12分)如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(1)求证:PC⊥AC;(2)求二面角M﹣AC﹣B的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的性质.专题:空间向量及应用.分析:(1)利用线面垂直的判定定理,证明PC⊥平面ABC,然后证明PC⊥AC.(2)取BC的中点N,连MN,证明MN⊥平面ABC.作NH⊥AC,交AC的延长线于H,连接MH,说明∠MHN为二面角M﹣AC﹣B的平面角.利用cos∠MHN=,即可求出二面角M﹣AC﹣B的余弦值.解答:(1)证明:∵PC⊥BC,PC⊥AB,BC∩AB=B,∴PC⊥平面ABC,∵AC⊂平面ABC,∴PC⊥AC.(2)解:取BC的中点N,连MN.∵PM=∥CN,∴MN=∥PC,∴MN⊥平面ABC.作NH⊥AC,交AC的延长线于H,连接MH.由三垂线定理得AC⊥MH,∴∠MHN为二面角M﹣AC﹣B的平面角.∵直线AM与直线PC所成的角为60°,∴在Rt△AMN中,∠AMN=60°.在△ACN中,AN==.在Rt△AMN中,MN=AN•cot∠AMN=cot60°=1.在Rt△NCH中,NH=CN•sin∠NCH=1×sin60°=.在Rt△MNH中,∵MH==,∴cos∠MHN==.故二面角M﹣AC﹣B的余弦值为.点评:本题考查直线与平面的垂直的判定定理的应用,二面角的求法,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.20.(12分)已知数列{a n}满足a1=1,a n+1=S n+1(n∈N*)(1)求数列{a n}的通项公式;(2)证明:(n∈N*).考点:数列与不等式的综合;数列递推式.专题:等差数列与等比数列.分析:(1)利用数列递推式,再写一式,两式相减,可得数列{a n}是以1为首项,2为公比的等比数列,从而可求数列的通项;(2)将通项化简,裂项,再利用放缩法,即可证明不等式.解答:(1)解:∵a1=1,a n+1=S n+1∴a2=S1+1=2,a n=S n﹣1+1(n≥2)两式相减可得a n+1=2a n,∵a2=2a1,∴数列{a n}是以1为首项,2为公比的等比数列∴a n=2n﹣1;(2)证明:==∴=<∵=∴<=∴>∴.点评:本题考查等比数列的证明,考查数列的通项,考查数列与不等式的综合,考查学生分析解决问题的能力,属于中档题.21.(13分)已知函数f(x)=ax2﹣(a+2)x+lnx(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间;(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1+2x1<f(x2)+2x2)恒成立,求a的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(1)a=1时,求出导数f′(x),则切线斜率为f′(1),易求f(1),利用点斜式即可求得切线方程;(2)易求f(x)的定义域是(0,+∞),解方程f′(x)=0可得x=或x=,按两根、的大小对a分类讨论解不等式f′(x)>0,f′(x)<0可得单调区间;(3)设g(x)=f(x)+2x=ax2﹣ax+lnx,由题意知,g(x)在(0,+∞)上单调递增,只需g′(x)≥0在(0,+∞)上恒成立,分a=0、a≠0两种情况讨论,转化为函数最值即可;解答:解:(1)当a=1时,f(x)=x2﹣3x+lnx,f′(x)=2x﹣3+,因为f′(1)=0,f(1)=﹣2,所以切线方程是y=﹣2;(2)函数f(x)=ax2﹣(a+2)x+lnx的定义域是(0,+∞),f′(x)=2ax﹣(a+2)+=(x>0),令f′(x)=0,即f′(x)===0,所以x=或x=,①当a>2时,令f′(x)>0得,x>或0<x<,f′(x)<0得x<,②当a=2时,f′(x)≥0恒成立,③当0<a<2时,令f′(x)>0得,x>或0<x<,f′(x)<0得<x<,④a<0时,令f′(x)>0得0<x<,f′(x)<0得x>,所以当a>2时,f(x)的单调增区间为(0,),(,+∞)单调减区间为();当a=2时,f(x)在(0,+∞)上单调递增;当0<a<2时,f(x)在(0,),(,+∞)上单调递增,在()上单调递减;当a≤0时,f(x)在(0,)上单调递增,()上单调递减.(3)设g(x)=f(x)+2x,则g(x)=ax2﹣ax+lnx,只要g(x)在(0,+∞)上单调递增即可,而g′(x)=2ax﹣a+=,当a=0时,g′(x)=>0,此时g(x)在(0,+∞)上单调递增;当a≠0时,只需g′(x)≥0在(0,+∞)上恒成立,因为x∈(0,+∞),只要2ax2﹣ax+1≥0,则需要a>0,对于函数y=2ax2﹣ax+1,过定点(0,1),对称轴x=>0,只需△=a2﹣8a≤0,即0<a≤8,综上,0≤a≤8.点评:本题考查导数的几何意义、利用导数研究函数的单调性、闭区间上函数的最值,考查恒成立问题,考查分类讨论思想.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=,=,其中O为坐标原点.Q为椭圆的左顶点.(1)求椭圆C的方程;(2)过点S(﹣,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB 为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(1)设出P点坐标,由|OP|=得关系式,再由得关系式,两式联立求出c,再由离心率求得a,结合b2=a2﹣c2求出b,则椭圆方程可求;(2)设出直线l的方程,和椭圆方程联立后利用根与系数关系求出A,B两点的横坐标的和,由中点坐标公式求出A,B的中点,若否存在直线l,使得△QAB为等腰三角形,则AB中点与Q的连线与AB垂直,由斜率之积等于﹣1列式求k的值,此时得到了矛盾式子,说明使得△QAB为等腰三角形的直线l不存在.解答:解:(1)设P(x0,y0),∵,∴①又,∴,即②①代入②得:.又e=,∴a=2,b=1.故所求椭圆方程为;(2)直线l的方程为,联立,得(25+100k2)x2+240k2x+144k2﹣100=0.,.设AB的中点M(x0,y0),则,.所以.若三角形QAB为等腰三角形,则MQ⊥AB,即,此式无解,所以使得△QAB为等腰三角形的直线l不存在.点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了一元二次方程的根与系数关系,考查了学生的运算能力,是难题.。

相关文档
最新文档