2020-- 浙江省 杭州地区(含周边)重点中学高三上学期 期中考试 数学试题--(附解析答案)

合集下载

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷一、选择题(共10小题).1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.23.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.408.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣19.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=;4=.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.14.已知tanα=cosα,则cos2α+cos4α=,=.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是.16.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R解:∵A={x|1≤x≤3},B={x|x≤1或x≥2},∴A∪B=R.故选:D.2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.2解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,则有4a=0,a2﹣4=﹣4,解得a=0.故选:B.3.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱与底面垂直,且侧棱长为1,∴四棱锥的体积是.故选:B.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>0,b>0时,若a>b,则lna>lnb,此时a+lna>b+lnb成立,即充分性成立,设f(x)=x+lnx,当x>0时,f(x)为增函数,则由a+lna>b+lnb得f(a)>f(b),即a>b,即必要性成立,则“a>b”是“a+lna>b+lnb”的充要条件,故选:C.5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.解:f(x)=•cos x=•cos x,则f(﹣x)=•cos x=•cos x=﹣f(x),则f(x)是奇函数,排除A,C,当0<x<时,f(x)<0,排除B,故选:D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.解:由已知可得:P(ξ=﹣1)=﹣a+b,P(ξ=0)=b,P(ξ=1)=a+b,则﹣a+b+b+a+b=1,即b=,又E(ξ)=﹣1×(﹣a+b)+0×b+1×(a+b)=,所以a=,所以ξ的分布列如下:ξ﹣101P所以D(ξ)=,故选:B.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.40解:∵(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),令f(x)=(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则f′(x)=2x=a1+a2(x﹣1)1+…+a9(x﹣1)8,f′(x)=2x•(2x﹣1)7+(x2+1)•14(2x﹣1)6,∴a1=f′(1)=2×1+2×14×(2﹣1)6=30故选:B.8.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣1解:不等式|b|≤2﹣a可化为﹣2+a≤b≤2﹣a,且a≥﹣1,所以约束条件为,画出约束条件表示的平面区域,如阴影部分所示:设z=2a+b,平移目标函数知,当目标函数过点A时,z取得最小值;由,求得A(﹣1,﹣3),所以z=2a+b的最小值为z min=2×(﹣1)+(﹣3)=﹣5.故选:B.9.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e解:不等式f(x)≤0对x∈(0,+∞)恒成立,即为lnx﹣﹣2mx+n≤0,即lnx﹣≤2m(x﹣)对x>0恒成立,设g(x)=lnx﹣,由g′(x)=+>0,可得g(x)在(0,+∞)递增,且g(e)=0,当x→0时,g(x)→﹣∞;x→+∞,g(x)→+∞,作出y=g(x)的图象,再设h(x)=2m(x﹣),x>0,可得h(x)表示过(,0),斜率为2m的一条射线(不含端点),要求的最大值,且满足不等式恒成立,可求的最大值,由于点(,0)在x轴上移动,只需找到合适的m>0,且与g(x)=lnx﹣切于点(,0),如图所示:此时=e,即有的最大值为2e,故选:D.10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列解:由a n+2=(n∈N*),可得①,则②①﹣②可得,a n+2a n﹣a n+1a n﹣1=a n+12﹣a n2,所以a n(a n+2+a n)=a n+1(a n+1+a n﹣1),则,由此可得,,所以,则a n+2=3a n+1﹣a n且a1=3∈Z,a2=6∈Z,所以a n∈Z,故选项A,C错误;由a n+3=3a n+2﹣a n+1,可得a n+3﹣a n+2=5a n+1﹣2a n不是常数,所以不存在p>0,使得{a n+1﹣pa n}是等差数列,故选项B错误;假设存在p>0,使得{a n+1﹣pa n}是等比数列,公比为q,则有a n+1﹣pa n=q(a n﹣pa n﹣1),所以a n+1=(p+q)a n﹣pqa n﹣1,由a n+2=3a n+1﹣a n,则,解得,所以存在,使得{a n+1﹣pa n}是等比数列,故选项D正确.故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=1;4=9.解:lg2﹣lg=lg2+lg5=lg10=1;4==9.故答案为:1;9.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于2.解:因为在△ABC中,A=,b=4,a=2,由正弦定理,可得=,可得sin B=1,因为B∈(0,π),则B=,所以c===2,所以S△ABC=ac==2.故答案为:,2.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.解:∵a>0,b>0,a+b=1,∴,,∴,∴a2+b2的最小值等于;∵,∴,∴的最大值等于.故答案为:.14.已知tanα=cosα,则cos2α+cos4α=1,=1.解:因为tanα==cosα,可得sinα=cos2α,则cos2α+cos4α=cos2α+sin2α=1,=====1.故答案为:1,1.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是44.解:根据题意,分2种情况讨论,①两个都在左边的4个座位或右边的4个座位就坐,有2×A22×3=12种排法,②两个人一人在左边4个座位,一个在右边4个座位就坐,有2×CA41×C41=32种排法,则一共有12+32=44种不同的排法,故答案为:4416.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.解:设||=a,||=b,则由|﹣|=1,平方得||2+||2﹣2•=1,即a2+b2﹣2ab×=1,即a2+b2﹣ab=1,则•(+2)=||2+2•=a2+ab,∵a2+ab===,令m=,则m>0,则原式==,再设t=1+m,则t>1,则m=t﹣1.则===≤===,当且仅当t=,即t=时,取等号,即•(+2)的最大值为,故答案为:.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又,所以,所以点Q的轨迹所组成的图形的面积S=.故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.解:(I)函数f(x)=sin(ωx+)cos(ωx+)=(sinωx+cosωx)(cosωx﹣sinωx)=cos2ωx﹣sin2ωx=×﹣×=cos2ωx﹣,因为函数f(x)最小正周期为π,由T==π,且ω>0,解得ω=1,所以f(x)=cos2x﹣,令2kπ﹣π≤2x≤2kπ,k∈Z,解得kπ﹣≤x≤kπ,k∈Z,可得函数f(x)的单调递增区间为:[kπ﹣,kπ],k∈Z.(II)由sin A sin C﹣sin2C=sin2A﹣sin2B得:ac﹣c2=a2﹣b2,即a2+c2﹣b2=ac,∴cos B===,又B为锐角,可得B=,∴f(B)=cos﹣=﹣=.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.解:(Ⅰ)当a=2时,不等式f(x)<0,即x2﹣2x﹣|2x﹣2|=|x﹣1|2﹣2|x﹣1|﹣1<0,所以0≤|x﹣1|<,解得,故不等式f(x)<0的解集为{x|};(Ⅱ)因为f(x)=x2﹣ax﹣|ax﹣2|(a>0),则,又y=f(x)+1有四个不同的零点,所以△=4a2﹣12>0且,解得,因为x1<x2<x3<x4,当时,f(x)+1=x2﹣1=0,可得x1=﹣1,x2=1,所以x3,x4是x2﹣2ax+3=0的两个根,若x2,x3,x4成等差数列,则,所以,代入方程x2﹣2ax+3=0可得,,解得或﹣2(舍),综上可知,存在使得x2,x3,x4成等差数列.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.【解答】(Ⅰ)证明:连接BG交EC于H,连接FH,则点H为△BCD的重心,有,∵,∴FH∥AG,且FH⊂平面CEF,AG⊄平面CEF,则AG∥平面CEF;(Ⅱ)解:∵BF=,BE=1,∠ABD=30°,∴EF2=BF2+BE2﹣2BE•BF•cos∠ABD==,故BF2=BE2+EF2,∴BE⊥EF,又由已知,CE⊥BD,CE∩EF=E,则BD⊥平面CEF,过F作AD的平行线FP,交BD于P,则PE⊥CEF,故∠PFE为直线AD与平面CEF所成的角,且FP=,EP=,∠FEP=90°,∴sin,得直线AD与平面CEF所成的角为.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.【解答】(Ⅰ)解:因为a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0,所以,则a1+a3+a5+…+a2k﹣1==;(Ⅱ)①证明:因为a2k,a2k+1,a2k+2(k∈N*)成等差数列,所以2a2k+1=a2k+a2k+2,即,则,即b k+1﹣b k=1,所以数列{b n}为等差数列,公差为1;②解:若d1=2,所以a3=a2+2,则有,所以a2=2或a2=﹣1;当a2=2时,q1=2,所以b1=1,则b k=1+(k﹣1)×1=k,即,解得,所以,则=,所以,则d k=a2k+1﹣a2k=k+1,故;若a2=﹣1时,q1=﹣1,所以,则,即,解得,则=,则,所以d k=a2k+1﹣a2k=4k﹣2,故.综上所述,或.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.【解答】证明:(Ⅰ)f′(x)=lnx+1﹣a(x+1),x>0,结合题意,lnx+1﹣a(x+1)=0,即lnx+1=a(x+1)存在2个不同正根,先考虑y=a(x+1)与y=lnx+1相切,记切点横坐标为x0,则,解得:,记g(x)=xlnx﹣1,x>0,则g′(x)=1+lnx,令g′(x)=0,解得:x=,故y=g(x)在(0,)递减,在(,+∞)递增,且g(1)=﹣1<0,g(2)=ln4﹣1>0,故存在唯一x0∈(1,2),使得x0lnx0=1成立,取m=∈(,1),则0<a<m时,f(x)恰有2个极值点,得证;(Ⅱ)由(Ⅰ)知:f′(x1)=lnx1+1﹣a(x1+1),且<x1<x0<2,故a=,代入f(x1),得f(x1)=(x1lnx1﹣x1﹣lnx1﹣1),设h(x)=(xlnx﹣x﹣lnx﹣1),h′(x)=(lnx﹣),<x<2,由h′(x0)=0,得lnx0=,即x0lnx0=1,则x∈(,x0)时,h′(x)<0,x∈(x0,2),h′(x)>0,故h(x)在(,x0)递减,在(x0,2)递增,h(x)>h(x0)=(x0lnx0﹣lnx0﹣x0﹣1)=(1﹣﹣x0﹣1)=﹣(x0+),∵x0∈(1,2),∴x0+∈(2,),∴h(x0)∈(﹣,﹣1),故h(x)>﹣,即f(x1)>﹣,而h(x)<h()=﹣>h(2)=(ln2﹣3),故:﹣<f(x1)<﹣.。

浙江省镇海中学2020届高三数学上学期期中试题(含解析)

浙江省镇海中学2020届高三数学上学期期中试题(含解析)

浙江省镇海中学2020届高三数学上学期期中试题(含分析)一、选择题(本大题共10小题)已知会合,,则的元素的个数为若a,b,且,则以下不等式中必定成立的是A.B.C.D.已知是等差数列的前n项和,且,,则等于A.50B.42C.38D.36函数的图象大概为A.B.C.D.如图是一个几何体的三视图,则这个几何体的表面积是84B.C.D.6.将函数的图象向右平移个单位长度后,获得,则的函数分析式为A. B.C.D.7.设命题p:,命题,若q是p的必需不充足条件,则实数a的取值范围是A.B. C. D.已知,,,则A.B.C.D.已知椭圆和双曲线有同样的焦点,,设点P是该椭圆和双曲线的一个公共点,且,若椭圆和双曲线的离心率分别为,,则的最小值为A.B.C.D.设a,b为正实数,且,则的最大值和最小值之和为A.2B.C.D .9二、填空题(本大题共7小题)11.抛物线的焦点坐标是______,准线方程是______.12.已知点,,点在线段AB上,则直线AB的斜率为______;的最大值为______.若实数知足拘束条件,则的最小值为______;的最小值为______.已知长方体中,,则直线与平面所成的角为______;若空间的一条直线l与直线所成的角为,则直线l与平面所成的最大角为______.已知是等比数列,且,,则______,的最大值为______16.已知圆O:,设点P是恒过点的直线l上随意一点,若在该圆上随意点直线l的斜率k的取值范围为______.A知足,则已知点,为单位圆上两点,且知足,则的取值范围为______.三、解答题(本大题共5小题)已知的最大值为.Ⅰ务实数a的值;Ⅱ若,求的值.在锐角中,角A,B,C所对边分别为a,b,c,已知,.Ⅰ求A;Ⅱ求的取值范围.20.如图,在三棱锥中,和都为等腰直角三角形,,,Ⅰ求二面角的大小;Ⅱ求直线PM与平面PBC所成角的正弦值.M为AC的中点,且.已知数列的前n项和为,且知足:.Ⅰ求数列的通项公式;Ⅱ数列知足,,求数列通项公式.22.在平面直角坐标系中,已知,,若线段FP的中垂线l与抛物线C:老是相切.Ⅰ求抛物线C的方程;Ⅱ若过点的直线交抛物线C于M,N两点,过M,N分别作抛物线的切线,订交于点,分别与y轴交于点B,C.证明:当变化时,的外接圆过定点,并求出定点的坐标;求的外接圆面积的最小值.答案和分析【答案】C【分析】解:0,1,2,3,4,,,3,4,,的元素的个数为4.应选:C.能够求出会合A,B,而后进行交集的运算求出,从而得出的元素的个数.本题考察了描绘法、列举法的定义,一元二次不等式的解法,对数函数的单一性,考察了计算能力,属于基础题.【答案】D【分析】解:,b,且,取,可清除A,B;取,可清除C.由不等式的性质知当时,,故D正确.应选:D.依据不等式的基天性质,联合特别值,可判断选项正误.本题考察了不等式的基天性质,属基础题.【答案】B【分析】解:,,,解可得,,,则.应选:B.联合等差数列的乞降公式求出,d,而后再带入乞降公式即可求解.本题主要考察了等差数列的乞降公式的简单应用,属于基础试题【答案】A【分析】解:,则函数为偶函数,图象对于y轴对称,清除B,当,,清除C,当时,,清除D,应选:A.先判断函数的奇偶性和对称性,利用极限思想以及当时的函数值能否对应进行清除即可.本题主要考察函数与图象的辨别和判断,利用函数的奇偶性和极限思想,利用清除法是解决本题的重点.【答案】B【分析】【剖析】几何体为侧放的五棱柱,底面为正视图中的五边形,棱柱的高为4.本题考察了棱柱的结构特点和三视图,属于基础题.【解答】由三视图可知几何体为五棱柱,底面为正视图中的五边形,高为4.因此五棱柱的表面积为.应选:B.6.【答案】C7.【分析】解:将函数的图象向右平移个单位长度后,获得,马上的图象向左平移个单位,获得.应选:C.直接利用三角函数关系式的平移变换和引诱公式的应用求出结果.本题考察的知识重点:三角函数关系式的恒等变换,函数的图象的平移变换的应用,引诱公式的应用,主要考察学生的运算能力和变换能力及思想能力,属于基础题型.【答案】A【分析】解:命题解得:.p:.命题:,解得:.又是p的必需不充足条件,,,应选:A.先求出命题 p,q的等价条件,利用p是本题主要考察充足条件和必需条件的应用,应的解是解决本题的重点.q的充足不用要条件,确立实数a的取值范围.利用对数不等式和分式不等式的解法求出对8.【答案】B9.【分析】解:已知,,,则,,整理得:,因此,又因为,因此,即,因此,由条件可得,整理得,,因此,,即,因此和两式平方和得,,因此,解得.应选:B.直接利用三角函数关系式的变换和同角三角函数关系式的变换的应用求出结果.本题考察的知识重点:三角函数关系式的恒等变换,同角三角函数关系式的变换,主要考察学生的运算能力和变换能力及思想能力,属于基础题型.【答案】A【分析】【剖析】设出椭圆方程与双曲线方程,再设,,由椭圆和双曲线的定义,解方程可得s,t,再由余弦定理,可得a,m与c的关系,联合离心率公式,以及基本不等式,可得所求最小值.本题考察椭圆和双曲线的定义和性质,主假如离心率,考察解三角形的余弦定理,以及基本不等式的运用,考察化简整理的运算能力,属于中档题.【解答】解:不如设椭圆方程为,双曲线方程为.再设,,P为第一象限的交点,由椭圆和双曲线的定义可得,,解得,,13.在三角形中,,可得,即有,可得,即为,则,当且仅当,即,获得最小值.应选:A.【答案】C【分析】解:设a,b为正实数,且,设,,则,,由柯西不等式:,因此,化简得,因此不等式的解的端点就是n的一个最大值和一个最小值,也就是其对应的方程的两个根的和,由韦达定理,其对应的方程的根的和为,故的最大值和最小值之和为为.应选:C.利用换元法,设,,则,利用柯西不等式转变为,解不等式,利用根与系数的关系,解出即可.考察换元法,柯西不等式的应用,一元二次不等式的解法,韦达定理,综合题.【答案】【分析】解:抛物线的焦点坐标是;准线方程是:.故答案为:;.利用抛物线的标准方程求解焦点坐标以及准线方程即可.本题考察抛物线的简单性质的应用,是基础题.【答案】【分析】解:,,;线段AB的方程为.点在线段AB上,,即.当时,ab有最大值为.故答案为:;.直接由两点求斜率公式可得直线AB的斜率;求出线段AB的方程,把P 的坐标代入,可得a,b的关系,把ab转变为a的二次函数求最值.本题考察直线的斜率,训练了利用二次函数求最值,是基础题.【答案】116.【分析】解:作出实数知足拘束条件,表示的可行域,作出直线,平移直线,当过点时,取最小值:1.的最小值为可行域内的点与的距离的最小值,即点到直线的距离.的最小值为:.故答案为:1;.作出不等式组表示的可行域,以及直线,平移通过目标函数的几何意义,即可获得所求最小值.的最小值为可行域内的点与的距离的最小值,即点到直线的距离.本题考察线性目标函数在不等式组下的最值问题的解法,注意运用平移法,考察作图能力,属于基本知识的考察.【答案】【分析】解:成立右图所示的空间直角坐标系,则有0,,,0,,设平面的一个法向量为,则有,即,.设直线与平面所成的角为,.则有,.故直线与平面所成的角为.空间的一条直线l与直线所成的角为,不如设直线l恒过定点A,则直线l与平面的交点M的轨迹为:以点为圆心,为半径的圆.则点M的坐标可设为,,又平面的一个法向量为,直线l与平面所成的角为,则有,,.故直线l与平面所成的最大角为.成立空间直角坐标系,用向量法可求解;结构法,设动直线l恒过定点A,与平面的交点是以点为圆心,为半径的圆;而后设定直线l的方向向量,即可求解.本题主要考察利用向量法求解立体几何运动题,凡是可成立坐标系的这种题应选择向量法更加适合.【答案】5【分析】解:因为是等比数列,因此,,因此,即,又,因此,.故答案为:5,依据等比中项的性质,,,代入原式化简即可本题考察了等比数列的等比中项的性质,基本不等式等知识,属于基础题.【答案】【分析】解:因为,因此:当点A位于Y轴左边时:设直线PA的倾斜角为因为;,因此:;斜率k的取值范围:由对称性可知:当点A位于Y轴右边时,斜率k的取值范围:综上可得:直线l的斜率k的取值范围是:故答案为:先设出直线的倾斜角,依据三角形内角和为,求出点A位于Y轴左边时倾斜角的范围,从而求出斜率,再依据对称性即可求出结论.本题主要考察直线和圆的地点关系,本题的重点点在于依据条件剖析出倾斜角的取值范围,属于基础题目.【答案】【分析】解:,又,,设,,,则又,当或时,获得最小值为,当时,获得最大值.故答案为:计算,得出,设,,,依据和角公式化简,再依据的范围求出答案.本题考察了平面向量的坐标运算,三角函数的化简求值,属于中档题.【答案】解:Ⅰ,因为函数的最大值为,故,解得.Ⅱ因为,因此,整理得.因此,因此.或,因此或,故,因此当时..当时,,因此原式.【分析】Ⅰ直接利用三角函数关系式的恒等变换求出结果.Ⅱ利用三角函数的关系式的变换和同角三角函数及倍角公式的应用求出结果.本题考察的知识重点:三角函数关系式的变换,正弦型函数的性质的应用,主要考察学生的运算能力和变换能力及思想能力,属于基础题型.【答案】解:Ⅰ在锐角中,,,可得,由余弦定理可得:,由A为锐角,可得.Ⅱ,又,可得,,,,即的取值范围是【分析】Ⅰ由已知可得,由余弦定理可得,由A为锐角,可得A的值.Ⅱ由三角函数恒等变换的应用可求,由已知可求B的范围,从而利用三角函数的有界线即可得取值范围.本题主要考察了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的性质等基础知识在解三角形中的综合应用,考察了运算能力和转变思想,属于中档题.20.【答案】解:分别取线段AB,BC的中点O,N,连结PO,ON,MN,PN,设,则有在等腰直角中,O是中点,则有---在等腰直角中,点O,N分别是AB,BC的中点,则有---由可知,平面PON,又,平面PON,则有.又,则,又,则有,又,由三角形余弦定理可知,,,即二面角的大小为.成立如下图的空间直角坐标系,过点P作交NO延伸线于点D,设,则有0,,2,,0,,1,,由可知,,又,.,.,设平面PBC的一个法向量为,则有,又,,,.设直线PM与平面PBC所成角为,则有:.故直线PM与平面PBC所成角的正弦值为.【分析】重点是找到;利用空间向量,成立适合的空间直角坐标系,就能够很好地求解.在几何法不好求解的立体几何题,能够选择用向量法去办理,但前提是:能够很好地成立空间直角坐标系,求出各点的坐标.21.【答案】解:Ⅰ数列的前n项和为,且知足:.当时,,两式相减得:,因此数列是以2为首项为公比的等比数列.因此.Ⅱ因为,因此,因为,因此,因此.【分析】Ⅰ直接利用数列的递推关系式的应用求出数列的通项公式.Ⅱ利用Ⅰ的结论,进一步利用关系式的变换的应用求出结果.本题考察的知识重点:数列的通项公式的求法及应用,数列的递推关系式的应用,主要考察学生的运算能力和变换能力及思想能力,属于基础题型.【答案】解:Ⅰ,,,可得FP的中点为,当时,FP的中点为原点,当时,直线FP的斜率为,线段FP的中垂线l的斜率为,可得中垂线l的方程为,代入抛物线方程,可得,由直线和抛物线相切可得,解得,则抛物线的方程为;Ⅱ证明:可设过点的直线的方程为,即,代入抛物线的方程,可得,设,,则,,由,两边对x求导可得,即,可得M处的切线方程为,化为,同理可得N处的切线方程为,由可得,,即,又,分别与y轴交于点,,设过A,B,C的外接圆的方程为,,即有,联合,,可得,,,可得的外接圆方程为,可得,由可得或,则当变化时,的外接圆过定点和;的外接圆的半径,浙江省镇海中学2020届高三数学上学期期中试题(含解析)可适当时,r的最小值为,则的外接圆面积的最小值为【分析】Ⅰ求得FP的中点,议论和t不为0,求得直线 FP的斜率,可得中垂线l的斜率和方程,联立抛物线方程,运用直线和抛物线相切的条件:鉴别式为0,解方程可得p,从而获得所求抛物线方程;Ⅱ可设过点的直线的方程为,即,代入抛物线方程,设,,运用韦达定理,由导数可得切线的斜率,分别求得M,N处切线的方程,求得交点A的坐标,B和C的坐标,设过A,B,C的外接圆的方程为,,由待定系数法解方程可得D,E,F,由圆过定点的求法,可得所求定点;求得的外接圆的半径r,再由二次函数的最值求法,可得所求最小值.本题考察抛物线的方程和性质,考察直线和抛物线的地点关系,注意联立直线方程和抛物线方程,运用韦达定理,同时考察圆的方程的求法和运用,以及圆过定点的求法,考查化简运算能力和推理能力,是一道综合题.11。

浙江省2020版数学高三上学期理数期中考试试卷D卷

浙江省2020版数学高三上学期理数期中考试试卷D卷

浙江省2020版数学高三上学期理数期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高二上·长沙月考) 已知全集,集合,则()A .B .C .D .2. (2分) (2020高二下·宁波期中) 复数在复平面内的对应点位于()A . 第一象限B . 第三象限C . 第二象限D . 第四象限3. (2分) (2020高二下·东阳期中) 已知,,且,则实数的值为()A . -2B . 2C . 8D . -84. (2分)(2017·腾冲模拟) 已知直线l⊥平面α,直线m⊂平面β,则“α∥β”是“l⊥m”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)如果一个几何体的三视图是如图所示(单位:cm)则此几何体的表面积是()A .B . 22cm2C .D .6. (2分) (2020高一下·乌拉特前旗月考) 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得至其关,要见次日行里数,请公仔细算相还.”其意思是有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A . 96里B . 48里C . 192里D . 24里7. (2分) (2019高二上·六安月考) 若对于任意的 ,关于的不等式恒成立,则的最小值为()A .B .C .D .8. (2分) (2017高二上·黑龙江月考) 直线与圆相切,则的最大值为()A . 1B .C .D .9. (2分)已知函数f(x)=sinωx(ω>0)的图象与直线y=1的相邻交点之间的距离为π,f(x)的图象向左平移个单位后,得到函数y=g(x)的图象.下列关于y=g(x)的说法正确的是()A . 图象关于点(-,0)中心对称B . 图象关于x=-轴对称C . 在区间[-,-]上单调递增D . 在区间[-,]上单调递减10. (2分)某程序框图如图所示,该程序运行后输出的值是()A . 3B . 4C . 5D . 611. (2分) (2017高二下·潍坊期中) 甲、乙、丙三位同学被问到是否去过济南、潍坊、青岛三个城市时,甲说:我去过的城市比乙多,但没去过潍坊;乙说:我没去过青岛;丙说:我们三人去过同一城市;由此可判断乙去过的城市为()A . 济南B . 青岛C . 济南和潍坊D . 济南和青岛12. (2分) (2019高一上·纳雍期中) 下列函数中,在其定义域内既为奇函数且又为增函数的是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一上·南昌期末) 函数y=2x2﹣2x﹣3有以下4个结论:①定义域为R,②递增区间为[1,+∞)③是非奇非偶函数;④值域是[ ,∞).其中正确的结论是________.14. (1分) (2015高三上·大庆期末) 如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an ,则a6=________;+ + +…+ =________.15. (1分) (2017高三上·漳州开学考) 如图所示,直线y=kx分抛物线y=x2﹣x与x轴所围成图形为面积相等的两部分,则实数k的值为________.16. (1分)(2017·南通模拟) 我们知道,以正三角形的三边中点为顶点的三角形与原三角形的面积之比为1:4,类比该命题得,以正四面体的四个面的中心为顶点的四面体与原四面体的体积之比为________.三、解答题 (共7题;共72分)17. (2分) (2020高一下·成都期末) 已知数列的前项和满足(1)求数列的通项公式;(2)设点列都在函数的图象上,依次连结形成折线.记折线对应的函数为,求不等式组所表示的平面区域的面积18. (10分) (2016高一上·浦东期末) 如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.19. (10分) (2019高三上·黑龙江月考) 在中,分别是三个内角的对边,若,且 .(Ⅰ)求及的值;(Ⅱ)求的值.20. (15分)(2017·巢湖模拟) 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展开式中x的系数恰好是数列{an}的前n项和Sn .(1)求数列{an}的通项公式;(2)数列{bn}满足,记数列{bn}的前n项和为Tn ,求证:Tn<1.21. (15分) (2017高三上·襄阳期中) 设f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一的极大值点x0 ,且.22. (10分)(2019·绵阳模拟) 在平面直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为.(1)求曲线的普通方程;(2)直线的参数方程(为参数),直线与轴交于点,与曲线的交点为,,当取最小值时,求直线的直角坐标方程.23. (10分) (2016高二下·芒市期中) 已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共72分) 17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。

浙江省镇海中学2020届高三上学期期中考试数学试题Word版含解析

浙江省镇海中学2020届高三上学期期中考试数学试题Word版含解析
可以求出集合A, B,然后进行交集的运算求出,从而得出的元素的个数. 本题考查了描述法、列举法的定义,一元二次不等式的解法,对数函数的单调性,考查 了计算能力,属于基础题.
2.【答案】D
【解析】解:,b,且,取,可排除AB;取,可排除C.
由不等式的性质知当时,,故D正确.
故选:D.
根据不等式的基本性质,结合特殊值,可判断选项正误. 本题考查了不等式的基本性质,属基础题.
9.【答案】A
【解析】【分析】 设出椭圆方程与双曲线方程,再设,,由椭圆和双曲线的定义,解方程可得s,t,再
由余弦定理,可得a,m与c的关系,结合离心率公式,以及基本不等式,可得所求最 小值.
本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,以及 基本不等式的运用,考查化简整理的运算能力,属于中档题.
本题主要考查函数与图象的识别和判断, 利用函数的奇偶性和极限思想, 利用排除法是 解决本题的关键.
5.【答案】B
【解析】【分析】 几何体为侧放的五棱柱,底面为正视图中的五边形,棱柱的高为4.
本题考查了棱柱的结构特征和三视图,属于基础题.
【解答】
由三视图可知几何体为五棱柱,底面为正视图中的五边形,高为4.
n求的取值范围.
20.如图,在三棱锥中,和都为等腰直角三角形,,,M为AC的中点,且.
I求二面角的大小;
n求直线PM与平面PBC所成角的正弦值.
21.已知数列的前n项和为,且满足:
I求数列的通项公式;
n数列满足,,求数列通项公式.
22.在平面直角坐标系中,已知,,若线段FP的中垂线I与抛物线C:总是相切.
A.2B.C.D.9
二、填空题(本大题共7小题)
11.抛物线的焦点坐标是,准线方程是•

2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题Word版含解析

2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题Word版含解析

2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题一、选择题(本大题共8个小题,每小题3分,共24分.)1.(3分)若全集U=R,集合A={x|x2﹣4≥0},则∁U A=()A.(﹣2,2)B.(﹣,)C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣]∪[,+∞)2.(3分)函数y=3﹣2sin2x的最小正周期为()A.B.πC.2πD.4π3.(3分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1] B.[﹣1,3] C.[﹣3,1] D.(﹣∞,﹣3]∪[1,+∞)4.(3分)对两条不相交的空间直线a和b,则()A.必定存在平面α,使得a⊂α,b⊂αB.必定存在平面α,使得a⊂α,b∥αC.必定存在直线c,使得a∥c,b∥cD.必定存在直线c,使得a∥c,b⊥c5.(3分)若||=||=2||,则向量+与的夹角为()A.B.C. D.6.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f(a)]=的实数a的个数为()A.2 B.4 C.6 D.87.(3分)以BC为底边的等腰三角形ABC中,AC边上的中线长为6,当△ABC面积最大时,腰AB长为()A.6 B.6 C.4 D.48.(3分)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为()A.相交直线 B.双曲线C.抛物线D.椭圆弧二、填空题(每小题4分,共28分.)9.(4分)已知f(x)=lg(2x﹣4),则方程f(x)=1的解是,不等式f(x)<0的解集是.10.(4分)设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a10=27,则a5= ,S9= .11.(4分)某几何体三视图如图所示,则该几何体的体积等于.12.(4分)已知实数a>0,且a≠1,函数f(x)=log a|x|在(﹣∞,0)上是减函数,函数的大小关系为.13.(4分)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.14.(4分)已知F1、F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是.15.(4分)边长为2的正三角形ABC内(包括三边)有点P,•=1,求•的取值范围.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B﹣C)=4sinB•sinC﹣1.(1)求A;(2)若a=3,sin=,求b.17.(10分)数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.18.(10分)在三棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D为CC1中点,(Ⅰ)求证:CC1⊥平面A1B1D;(Ⅱ)求DH与平面AA1C1C所成角的正弦值.19.(10分)已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.(1)求抛物线方程;(2)试证线段AB的垂直平分线经过定点,并求此定点;(3)求△ABC面积的最大值.20.(10分)已知函数f(x)=x|x﹣a|+bx(Ⅰ)当a=2,且f(x)是R上的增函数,求实数b的取值范围;(Ⅱ)当b=﹣2,且对任意a∈(﹣2,4),关于x的程f(x)=tf(a)有三个不相等的实数根,求实数t 的取值范围.2020-2021学年浙江省绍兴一中高三(上)期中考试数学(文科)试题参考答案一、选择题(本大题共8个小题,每小题3分,共24分.)1.(3分)若全集U=R,集合A={x|x2﹣4≥0},则∁U A=()A.(﹣2,2)B.(﹣,)C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣]∪[,+∞)【分析】所有不属于A的元素组成的集合就是我们所求,故应先求出集合A.再求其补集即得.【解答】解:A={x|x≥2或x≤﹣2},易知C∪A={x|﹣2<x<2},故选A.【点评】本题考查了补集的运算、一元二次不等式,属于基础运算.2.(3分)函数y=3﹣2sin2x的最小正周期为()A.B.πC.2πD.4π【分析】利用降幂法化简函数y,即可求出它的最小正周期.【解答】解:∵函数y=3﹣2sin2x=3﹣2•=2+cos2x,∴函数y的最小正周期为T==π.故选:B.【点评】本题考查了三角函数的化简以及求三角函数最小正周期的应用问题,是基础题目.3.(3分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1] B.[﹣1,3] C.[﹣3,1] D.(﹣∞,﹣3]∪[1,+∞)【分析】根据直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,可得圆心到直线x﹣y+1=0的距离不大于半径,从而可得不等式,即可求得实数a取值范围.【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.【点评】本题考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离不大于半径,建立不等式.4.(3分)对两条不相交的空间直线a和b,则()A.必定存在平面α,使得a⊂α,b⊂αB.必定存在平面α,使得a⊂α,b∥αC.必定存在直线c,使得a∥c,b∥cD.必定存在直线c,使得a∥c,b⊥c【分析】根据空间直线的位置关系、直线与平面的位置关系和平面与平面的位置关系的性质与判定,对各个选项依次加以判别,即可得到B项是正确的,而A、C、D都存在反例而不正确.【解答】解:对于A,若两条直线a、b是异面直线时,则不存在平面α使得a⊂α且b⊂α成立,故A不正确;对于B,因为a、b不相交,所以a、b的位置关系是平行或异面:①当a、b平行时,显然存在平面α,使得a⊂α且b∥α成立;②当a、b异面时,设它们的公垂线为c,在a、b上的垂足分别为A、B.则经过A、B且与c垂直的两个平面互相平行,设过A的平面为α,过B的平面为β,则α∥β,且a、b分别在α、β内,此时存在平面α,使得a⊂α且b∥α成立.故B正确;对于C,若两条直线a、b是异面直线时,则不存存在直线c,使得a∥c且b∥c成立,故C不正确;对于D,当a、b所成的角不是直角时,不存在直线c,使得a∥c且b⊥c成立,故D不正确.综上所述,只有B项正确.故选:B【点评】本题给出空间直线不相交,要我们判定几个命题的真假性,考查了空间直线的位置关系、直线与平面的位置关系和平面与平面的位置关系等知识,属于基础题.5.(3分)若||=||=2||,则向量+与的夹角为()A.B.C. D.【分析】将已知式子平方可得=0,代入向量的夹角公式可得其余弦值,结合夹角的范围可得答案.【解答】解:∵,∴,两边平方可得=,化简可得=0,设向量与的夹角为θ则可得cosθ====,又θ∈[0,π],故θ=故选B.【点评】本题考查数量积与向量的夹角,涉及向量的模长公式,属中档题.6.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f(a)]=的实数a的个数为()A.2 B.4 C.6 D.8【分析】令f(a)=x,则f[f(a)]=转化为f(x)=.先解f(x)=在x≥0时的解,再利用偶函数的性质,求出f(x)=在x<0时的解,最后解方程f(a)=x即可.【解答】解:令f(a)=x,则f[f(a)]=变形为f(x)=;当x≥0时,f(x)=﹣(x﹣1)2+1=,解得x1=1+,x2=1﹣;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(a)=1+,1﹣,﹣1﹣,﹣1+;当a≥0时,f(a)=﹣(a﹣1)2+1=1+,方程无解;f(a)=﹣(a﹣1)2+1=1﹣,方程有2解;f(a)=﹣(a﹣1)2+1=﹣1﹣,方程有1解;f(a)=﹣(a﹣1)2+1=﹣1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f[f(a)]=的实数a的个数为8,故选D.【点评】本题综合考查了函数的奇偶性和方程的解的个数问题,同时运用了函数与方程思想、转化思想和分类讨论等数学思想方法,对学生综合运用知识解决问题的能力要求较高,是高考的热点问题.7.(3分)以BC为底边的等腰三角形ABC中,AC边上的中线长为6,当△ABC面积最大时,腰AB长为()A.6 B.6 C.4 D.4【分析】设D为AC中点,由已知及余弦定理可求cosA=,在△ABD中,由余弦定理可求2a2+b2=144,利用配方法可得S=ah=,利用二次函数的图象和性质即可得解当△ABC面积最大时,腰AB长.【解答】解:如下图所示,设D为AC中点,由余弦定理,cosA==,在△ABD中,BD2=b2+()2﹣2×,可得:2a2+b2=144,所以,S=ah====,所以,当a2=32时,S有最大值,此时,b2=144﹣2a2=80,解得:b=4,即腰长AB=4.故选:D.【点评】本题主要考查了余弦定理,二次函数的图象和性质在解三角形中的应用,考查了配方法的应用,考查了数形结合思想和转化思想的应用,属于中档题.8.(3分)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为()A.相交直线 B.双曲线C.抛物线D.椭圆弧【分析】建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和y=0代入即可求得轨迹.【解答】解:如图所示,建立坐标系,不妨设两条互相垂直的异面直线为OA,BC,设OB=a,P(x,y,z)到直线OA,BC的距离相等,∴x2+z2=(x﹣a)2+y2,∴2ax﹣y2+z2﹣1=0若被平面xoy所截,则z=0,y2=2ax﹣1;若被平面xoz所截,则y=0,z2=﹣2ax+1故选C.【点评】本题主要考查了抛物线的方程.考查了学生分析归纳和推理的能力.二、填空题(每小题4分,共28分.)9.(4分)已知f(x)=lg(2x﹣4),则方程f(x)=1的解是7 ,不等式f(x)<0的解集是(2,2.5).【分析】由f(x)=1,利用对数方程,可得结论;由f(x)<0,利用对数不等式,即可得出结论.【解答】解:∵f(x)=1,∴lg(2x﹣4)=1,∴2x﹣4=10,∴x=7;∵f(x)<0,∴0<2x﹣4<1,∴2<x<2.5,∴不等式f(x)<0的解集是(2,2.5).故答案为:7;(2,2.5).【点评】本题考查对数方程、对数不等式,比较基础.10.(4分)设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a10=27,则a5= 9 ,S9= 81 .【分析】等差数列的性质可得:a1+a4+a10=27=3a5,解得a5,再利用S9==9a5.即可得出.【解答】解:由等差数列的性质可得:a1+a4+a10=27=3a5,解得a5=9,∴S9==9a5=81.故答案分别为:9;81.【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.11.(4分)几何体三视图如图所示,则该几何体的体积等于 4 .【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中:侧面PAB⊥底面BACD,底面为矩形ABCD.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中:侧面PAB⊥底面BACD,底面为矩形ABCD.∴该几何体的体积V==4,故答案为:4.【点评】本题考查了四棱锥的三视图及其体积计算公式,考查了推理能力与计算能力,属于基础题.12.(4分)已知实数a>0,且a≠1,函数f(x)=log a|x|在(﹣∞,0)上是减函数,函数的大小关系为g(2)<g(﹣3)<g(4).【分析】由已知中函数f(x)=log a|x|在(﹣∞,0)上是减函数,我们根据复合函数的单调性,可求出a 与1的关系,进而判断出函数的奇偶性及单调区间,再根据偶函数函数值大小的判断方法,即可得到结论.【解答】解:∵函数f(x)=log a|x|在(﹣∞,0)上是减函数,令u=|x|,则y=log a u,由u=|x|在(﹣∞,0)上是减函数,及复合函数同增异减的原则可得外函数y=log a u为增函数,即a>1又∵函数为偶函数且函数在[0,+∞)上单调递增,在(﹣∞,0]上单调递减且|2|<|﹣3|<|4|∴g(2)<g(﹣3)<g(4)故答案为:g(2)<g(﹣3)<g(4)【点评】本题考查的知识点是指数函数单调性的应用,其中利用复合函数的单调性性质,确定底数a的取值范围是解答本题的关键.13.(4分)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.【解答】解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2=8,在a=b=4时是等号成立,∴a+b的最小值为8.故答案为:8【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(4分)已知F1、F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率的取值范围是.【分析】设A点坐标为(m,n),则直线AF1的方程为(m+c)y﹣n(x+c)=0,求出右焦点F2(c,0)到该直线的距离,可得直线AF1的方程为ax﹣by+ac=0,根据A是双曲线上的点,可得b4﹣a4>0,即可求出双曲线的离心率的取值范围.【解答】解:设A点坐标为(m,n),则直线AF1的方程为(m+c)y﹣n(x+c)=0,右焦点F2(c,0)到该直线的距离=2a,所以n=(m+c),所以直线AF1的方程为ax﹣by+ac=0,与﹣=1联立可得(b4﹣a4)x2﹣2a4cx﹣a4c2﹣a2b4=0,因为A在右支上,所以b4﹣a4>0,所以b2﹣a2>0,所以c2﹣2a2>0,即e>.故答案为:.【点评】本题考查双曲线的几何性质,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.15.(4分)边长为2的正三角形ABC内(包括三边)有点P,•=1,求•的取值范围[3﹣2,5﹣] .【分析】先建立坐标系,根据•=1,得到点P在(x﹣1)2+y2=2的半圆上,根据向量的数量积得到•=﹣x﹣y+4,设x+y=t,根据直线和圆的位置关系额判断t的范围,即可求出•的取值范围.【解答】解:以B为原点,BC所在的直线为x轴,建立如图所示的坐标系,∵正三角形ABC边长为2,∴B(0,0),A(1,),C(2,0),设P的坐标为(x,y),(0≤x≤2,0≤y≤),∴=(﹣x,﹣y),=(2﹣x,﹣y),∴•=x(x﹣2)+y2=1,即点P在(x﹣1)2+y2=2的半圆上,∵=(﹣1,﹣)∴•=﹣x﹣y+4,设x+y=t,则直线x+y﹣t=0与圆交点,∴d=≤,解得0≤t≤2+1,当直线x+y﹣t=0过点D(﹣1,0)时开始有交点,∴﹣1=t,即t≥﹣1,∴﹣1≤t≤2+1,∴3﹣2≤4﹣t≤5﹣,故•的取值范围为[3﹣2,5﹣].故答案为:[3﹣2,5﹣].【点评】本题考查了数量积运算,直线和圆的位置关系,培养了学生的运算能力和转化能力,属于中档题.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B﹣C)=4sinB•sinC﹣1.(1)求A;(2)若a=3,sin=,求b.【分析】(1)由已知利用两角和的余弦公式展开整理,cos(B+C)=﹣.可求B+C,进而可求A(2)由sin,可求cos=,代入sinB=2sin cos可求B,然后由正弦定理,可求b【解答】解:(1)由2cos(B﹣C)=4sinBsinC﹣1 得,2(cosBcosC+sinBsinC)﹣4sinBsinC=﹣1,即2(cosBcosC﹣sinBsinC)=﹣1.从而2cos(B+C)=﹣1,得cos(B+C)=﹣.…4分∵0<B+C<π∴B+C=,故A=.…6分(2)由题意可得,0<B<π∴,由sin,得cos=,∴sinB=2sin cos=.…10分由正弦定理可得,∴,解得b=.…12分.【点评】本题主要考查了两角和三角公式的应用,由余弦值求解角,同角基本关系、二倍角公式、正弦定理的应用等公式综合应用.17.(10分)数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.【分析】(I)由已知中(n∈N+),我们易变形得:,即,进而根据等差数列的定义,即可得到结论;(II)由(I)的结论,我们可以先求出数列的通项公式,进一步得到数列{a n}的通项公式a n;(Ⅲ)由(II)中数列{a n}的通项公式,及b n=n(n+1)a n,我们易得到数列{b n}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{b n}的前n项和S n.【解答】解:(Ⅰ)证明:由已知可得,即,即∴数列是公差为1的等差数列(5分)(Ⅱ)由(Ⅰ)知,∴(8分)(Ⅲ)由(Ⅱ)知b n=n•2nS n=1•2+2•22+3•23++n•2n2S n=1•22+2•23+…+(n﹣1)•2n+n•2n+1(10分)相减得:=2n+1﹣2﹣n•2n+1(12分)∴S n=(n﹣1)•2n+1+2【点评】本题考查的知识点是数列的递推公式及数列求各,其中(I)中利用递推公式,得到数列是等差数列并求出其通项公式是解答本题的关键.18.(10分)在三棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D为CC1中点,(Ⅰ)求证:CC1⊥平面A1B1D;(Ⅱ)求DH与平面AA1C1C所成角的正弦值.【分析】方法一:常规解法(I)由已知中,棱柱ABC﹣A1B1C1中,侧面AA1B1B是边长为2的正方形,易得CC1⊥A1B1,取A1B1中点E,可证出DE⊥CC1,结合线面垂直的判定定理可得CC1⊥平面A1B1D;(II)取AA1中点F,连CF,作HK⊥CF于K,结合(I)的结论,我们可得DH与平面AA1C1C所成角为∠HDK,解Rt△CFH与Rt△DHK,即可得到DH与平面AA1C1C所成角的正弦值.方法二:向量法(I)以H为原点,建立空间直角坐标系,分别求出向量的坐标,根据坐标的数量积为0,易得到CC1⊥A1D,CC1⊥B1D,进而根据线面垂直的判定定理得到CC1⊥平面A1B1D;(II)求出直线DH的方向向量及平面AA1C1C的法向量,代入向量夹角公式,即可求出DH与平面AA1C1C所成角的正弦值.【解答】证明:方法一:(Ⅰ)因为CC1∥AA1且正方形中AA1⊥A1B1,所以CC1⊥A1B1,取A1B1中点E,则HE∥BB1∥CC1且,又D为CC1的中点,所以,得平行四边形HEDC,因此CH∥DE,又CH⊥平面AA1B1B,得CH⊥HE,DE⊥HE,所以DE⊥CC1∴CC1⊥平面A1B1D(6分)解:(Ⅱ)取AA1中点F,连CF,作HK⊥CF于K因为CH∥DE,CF∥A1D,所以平面CFH∥平面A1B1D,由(Ⅰ)得CC1⊥平面A1B1D,所以CC1⊥平面CFH,又HK⊂平面CFH,所以HK⊥CC1,又HK⊥CF,得HK⊥平面AA1C1C,所以DH与平面AA1C1C 所成角为∠HDK(10分)在Rt△CFH中,,在Rt△DHK中,由于DH=2,(14分)方法二:(向量法)证明:(Ⅰ)如图,以H为原点,建立空间直角坐标系,则C(0,0,),C1(),A1(),B1(0,,0),所以,,∴,,因此CC1⊥平面A1B1D;(6分)解:(Ⅱ)设平面AA1C1C的法向量,由于则,得,所以(10分)又,所以(14分)【点评】本题考查的知识点是直线与平面所成的角,直线与平面垂直的判定,其中方法一的关键是熟练掌握空间直线与平面关系的判定、性质及定义,方法二的关键是建立空间坐标系,将线面夹角问题转化为向量夹角的问题.19.(10分)已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.(1)求抛物线方程;(2)试证线段AB的垂直平分线经过定点,并求此定点;(3)求△ABC面积的最大值.【分析】(1)由题意,2p=6,即可得出抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),求出线段AB的垂直平分线的方程由此能求出直线AB的垂直平分线经过定点C(5,0).(3)直线AB的方程为y﹣y0=(x﹣2),代入y2=6x,由此利用两点间距离公式和点到直线距离公式能求出△ABC面积的表达式,利用均值定理能求出ABC面积的最大值.【解答】(1)解:由题意,2p=6,∴抛物线方程为y2=6x.…(2分)(2)设线段AB的中点为M(x0,y0),则x0=2,y0=,k AB==.线段AB的垂直平分线的方程是y﹣y0=﹣(x﹣2),①由题意知x=5,y=0是①的一个解,所以线段AB的垂直平分线与x轴的交点C为定点,且点C坐标为(5,0).所以直线AB的垂直平分线经过定点C(5,0).…(4分)(2)由①知直线AB的方程为y﹣y0=(x﹣2),①即x=(y﹣y0)+2,②②代入y2=6x得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02﹣12=0,③依题意,y1,y2是方程③的两个实根,且y1≠y2,所以△>0,﹣2<y0<2.|AB|==.定点C(5,0)到线段AB的距离h=|CM|=.∴S△ABC=•.…(8分)(3)由(2)知S△ABC=•≤=,…(11分)当且仅当=24﹣2,即y0=所以,△ABC面积的最大值为.…(13分)【点评】本题考查直线的垂直平分线经过定点的证明,考查三角形面积的表达式的求法,考查三角形面积的最大值的求法,解题时要认真审题,注意均值定理的合理运用.20.(10分)已知函数f(x)=x|x﹣a|+bx(Ⅰ)当a=2,且f(x)是R上的增函数,求实数b的取值范围;(Ⅱ)当b=﹣2,且对任意a∈(﹣2,4),关于x的程f(x)=tf(a)有三个不相等的实数根,求实数t 的取值范围.【分析】(Ⅰ)去绝对值号得,f(x)在R上递增等价于这两段函数分别递增,从而解得;(Ⅱ),tf(a)=﹣2ta,讨论a以确定函数的单调区间,从而求实数t的取值范围.【解答】解:(Ⅰ),因为f(x)连续,所以f(x)在R上递增等价于这两段函数分别递增,所以,解得,b≥2;(Ⅱ),tf(a)=﹣2ta,当2≤a≤4时,<≤a,f(x)在(﹣∞,)上递增,在(,a)上递减,在(a,+∞)上递增,所以f极大(x)=f()=﹣a+1,f极小(x)=f(a)=﹣2a,所以对2≤a≤4恒成立,解得:0<t<1,当﹣2<a<2时,<a<,f(x)在(﹣∞,)上递增,在(,)上递减,在(,+∞)上递增,所以f极大(x)=f()=﹣a+1,f极小(x)=f()=﹣﹣a﹣1,所以﹣﹣a﹣1<﹣2ta<﹣a+1对﹣2<a<2恒成立,解得:0≤t≤1,综上所述,0<t<1.【点评】本题考查了函数的性质的判断与应用,同时考查了数形结合的数学思想,属于难题.。

浙江省2020版高三上学期期中数学试卷(理科)D卷

浙江省2020版高三上学期期中数学试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·温州模拟) 设集合A={x∈R|x>0},B={x∈R|x2≤1},则A∩B=()A . (0,1)B . (0,1]C . [﹣1,1]D . [﹣1,+∞)2. (2分)(2017·衡阳模拟) 设i是虚数单位,表示复数z的共轭复数,若z=2﹣i,则z+i 在复平面内所对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2016高一下·枣阳期中) 已知数列{an},{bn},满足a1=b1=3,an+1﹣an= =3,n∈N* ,若数列{cn}满足cn=b ,则c2013=()A . 92012B . 272012C . 92013D . 2720134. (2分)已知sin(+φ)= 且0<φ<π,则tanφ=()A .B .C .D .5. (2分) (2019高一下·诸暨期中) 如图,在中,,,,则()A .B .C .D .6. (2分) (2017高一下·荔湾期末) 已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是()A . 4B . 2C . 2D .7. (2分) (2016高二下·洛阳期末) 已知函数f(x)=x3﹣ ax2 ,且关于x的方程f(x)+a=0有三个不等的实数根,则实数a的取值范围是()A . (﹣∞,﹣)∪(0,)B . (﹣,0)∪(,+∞)C . (﹣,)D . (﹣∞,﹣)∪(,+∞)8. (2分)已知命题:函数的图象恒过定点;命题:若函数为偶函数,则的图象关于直线对称.下列命题为真命题的是()A .B .C .D .9. (2分)(2019·石家庄模拟) 已知,则下列不等式一定成立的是()A .B .C .D .10. (2分)若变量满足约束条件且的最大值为a,最小值为b,则a-b的值是()A . 48B . 30C . 24D . 1611. (2分)(2017·山东模拟) 已知f(x)是定义在R上的偶函数且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A . 充分而不必要的条件B . 必要而不充分的条件C . 充要条件D . 既不充分也不必要的条件12. (2分) (2016高二下·永川期中) 已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=﹣f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:①f(2015)>f(2014);②函数f(x)在定义域上是周期为3的函数;③直线x﹣3y=0与函数f(x)的图象有2个交点;④函数f(x)的值域为[0,1).其中不正确的命题个数是()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分)(2018·荆州模拟) 已知,满足不等式组,若不等式恒成立,则实数的取值范围是________.14. (1分) (2017高三上·惠州开学考) 在△ABC中,若A= ,AB=6,AC=3 ,点D在BC的边上且AD=BD,则AD=________.15. (1分) (2019高一下·上海月考) 若数列满足,,,则该数列的通项公式 ________.16. (1分) (2018高一上·黑龙江期中) 已知函数和同时满足以下两个条件:⑴对于任意实数,都有或;⑵总存在,使成立.则实数的取值范围是 ________.三、解答题 (共6题;共60分)17. (10分)(2018·河北模拟) 函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.(1)求函数的解折式;(2)在中,角满足,且其外接圆的半径,求的面积的最大值.18. (10分) (2020高一下·武汉期中) 如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.(1)求| |;(2)已知点D是AB上一点,满足=λ ,点E是边CB上一点,满足=λ .①当λ= 时,求• ;②是否存在非零实数λ,使得⊥ ?若存在,求出的λ值;若不存在,请说明理由.19. (10分)(2019·呼和浩特模拟) 设是等比数列的前项和.已知,,成等差数列, .(1)求数列的通项公式;(2)设 .若,求数列的前项和 .20. (10分) (2017高二下·中原期末) 若二次函数f(x)=ax2+bx+c(a、b∈R)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.21. (10分) (2018高二下·双流期末) 已知函数,且当时,取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.22. (10分) (2017高三下·上高开学考) 设f(x)=|x﹣3|+|x﹣4|.(1)解不等式f(x)≤2;(2)若存在实数x满足f(x)≤ax﹣1,试求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

2020-2020学年浙江省杭州市高一上期末数学试卷(含答案解析)

2020-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N=,∁U M=.16.(3分)()+()=;log412﹣log43=.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2020-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f (x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5} ,∁U M={1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()=3;log412﹣log43=1.【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为﹣1.【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16.【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。

2020-2021学年浙江省杭州中学八年级(下)期中数学试卷(Word版 含解析)

2020-2021学年浙江省杭州中学八年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1.下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个2.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8 3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣34.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9 5.若一组数据x1+1,x2+1,…,x n+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,x n+2的平均数和方差分别为()A.17,2B.18,2C.17,3D.18,36.如图,在△ABC中,∠C=50°,AC=BC,点D在AC边上,以AB,AD为边作▱ABED,则∠E的度数为()A.50°B.55°C.65°D.70°7.某城市2013年底有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,要求到2015年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1﹣x)2=3008.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1309.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④10.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4B.5C.6D.7二、填空题(本题有6个小题,每小题4分,共24分)11.要使二次根式有意义,则a的取值范围是.12.已知正n边形的每个内角为144°,则n=.13.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是分.14.已知关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是.15.如图,四边形ABCD中,AD∥BC,且∠B+∠C=90°,分别以AB、AD、DC为边向形外作正方形ABEF、正方形ADHG、正方形DCJI,且其面积依次记为S1、S2、S3,若S1+S3=4S2,则=.16.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD 的周长等于.三、解答题(本题有7个小题,共66分)17.计算下列各式:(1)﹣3+×;(2)(﹣)2+.18.解方程:(1)x2+x﹣1=0;(2)x(x+4)=3x+12.19.某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定.现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:克)甲:500,499,500,500,503,498,497,502,500,501,乙:499,500,498,501,500,501,500,499,500,502.你认为该选择哪一家制造厂?20.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.21.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?22.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.23.如图,长方形ABCD中(长方形的对边平行且相等,每个角都是90°),AB=6cm,AD=2cm,动点P,Q分别从点A,C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向点D移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t(s),问:(1)当t=1s时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=s时,以点P,Q,D为顶点的三角形是等腰三角形.(直接写出答案)参考答案一、选择题(本题有10个小题,每小题3分,共30分)1.下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.解:根据中心对称图形的定义可知从左到右第1个图形和第三个图形是中心对称图形,第二和第四个图形不是中心对称图形.故选:C.2.下列各式计算正确的是()A.8﹣2=6B.5+5=10C.4÷2=2D.4×2=8【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣3【分析】把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,然后解关于a的方程即可.解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故选:B.4.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.5.若一组数据x1+1,x2+1,…,x n+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,x n+2的平均数和方差分别为()A.17,2B.18,2C.17,3D.18,3【分析】根据平均数和方差的变化规律,即可得出答案.解:∵数据x1+1,x2+1,…,x n+1的平均数为17,∴x1+2,x2+2,…,x n+2的平均数为18,∵数据x1+1,x2+1,…,x n+1的方差为2,∴数据x1+2,x2+2,…,x n+2的方差不变,还是2;故选:B.6.如图,在△ABC中,∠C=50°,AC=BC,点D在AC边上,以AB,AD为边作▱ABED,则∠E的度数为()A.50°B.55°C.65°D.70°【分析】根据等腰三角形的性质可得∠A的度数,再根据平行四边形的性质即可得∠E 的度数.解:∵∠C=50°,AC=BC,∴∠A=∠ABC=(180°﹣50°)=65°,∵四边形ABED是平行四边形,∴∠E=∠A=65°.故选:C.7.某城市2013年底有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,要求到2015年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1﹣x)2=300【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.解:设绿化面积平均每年的增长率为x,根据题意即可列出方程300(1+x)2=363.故选:B.8.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.130【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:如图所示,∵它的每一级的长宽高为20cm,宽30cm,长50cm,∴AB==50(cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是50cm,故选:B.9.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①若a+b+c=0,那么x=1为一个实数根,如果原方程另一个实数根也是1,那么b2﹣4ac=0,进而求解.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.解:①若a+b+c=0,那么x=1为一个实数根.如果原方程另一个实数根也是1,那么b2﹣4ac=0,因此①错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式加(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选:C.10.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4B.5C.6D.7【分析】影阴部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.解:设平行四边形的面积为S,则S△CBE=S△CDF=S,由图形可知,△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积∴S=S△CBE+S△CDF+2+S4+3﹣12,即S=S+S+2+S4+3﹣12,解得S4=7,故选:D.二、填空题(本题有6个小题,每小题4分,共24分)11.要使二次根式有意义,则a的取值范围是a≥1.【分析】根据二次根式有意义的条件列式计算可求解.解:由题意得a﹣1≥0,解得a≥1,故答案为a≥1.12.已知正n边形的每个内角为144°,则n=10.【分析】根据多边形内角和外角的关系可求解正n边形的外角的度数,再根据多边形的外角和定理可直接求解.解:由题意得正n边形的每一个外角为180°﹣144°=36°,n=360°÷36°=10,故答案为10.13.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是92分.【分析】直接利用平时、期中和期末三项成绩按3:3:4的比例计算,进而利用平时、期中和期末成绩分别是90分、90分和95分,代入求出答案.解:∵学生的单科学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得,某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,∴他本学期数学学期综合成绩是:×90+90×+×95=92(分).故答案为:92.14.已知关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是m≤3且m≠2.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故答案为m≤3且m≠2.15.如图,四边形ABCD中,AD∥BC,且∠B+∠C=90°,分别以AB、AD、DC为边向形外作正方形ABEF、正方形ADHG、正方形DCJI,且其面积依次记为S1、S2、S3,若S1+S3=4S2,则=3.【分析】过点A作AE∥BC交CD于点E,得到平行四边形ABCE和Rt△ADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边.解:过点A作AE∥DC交CB于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=CE,DC=AE,∠BCD=∠AEB,∵∠ABC+∠BCD=90°,∴∠ABC+∠AEB=90°,∴∠BAE=90°,在Rt△ABE中,AB2+AE2=BE2,∵S1=AB2,S2=AD2=BE2,S3=DC2=AE2,∵S1+S3=4S2,∴AB2+DC2=AB2+AE2=4AD2=BE2,∴=,∴=3.故答案为:3.16.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD 的周长等于18或30.【分析】分∠ABC为锐角和钝角两种情况讨论,根据勾股定理计算得到BC的长即可.解:如图1,当∠ABC是锐角时,在直角△ABE中,AB=5,AE=4,由勾股定理得,BE=3,又EC=7,∴BC=10,∴▱ABCD的周长等于30;如图2,当∠ABC是钝角时,在直角△ABE中,AB=5,AE=4,由勾股定理得,BE=3,又EC=7,∴BC=4,∴▱ABCD的周长等于18;故答案为18或30.三、解答题(本题有7个小题,共66分)17.计算下列各式:(1)﹣3+×;(2)(﹣)2+.【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式计算.解:(1)原式=6﹣6+=;(2)原式=2﹣2+3+2=5.18.解方程:(1)x2+x﹣1=0;(2)x(x+4)=3x+12.【分析】(1)利用公式法求解即即可;(2)利用因式分解法求解即可.解:(1)∵a=1,b=1,c=﹣1,∴△=12﹣4×1×(﹣1)=5>0,则x==,∴x1=,x2=;(2)∵x(x+4)=3x+12,∴x(x+4)﹣3(x+4)=0,则(x+4)(x﹣3)=0,∴x+4=0或x﹣3=0,解得x1=﹣4,x2=3.19.某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定.现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:克)甲:500,499,500,500,503,498,497,502,500,501,乙:499,500,498,501,500,501,500,499,500,502.你认为该选择哪一家制造厂?【分析】根据题意,要比较甲、乙两人的成绩更稳定,需求出甲、乙两人的成绩的方差;根据方差的计算方法,先求出甲乙的平均数,再根据公式计算方差,进行比较可得结论.解:甲的平均数:(500+499+500+500+503+498+497+502+500+501)=500(克),乙的平均数:(499+500+498+501+500+501+500+499+500+502)=500(克),s2甲=×28=2.8(克2),s2乙=×12=1.2(克2),∵s甲2>s乙2,∴选乙.20.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.【分析】(1)利用对角线互相平分的四边形是平行四边形即可证明;(2)利用菱形的面积公式计算即可;【解答】证明:(1)∵AB∥DC∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO∴△AOB≌△COD∴OD=OB∴四边形ABCD是平行四边形.(2)∵AC⊥BD∴平行四边形ABCD是菱形∴平行四边形ABCD的面积为S=AC×BD=40.21.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.22.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【分析】(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.【解答】(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(易知AF=BF,延长EF交AD于H,△AEF的面积=•EF•AH=•CB•AD=••BC•AD,由此即可证明)(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.23.如图,长方形ABCD中(长方形的对边平行且相等,每个角都是90°),AB=6cm,AD=2cm,动点P,Q分别从点A,C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向点D移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t(s),问:(1)当t=1s时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=或或或s时,以点P,Q,D为顶点的三角形是等腰三角形.(直接写出答案)【分析】(1)当t=1时,可以得出CQ=1cm,AP=2cm,就有PB=6﹣2=4(cm),由梯形的面积就可以得出四边形BCQP的面积;(2)如图1,作QE⊥AB于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可,如图2,作PE⊥CD于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可;(3)分情况讨论,如图3,当PQ=DQ时,如图4,当PD=PQ时,如图5,当PD=QD时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.解:(1)如图,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4(cm).∴S==5(cm2).答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t(cm),∴PE=6﹣2t﹣t=(6﹣3t)cm.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠A=∠D=90°,∴四边形APED是矩形,∴PE=AD=2cm.DE=AP=2t,∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,CQ=t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=或或或.故答案为:或或或.。

浙江省杭州市第二中学2019-2020学年高一数学上学期期末考试试题(含解析)


X
3
,
所以函数
y
sin
X
在区间
3
,
3
恰好取一次最大值
1,
5
1 13
所以 2
3 2 ,解得 6
6.
1 1
综上所知 6
5.
故选:C
解法二:(特殊值法)
1
X x 2 x 5
当 2 时,令 2 3 , 3
6,
0

X
3 4
,则函数
y
sin
X
在区间
0,
3 4
上不单调,
13 且 a 为第三象限角,
cos 12
所以
13 ,
tan 5

12 .
故选 C
【点睛】本题主要考查了同角三角函数间的基本关系,属于中档题.
2.函数
y
sin
2x
3
的图像(

A.
关于点
6
,
0
对称
B.
关于点 3
,
0
对称
x C. 关于直线 6 对称
x D. 关于直线 3 对称
【答案】B 【解析】 【分析】
x1 2x2 的取值范围是( )
A. [2, )
B. (2, )
C. [3, )
D. (3, )
【答案】D
【解析】
【分析】
解法一:(图象法)根据题意可知
x1 ,
x2
分别为
y
ax

y
1 x

y
loga
x

y
1 x
交点的横
x1
坐标,,再根据同底数的指数对数函数互为反函数,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】A
【解析】利用对数函数的单调性解不等式得到 ,取特殊值得到 ,从而得到“ ”是“ ”的充分不必要条件.
【详解】
因为 ,所以
根据不等式的性质得到:

反过来,因为当 时, 的值没有意义,所以
则“ ”是“ ”的充分不必要条件
故选:A
【点睛】
本题主要考查了充分不必要条件的证明,属于基础题.
4.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于()
【详解】
当 时, ,解得
当 时, ,解得: (舍)
故答案为: ;
【点睛】
本题主要考查了分段函数已知自变量求函数值以及已知函数值求自变量,属于基础题.
14.如图,四边形 中, 、 分别是以 和 为底的等腰三角形,其中 , , ,则 __________, ____________.
【答案】
【解析】由余弦定理得出 , ,由 建立等量关系,得出 的长,代入 得到 的值,利用二倍角公式得到 ,根据余弦定理即可求出 .
【详解】


因为函数 与函数 在 上都为增函数,所以函数 在 上是增函数
因为 ,
所以
函数 的零点 ,即
故选:B
【点睛】
本题主要考查了零点存在性定理的运用,属于中档题.
8.若关于x的不等式 的解集中有2个整数则实数m的取值范围是()
A. B. C. D.
【答案】C
【解析】去掉绝对值,令 , , ,画出函数 与 的草图,结合图像即可得到实数m的取值范围.
A】根据周期公式求解即可.
【详解】
因为函数 的最小正周期为
所以
故选:C
【点睛】
本题主要考查了根据正弦型函数的最小正周期求参数,属于基础题.
3.已知a,b都是实数,那么“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
【详解】
设函数 ,
当 时, ,当 时,
所以函数 在 上单调递减,在 上单调递增
所以

当 时, ,当 时,
所以函数 在 上单调递增,在 上单调递减
所以

综上,
故选:D
【点睛】
本题主要考查了比较大小,关键是利用函数的单调性来解决问题,属于中档题.
10.设O是 的外心,满足 , ,若 ,则 的面积是()
A.4B. C.8D.6
故选B.
【点睛】
本题主要考查了复数坐标的表示,属于基础题.
5.函数 的图像大致为()
A. B.
C. D.
【答案】B
【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.
详解: 为奇函数,舍去A,
舍去D;

所以舍去C;因此选B.
点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.
【答案】
【解析】由向量模长的坐标公式以及平行的坐标公式求解即可.
【详解】
,解得:
故答案为: ;
【点睛】
本题主要考查了向量坐标的模长公式、已知两向量平行求参数,属于基础题.
12.已知角 的终边经过点 ,则 _________, _________.
【答案】
【解析】由任意角的三角函数的定义以及诱导公式求解即可.
6.若 在 是增函数,则 的最大值是()
A. B. C. D.
【答案】A
【解析】根据辅助角公式,将函数 化简,结合正弦函数的单调性递增区间即可求得函数 的单调递增区间.根据闭区间 内单调递增,即可求得 的最大值.
【详解】
函数
所以
由正弦函数的单调递增区间可知, 的单调递增区间为
解得
因为在 是增函数
所以 的最大值是
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】B
【解析】由题意得 ,得到复数在复平面内对应的点 ,即可作出解答.
【详解】
由题意得,e2i=cos 2+isin 2,
∴复数在复平面内对应的点为(cos 2,sin 2).
∵2∈ ,
∴cos 2∈(-1,0),sin 2∈(0,1),
∴e2i表示的复数在复平面中对应的点位于第二象限,
【详解】
由任意角的三角函数的定义可知

所以
故答案为: ;
【点睛】
本题主要考查了任意角的三角函数的定义以及诱导公式,属于基础题.
13.已知函数 ,则 __________,若 ,则实数x的值是_______.
【答案】
【解析】先判断 ,代入第一段解析式结合对数的运算性质求解即可;讨论 和 两种情况,代入相应解析式,求解即可.
【详解】
当 时,
当 时,
令 , ,
函数 与 的草图如下图所示
由于关于x的不等式 的解集中有2个整数
则 ,即
故选:C
【点睛】
本题主要考查了一元二次不等式的解确定参数的取值范围,属于中档题.
9.设 , , ,则()
A. B. C. D.
【答案】D
【解析】构造函数 , ,利用导数得出函数 , 的单调性,结合单调性得出 , ,即可得出答案.
【详解】
由余弦定理可知:
因为 ,所以 ,解得:
【答案】B
【解析】取AC中点D,由 以及题设条件得到 ,计算 ,得到 ,由三角形面积公式求解即可.
【详解】
取AC中点D,因为O是 的外心,所以
则 ,解得:
所以

故选:B
【点睛】
本题主要考查了平面向量的数量积运算以及三角形外心的知识,属于中档题.
二、填空题
11.己知向量 , ,则 _______,若 ,则 _________.
2020届浙江省杭州地区(含周边)重点中学高三上学期期中考试数学试题
一、单选题
1.已知全集 , , ,则 ()
A. B. C. D.
【答案】D
【解析】求出集合N的补集,再进行交集运算.
【详解】
因为 ,所以
所以
故选:D
【点睛】
本题主要考查了集合的交并补混合运算,属于基础题.
2.若函数 的最小正周期为 ,则正数 的值是()
故选:A
【点睛】
本题考查了辅助角公式在三角函数化简中的应用,正弦函数单调区间的求法,属于基础题.
7.已知函数 的零点 ,其中常数a,b满足 , ,则整数 的值是()
A. B. C.1D.2
【答案】B
【解析】利用指数与对数之间的转化求出 , ,结合函数 的单调性以及零点存在性定理,即可得出整数 的值.
相关文档
最新文档