盘式永磁同步风力发电机的设计

合集下载

永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。

其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。

就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。

2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。

3.控制模式:风⼒发电机组的控制系统是综合性控制系统。

它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。

⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。

风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。

控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。

具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。

⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。

1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。

2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。

永磁直驱风力发电机结构

永磁直驱风力发电机结构

永磁直驱风力发电机结构:永磁直驱风力发电机的结构主要包括风轮、永磁同步发电机、机架及偏航系统、主控系统、变流器、空-空循环冷却系统、液压系统、润滑系统、变压器、中央监控系统、塔架和机舱等部分。

风轮是永磁风力发电机的核心部件,也是最直接受到风能作用的部分。

它由多个叶片组成,通过风力的作用使得风轮旋转。

风轮通常采用可调角度的叶片设计,以便在不同风速下获得最高效率的转动。

发电机通过法兰与风轮直接相连,省去了影响风机可靠性的最薄弱环节———齿轮箱,以及主轴系统、联轴器等传动部件。

风轮与发电机转子直联,简化了结构,缩短了传动链,最大限度地提高了机组的可靠性和传动效率。

机架和偏航系统支持整个发电机组的运行,并能根据风向的变化自动调整机舱的角度,以保证风轮始终对准风向,提高发电效率。

主控系统负责整个发电机组的运行控制,包括启动、停机、偏航、故障保护等功能。

变流器将发电机产生的电能转换为符合电网要求的电能,空-空循环冷却系统则负责冷却发电机和变流器等发热部件。

液压系统和润滑系统则分别提供机组运行所需的液压动力和润滑。

此外,永磁直驱风力发电机还包括变压器、中央监控系统、塔架和机舱等部分。

变压器将发电机产生的电能升压后送入电网,中央监控系统则负责监控整个发电机组的运行状态和性能。

塔架和机舱则构成了发电机组的支撑结构和运行环境。

1.5MW直驱永磁风力发电机总体设计

1.5MW直驱永磁风力发电机总体设计

1 6 5 0 6 9 0 1 5 0 8 8 8 . 1 0 . 9 4 8 l O 5
[ 2 】 周寿增 , 董清 飞. 超强永磁体【 l . 北京: 冶金工业出版社,
2 0 0 4
【 3 】薛玉石, 韩力, 李辉. 直驱永磁 同步风力发电机组研 究现
状与发展前景 [ J 】 。 电机与控制应用. 2 0 0 8 , 3 5 ( 4 ) .
东方 电机 》 2 0 l 4年 第 1 期
5 7 等 性 能指 标均满 足规 定要求 , 运行 平稳 , 效 率高 , 振 动小, 噪声低 。 各项性 能 指标达 到 国际 同类 产 品先
进水平。
同步 发 电机 第 1 部分 : 技 术条 件
G B / T 2 5 3 8 9 . 1 . 2 0 1 0风力 发 电机 组 低速永 磁 同 步发 电机 第 2部 分 : 试 验方 法
… 1 唐任远. 现代永磁 电机理论 与设计【 M】 . 北京 : 机械工业出
版社, 2 0 1 0
额定功率 P ( k w) 1 6 5 5 额定 电压 【 V) 6 9 2 . 3 2 7 额定电流 , ( A ) 1 5 0 1 . 6 l 绕 组电阻 R( mf D 9 . 9 0 7 电压 总谐波畸变量量( T H D) ( %) 0 . 9 2 6 绕组温升 ( K) l O 1 . 1 轴承温升( K) 3 0 噪音测 试 ( d B ) 9 0 . 6 效率效率n ( %) 9 4 . 9 振动测量 ( 1 a r n ) 0 . 6 8 7
( 2 ) 结合直 驱风 力 发 电机 的特 点 , 优 化 磁路 结 构 设计 , 推广、 应用 性 能优越 的新 型永磁 材料 。

直驱轴向磁场永磁同步风力发电机的设计

直驱轴向磁场永磁同步风力发电机的设计
打下基 础.
能优 良, 行可靠 , 运 易维 护 、 效率高 等. 由于稀 土永磁 材料、 电力 电子技术 和数 值计算 技术 的发 展 , 磁 同 永
步 发 电 机 最 近 在 风 能 转 换 系 统 中 获 得 了 广 泛 的 应
1 轴 向磁 场 永 磁 同步 发 电机 结构 特 点
摘 要 :当电机 极数 足够 多, 电机 轴 向长度 与外径 的 比率足 够 小时 , 向磁 场 电机 的转矩 和功率 密度 比 轴 传统径 向磁 场 电机 大. 另外 , 向磁 场永磁 电机还 有许 多其 它优 点 , 结 构 简单 , 向 长度短 , 轴 如 轴 节约材 料 等, 因此 轴向磁 场永磁 同步发 电机 特 别适合 于直驱 风 能转 换和 电动 车应 用场合. 阐述 轴 向磁 场永磁 同步
众 所周知 , 如果 电机 的极数 足够 多 , 向长度 与 轴 外 径 的比率足 够 小 时 , 向磁 场 永 磁 ( P 电机 轴 AF M) 的转矩 和功率密 度 比传 统径 向磁 场永 磁 ( F M) R P 电 机 大雎 . 向磁 场永 磁 电机还具 有结 构紧 凑 、 动惯 ]轴 转
可 以做 成多定 子 、 转子 的多气 隙结 构 , 多 以提 高输 出
功率. 因此轴 向永磁 同步 发 电机 特 别 适 合 应用 于 风 能转换 和电动 车辆场合 .
由于轴 向磁 场 电机 的结构 不 同于传 统径 向磁 场
的, 因此简称 为 N ( S方 案 )Tou —S 开槽 ) SN rs ( 型.
量小 , 节约材 料 , 子 绕组 散热 条 件 良好 的优 点 , 定 还
对 于有 三 个 盘 的轴 向磁 场 电机 , 以形 成 两种 可
不 同 的磁 路 方案 , 即所 谓 的 NS方案 , 子两边 的正 定

小型风力发电机总体结构的设计

小型风力发电机总体结构的设计

小型风力发电机总体结构的设计首先,塔架结构是小型风力发电机的基础支撑结构,主要作用是稳定风轮的位置和方向。

塔架通常由金属或钢筋混凝土制成,高度一般在10米至30米之间。

在设计时,需要考虑到塔架的强度、稳定性和耐久性,以及便于安装和维护。

其次,风轮(葉片)设计是小型风力发电机的核心部分,负责接受风能并驱动发电机发电。

风轮通常由数个叶片组成,常见的材料有玻璃纤维、碳纤维等。

在设计时,需要考虑到叶片的形状、长度和材料的选择,以提高风轮的效率和稳定性。

风轮的设计应考虑到叶片的形态优化,以降低风阻和噪音,提高风能的利用率。

通常采用的形状有直接扇形、折叠扇形、三角扇形等,可以通过风洞实验和仿真计算来确定最佳形状。

此外,风轮还需要考虑叶片的长度和数量,以适应不同风速和功率要求。

第三,发电机是将风能转换为电能的关键设备。

通常采用的是永磁同步发电机,可以有效提高发电效率。

永磁同步发电机结构简单、效率高、体积小、重量轻,是小型风力发电机中较为常用的一种类型。

同时,发电机还需要配备适当的传感器和电器设备,以确保风能可以稳定地转换为电能,并兼容与电网或电池的连接。

最后,控制系统是小型风力发电机的重要组成部分,主要用于监测风速、机组运行状况、电压输出等,并根据实时情况对发电机进行调节。

控制系统通常包括风速传感器、转速传感器、电流传感器、电压传感器、电池管理系统等。

这些传感器和电器设备可以与发电机和电网进行连接,实现风力发电机的自动化控制和监测。

总之,小型风力发电机的总体结构设计需要考虑到塔架结构、风轮(葉片)设计、发电机和控制系统。

这些设计要素的合理搭配和优化可以提高风力发电机的效率、稳定性和可靠性,为户外和偏远地区提供可持续的电力供应。

基于PSCAD的永磁同步风力发电机模型与仿真

基于PSCAD的永磁同步风力发电机模型与仿真

基于PSCAD的永磁同步风力发电机模型与仿真引言永磁同步风力发电机是当前广泛应用于风力发电领域的一种发电机类型。

它具有高效、低成本和可靠性高的特点,因此被广泛用于风力发电系统中。

为了更好地理解和分析永磁同步风力发电机的性能,需要进行相关的建模和仿真。

PSCAD是一种被广泛应用于电力系统仿真的软件工具,具有强大的仿真功能和友好的用户界面。

本文将介绍基于PSCAD的永磁同步风力发电机的模型建立和仿真步骤。

永磁同步风力发电机模型永磁同步风力发电机的基本原理永磁同步风力发电机是一种将风能转化为电能的装置。

它由风轮、发电机和控制系统三部分组成。

风轮接受风能并转动,发电机将机械能转化为电能,控制系统用于调节发电机的工作状态。

永磁同步风力发电机的基本原理是利用电磁感应法,通过风轮驱动发电机转动,使导体在磁场作用下产生感应电势,从而实现发电。

PSCAD中永磁同步风力发电机模型的建立首先需要在PSCAD中选择合适的电气元件进行建模,如发电机、风轮和控制系统等。

对于永磁同步风力发电机的模型建立,可以考虑以下几个方面:1.发电机模型:选择合适的发电机模型,可以根据发电机的特性来选择合适的电气元件进行建模。

一般来说,可以选择三相感应发电机或者永磁同步发电机模型。

2.风轮模型:选择合适的风轮模型,可以考虑风轮的转动惯量、风速、风向等因素。

一般来说,可以选择转动质量、转动惯量等参数进行建模。

3.控制系统模型:选择合适的控制系统模型,可以考虑对发电机转速、电压等进行调节。

一般来说,可以选择PID控制器等控制系统进行建模。

PSCAD中永磁同步风力发电机模型的仿真步骤1.创建PSCAD项目:在PSCAD软件中创建新的项目,选取适当的工程设置和仿真参数。

2.导入电气元件模型:选择合适的电气元件模型,如发电机、风轮和控制系统等,在PSCAD中导入相应的电气元件模型。

3.连接电气元件:使用线缆进行电气元件的连接,建立起完整的永磁同步风力发电机系统。

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计首先,永磁同步电机采用永磁体作为励磁源,与传统的感应电机相比,具有更高的效率和功率密度。

永磁同步电机的电磁设计主要包括磁极形状、磁路设计和绕组设计。

磁极形状是永磁同步电机电磁设计的重要组成部分。

常见的磁极形状有平面磁极、凸起磁极和凹陷磁极等。

磁极形状的选择与电机的输出功率和转速有关。

例如,对于高转速应用,凸起磁极可以减小磁场漏磁,提高电机的效率。

磁路设计是永磁同步电机电磁设计中的关键环节。

通过优化磁路设计,可以改善电机的磁路磁阻和磁导率等参数,提高电机的磁路利用率和效率。

同时,磁路设计也需要考虑减小磁铁磁感应强度损失,采用合适的磁路材料和结构设计,降低磁铁的温升,提高电机的稳定性和可靠性。

绕组设计是永磁同步电机电磁设计中的另一个重要方面。

绕组设计涉及电机的定子和转子绕组的布置和计算。

合理设计绕组可以降低电动机的电阻损耗和铜损耗,提高电机的效率。

此外,绕组设计还需要考虑绕组的散热和绝缘问题,确保电机的安全运行。

直流无刷电机是一种采用永磁转子的直流电机。

与传统的有刷直流电机相比,直流无刷电机具有更高的效率和更小的电刷磨损,可以实现长时间的高速运转。

直流无刷电机的电磁设计主要包括转子和定子的磁路设计和绕组设计。

转子磁路设计是直流无刷电机电磁设计的重要组成部分。

合理设计转子磁路可以提高磁路磁阻和磁导率,提高电机的效率和转矩输出。

通常情况下,直流无刷电机采用内置式磁铁转子,磁铁的选择和磁铁的磁场分布对电机的性能有重要影响。

定子绕组设计是直流无刷电机电磁设计的另一个重要环节。

定子绕组设计涉及到绕组的尺寸、材料选择以及绕组的布局和计算等。

合理设计绕组可以降低电阻和损耗,提高电机的效率和输出性能。

此外,定子绕组设计还需要考虑电机的散热和绝缘等问题,确保电机的稳定运行和安全性。

综上所述,永磁同步电机和直流无刷电机的电磁设计是电机设计中的重要环节。

通过优化磁极形状、磁路设计和绕组设计,可以提高电机的效率、功率密度和输出性能。

永磁同步电机电磁设计与仿真

永磁同步电机电磁设计与仿真
1永磁同步电机电磁设计介绍
永磁同步电机是一种通过利用永磁体,同步发动机和电动机来实现特定功能的机械装置。

由于对角磁悬浮电机的存在,永磁同步电机的设计具有较高的重复精度和可靠性,可以用于预示机,定频器,磁浮系统,工业和医疗系统中的驱动,包括机器人臂,位置控制,元价运算,印刷机,拨轮式打字机,传奇机和其他设备的自动调节。

2电磁设计原理
永磁同步电机的设计原理是向永磁体施加电场,使电磁转子和定子之间形成相互作用,从而产生电动力或转动力。

永磁同步电机由电气参数设置,电磁设计,定子绕组等组件组成。

它的结构简单,体积小,功率损失少,可直接变换旋转动量,对运动控制具有较高的精度和可靠性。

3仿真模拟
永磁同步电机的仿真模拟是完成永磁同步电机电磁设计的必要步骤。

通过仿真模拟,可以在设计之前就确定永磁同步电机的主要参数,并预先估计其特性。

电磁模拟软件可以模拟电磁转子,定子等,从而可以根据实际应用需求确定合适的电磁参数。

常用的仿真模拟软件有CAD,ANSYS,COMSOL等。

4仿真结果
在永磁同步电机模型分析中,仿真分析结果可以为设计提供重要参考依据,比如可以提前预估永磁同步电机的定子电阻,转子电阻,干涉电磁轮的有效数量,磁滞磁阻,转子磁阻等参数。

可以通过更改电气参数来调整实际运行电流,保证永磁同步电机运行稳定,以及延长机械装置性能保持时间。

5结论
永磁同步电机是一种高效能,精度高,结构简单的电机,它广泛应用于预示机,定频器,磁浮系统,机器人臂,印刷机,传奇机等行业。

永磁同步电机的电磁设计必须采用仿真模拟,以满足特定功能的要求,最大程度的提升机械装置的质量和效率。

《永磁同步电机》课件

《永磁同步电机》 PPT课件
contents
目录
• 永磁同步电机概述 • 永磁同步电机的设计与优化 • 永磁同步电机的控制技术 • 永磁同步电机的应用实例 • 永磁同步电机的挑战与展望
01
永磁同步电机概述
定义与工作原理
定义
永磁同步电机是一种利用永久磁体产 生磁场,通过控制器对电机电流的精 确控制实现电机转子和定子磁场同步 运行的电动机。
电动汽车驱动系统
01
电动汽车驱动系统是永磁同步电机的重要应用领域之
一。
02
永磁同步电机具有高效、可靠、低噪音等优点,能够
提高电动汽车的续航里程和性能。
03
在电动汽车驱动系统中,永磁同步电机可以作为主驱
电机,提供动力输出,实现车辆的加速和减速控制。
工业自动化设备
工业自动化设备是永磁同步电 机的另一个重要应用领域。
内运行。
噪声与振动分析
03
对电机运行过程中的噪声和振动进行测试和分析,以评估其运
行平稳性。
03
永磁同步电机的控制技 术
控制策略
PID控制
传统的控制方法,通过 比例、积分、微分三个
参数调整电机性能。
模糊控制
基于模糊逻辑的方法, 处理不确定性和非线性
问题。
神经网络控制
模仿人脑神经元网络, 处理复杂的模式和预测
02
永磁同步电机的设计与 优化
电机设计
磁路设计
根据电机性能要求,选择合适的磁路结构,如径 向、轴向或横向磁路。
绕组设计
根据电机尺寸和功率要求,设计绕组的匝数、线 径和绕组方式。
冷却系统设计
为确保电机长时间稳定运行,需设计有效的冷却 系统,如风冷或水冷。

高电感永磁同步风力发电机的设计和分析

出现上 述 问题 。文 献 [ ] 出 了基 于 高 电感 永 磁 同 1提 步 电机 的电流 型 风力 发 电 系统 。与传 统 的 电 流 型并 网逆变 器相 比 ,它 的优 势 在 于 拓 扑 简 单 ,省 去直 流
高 电感永磁同步风力发电机的设 计和分 析
黄荣赓 ,等
高 电感 永磁 同步风 力发 电机 的 设 计 和 分 析
黄荣赓 ,茆美琴 ,喻


2 00 ) 30 9
( 合肥工业大学 教育部光伏 系统工程研究 中心 ,合肥
要 :根 据新 型 的基 于电流源 型风力发 电系统 的要求 ,采用 分数 槽集 中绕组 设计 了输 出功率 为 1 w的高 电感 0k
1 高 电感永磁 同步发 电机特性
高 电感永 磁 发 电机 的等 效 模 型可 用 反 电动 势 电 压 源和 串联 电感 表 示 ,其 负 载 用 一 个 电 阻 来 模 拟 。
电压 平衡 方程 为 :
E =w j L, + () 1 () 2
变换器 提 出 了较 高 的要 求 。相 反 高 电感 电 机 由于 大 电感 的存 在 ,它 的 工 作 电 流接 近短 路 电流 ,就 不会
永 磁同步发 电机 ,并运用有 限元法 分析 了电机 在 不 同负载 情 况下 工作 特 性 。分 析结 果 表 明 ,电机 的齿槽 转 矩较 小 ,电机绕组 的感应 电动势 接近正弦 ,在一定 的转 速范 围内 ,电机输 出的 电流经整 流器 整流 以后 ,其 直流 电流 波
动小 ,满足 电流型风力发 电系统控制 要求 。 关键 词 :永磁 同步发 电机 ;高 电感 ;风力 ;有 限元
Ab t a t F a t n ls t o c nr t d w n i g e e a o t d t e in a p o oy e o 0 k i h i d c — s r c : r c i a -l n e t e i d n s w r d p e o d sg r tt p f 1 W h【 n u t o o c a g a t e ma e t g e e e - tr i e m f r q i me t o e n o r s s m a e n c re t n e p r n n ma n tg n rao n tr o e u r e n s f a n w wid p we y t b s d o u r n e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采 用结构简单 的背靠 背绕 组 ,使电机的制造变得容易 。用等效磁路 法对 5k A盘式永磁 同步发 电机进 行 了设计 ,并 V 用 有限元法对其进行 了验 证 ,计算和仿真结果表 明此设计方案 是可行的。
关 键词 :软磁复合材料 ; 盘式 ; 永磁 电机 ;同步发 电机
中图分类号 :T 5 ;T 4 M3 1 M3 1
c r n sn h a k- ・ a k wi d n f s l o sr c in t i d t e c r ft e ma h n k h o e a d u i g t e b c - - c n i g o i e c n t t o w n h o e o c i e ma e t e t b o mp u o h
smu a in r s ls v rf h fe to h r p s d meh d. i l to e u t e iy t e efc ft e p o o e to
Ke wo d : sf y r s o ma e o p u d ( MC) ma r l ds tp ; p r a et g e t n c g t m on S ti ; i y e e n n mant c ie ea c m mahn ;
D N il g , A G S o do , I ig E G Q ui HU N hu a LU Tn n ( . ol e fe c i a di om t n,H n nU i r t,C a gh 10 2 C i ; 1 C lg l tc n f r ai e o e r n o u a nv sy h nsa4 0 8 , hn ei a 2 C lg l tc n fr ainegnei H n nistt o n i e n ,x n tn4 10 C i . o eeo e r d i om t n i r g, u a tue fegn r g i ga 1 14, hn l fe c i a n o e n ni e i a a)
2期 第4 4卷 第 l
2 1正 01
Vo . 4.No 1 14 .2
D c2 1 e . 01
1 2月
盘 式 永 磁 同 步 风 力 发 电 机 的 设 计
刘金 泽 ,邓秋玲
( 湖南工 程学院 电气与信息工程学 院 , 湖南 湘潭 4 10 ) 11 1 摘 要 :本文介绍双转子单定 子盘式永磁 同步风力发 电机的设计 。用 软磁复合 ( MC S )材料 来形 成定子铁 心 ,同时
a ds g t o i usdi i p p r s gsfma e cmp u d( MC)ma r lofr es t n i l s t i ds se t s a e.U i o g t o o n S n e a rs c n h n t n ti m t ao eat o h t r
文献标志码 :A
文章编 号 :10 -8 8 2 1 )2 02 —5 0 16 4 (0 1 1-0 90
De i n o s p r n n a n tS n h o o sW i d P we n r t r sg fDic Ty e Pe ma e tM g e y c r n u n o r Ge e a o
c n g rt n o ema hn a y h ictp MS o sd s e yc n e t n q iae t g o f uai f h c iee s .T eds eP G f k i o t y 5 VA i e i db o v ni a e uv ln n g ol ma —
故障的齿轮箱 ,而使得整个风力发 电系统的可靠性 、 效率得到提高。但直驱风力发 电系统的低速特 性使 得永 磁 同 步 风 力 发 电机 是 一 个 扁 平 的 大 圆 盘 结 构 , 造成 了转子 内部 空 间 的浪 费 ,还 存 在 散 热 困难 的 问 题 。众 所周 知 ,如 果 电机 的极 数 足 够 多 ,轴 向 长 度 与外 径 的 比率 足 够 小 时 ,盘 式 永 磁 电机 比传 统 径 向 磁 场 电机在 转 矩 和 功 率 密 度 方 面 有 优 势 _ 。 盘 式 永 1 J 磁 电机 除 了具 有 径 向 磁 场永 磁 同 步 电机 的上 述 优 点 外 ,还 具有 结 构 紧凑 、转 动 惯 量 小 ,定 子 绕 组 散 热 条件 良好 的优 点 ,还 可 以做 成 多 定 子 、多转 子 的 多 气 隙结 构 ,以提 高 输 出 功 率 J 因此 盘 式 永 磁 同 步 。 发电机特别适合应用于直驱风能转换的应用场合 。 盘 式 电机 有 许 多 不 同 的结 构 ,从 电枢 结 构 上来 讲 ,可分 为铁 心 绕组 和空 气 绕 组 ( 铁 心绕 组 ) 无 。无
s n h
0 引 言
直 驱永 磁 同步 风 力 发 电 系统 因 为取 消 了容 易 出
铁 心绕 组的 电枢是 由绕 组 注塑 而 成 ,优 点是 重量 轻 , 消 除 了定 子 铁 心 损 耗 ,齿 槽 转 矩 和 噪声 ,使 风力 发 电机在微 风 下也 能 旋 转 。缺 点 是 电 机 的 有 效气 隙 长 度 增加 ,在 永磁 体 用 量 相 同 的 情 况 下 电 机输 出的 功
Ab t a t h e i n o i y e p r n n g e y c r n u n o e e e a o t o b e r tr sr c :T e d sg f d s tp e ma e t a c ma n ts n h o o swi d p w rg n r trwi d u l o o s h
n t i u tmeh d a d a a y e y f i lme tmeh d f rv r c t n o e i n e i cr i c c t o n n z d b n t e e n t o o e f ai f d sg .T e c mp tt n a d l i e i i o h o u ai n o
相关文档
最新文档