Hybrid Fuzzy Logic Control with Input Shaping for InputTracking and Sway Suppression of a Gantry Cra

合集下载

考虑未知输入饱和的指向约束姿态机动控制

考虑未知输入饱和的指向约束姿态机动控制
控制律的设计 过程中 ; 同时通过设计辅助系统 , 结合 李雅普诺 夫稳定 理论 , 设计 出既能满 足视线轴指 向约束 , 又能 满足输入饱和约束 , 同时对常值干扰进行估计并抑制 的控制算 法 。仿真结 果显示 , 提 出的算法 能同时处 理指 向约 束和未知输入饱和约束 , 且对常值干扰具有抑制能力 。 关键词 :输入饱和 ;指向约束 ;导航 函数 ;退 步控制
At t i t ud e Ma n e uv e r Co n t r o l o f S p a c e c r a f t wi t h Po i n t i n g Co ns t r a i n t s
Co n s i d e r i n g Un k n o wn I n p u t S a t u r a t i o n
第3 4卷 第 3期
2 0 1 3年 3月




Vo 1 . 3 4 No . 3
J o u r n a l o f As t r o n a u t i c s
Ma r c h 2 0 1 3
考虑 未知 输 入 饱 和 的指 向约束 姿态 机 动 控 制
崔祜 涛 ,程 小军
C U I H u - t a o ,C H E N G X i a o - j u n
( D e e p S p a c e E x p l o r a t i o n R e s e a r c h C e n t e r , Ha r b i n I n s t i t u t e o f T e c h n o l o g y ,H a r b i n 1 5 0 0 0 1 ,C h i n a )
中图分类号 :V 4 4 8 . 2 文献标识码 :A 文章编号 :1 0 0 0 - 1 3 2 8 ( 2 0 1 3 ) 0 3 - - 0 3 7 7 - 0 7

《2024年基于智能控制的汽车主动悬架控制策略研究》范文

《2024年基于智能控制的汽车主动悬架控制策略研究》范文

《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,汽车的安全性和舒适性已成为消费者关注的重点。

作为汽车底盘系统的重要组成部分,悬架系统对汽车的行驶性能起着至关重要的作用。

主动悬架系统因其能够根据路面状况和车辆行驶状态实时调整,显著提升汽车的乘坐舒适性和行驶稳定性而备受关注。

近年来,随着智能控制技术的发展,基于智能控制的汽车主动悬架控制策略逐渐成为研究热点。

本文将重点研究基于智能控制的汽车主动悬架控制策略,旨在为汽车悬架系统的优化设计提供理论依据和技术支持。

二、汽车主动悬架系统概述汽车主动悬架系统是一种能够根据路面状况和车辆行驶状态实时调整的悬架系统,通过控制执行机构实现悬架的主动调节。

相比于传统的被动悬架系统,主动悬架系统具有更好的适应性和性能表现,能够显著提升汽车的乘坐舒适性和行驶稳定性。

三、智能控制在汽车主动悬架系统中的应用智能控制技术为汽车主动悬架系统的优化提供了新的思路和方法。

通过引入智能算法和传感器技术,实现对悬架系统的精确控制和监测。

常见的智能控制方法包括模糊控制、神经网络控制、遗传算法等。

这些方法能够根据不同的路面状况和车辆行驶状态,实时调整悬架系统的参数,以达到最优的行驶性能。

四、基于智能控制的汽车主动悬架控制策略研究本文将重点研究基于模糊控制的汽车主动悬架控制策略。

模糊控制是一种基于模糊逻辑的控制方法,能够处理不确定性和非线性问题。

在汽车主动悬架系统中,模糊控制能够根据驾驶员的驾驶意图、路面状况和车辆状态等信息,实时调整悬架系统的参数,以达到最佳的乘坐舒适性和行驶稳定性。

首先,建立模糊控制器模型。

通过分析汽车主动悬架系统的特点和要求,确定输入和输出变量,建立模糊控制器模型。

其次,设计模糊规则库。

根据专家知识和经验,设计合适的模糊规则,实现对悬架系统的精确控制。

最后,进行仿真实验和实际测试。

通过对比分析不同控制策略下的汽车性能表现,验证基于模糊控制的汽车主动悬架控制策略的有效性和优越性。

月永冲路面下电动汽车主动悬架状态反馈H∞控制

月永冲路面下电动汽车主动悬架状态反馈H∞控制

月永冲路面下电动汽车主动悬架状态反馈H∞控制作者:李杰贾长旺成林海赵旗来源:《湖南大学学报·自然科学版》2022年第08期摘要:针对轮毂电机对电动汽车平顺性的负效应,建立轮毂电机电动汽车四自由度振动平面模型,研究被动悬架和主动悬架对电动汽车脉冲平顺性的影响.应用约束状态H∞控制方法,设计轮毂电机电动汽车主动悬架控制策略,开发了MATLAB/Simulink控制仿真模型.分析无偏心、10%偏心率和20%偏心率对轮毂电机激励的影响,比较轮毂电机电动汽车被动悬架和主动悬架的脉冲路面振动响应的时间历程和4种情况的平顺性评价指标,研究结果表明,轮毂电机偏心对电动汽车产生振动激励,既影响脉冲路面平顺性,也影响状态反馈H∞控制效果.关键词:电动汽车;主动悬架系统;鲁棒控制;状态反馈;脉冲路面中图分类号:U469.72文献标志码:AState Feedback H∞Control for Active Suspension of Electric Vehicles on Pulse RoadLI Jie,JIA Changwang,CHENG Linhai,ZHAO Qi(State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,China)Abstract:Aiming at the negative effect of a hub motor on the ride comfort of an electric vehicle,a four-degree of freedom vibration plane model of hub motor electric vehicle is established,in order to study the influence of passive suspension and active suspension on the pulse road ride comfort of the electric vehicle. An active suspension control strategy for hub motor electric vehicles is designed,and MATLAB/Simulink control simulation model is developed with the constrained state H∞control method. The effects of no eccentricity,10% eccentricity,and 20% eccentricity on the excitation of the hub motor are analyzed. The time history of pulse road vibration response of passive suspension and active suspension of hub motor electric vehicle,as well as the ride comfort evaluation indexes of four cases,are compared. The results show that the eccentricity of the hub motor can produce vibration excitation on the electric vehicle,which not only affects the pulse road ride comfort but also affects the state feedback H∞control.Key words:electric vehicles;active suspension systems;robust control;state feedback;pulse road與集中式电动汽车相比,轮毂电机电动汽车简化了传动结构,驱动响应快、驱动控制精确和各个车轮独立可控,是底盘优化和控制的理想载体[1-3].然而,轮毂电机也带来平顺性负效应问题[4-6].针对轮毂电机平顺性负效应问题,已经提出了多种改善方法,涉及轮毂电机轻量化、悬架优化、动力吸振器应用、悬架控制等方面.轮毂电机轻量化是从电机设计方面考虑电机减振[7],可以减轻非簧载质量,但是难以改变安装电机后汽车发生的变化.悬架优化是通过关键参数优化和结构改进减轻轮毂电机带来的平顺性负效应[6,8],只能针对特定的路面和车速实现优化,无法全面适应路面和车速的各种变化.动力吸振器可以减少轮毂电机的振动[9],但会产生在车轮内布置困难和结构复杂化的问题.悬架控制主要围绕悬架控制策略设计和执行器开发等展开,轮毂电机电动汽车可以采用PID[10]、模糊[11]、天棚[12]、地棚[13]、天棚地棚混合[13]、最优[14]和H∞[15]等控制策略,目前主要针对单轮实现悬架控制,缺乏考虑前后车轮和空间车轮悬架控制的研究,也没有考虑电机偏心的影响.悬架控制执行器开发是通过半主动悬架[16]和主动悬架[17]实现的,半主动悬架执行器目前主要采用磁流变阻尼器[11],通过控制阻尼力实现,需要外部能量较少;主动悬架主要包括电磁执行器[13]和液压执行器[15],一般通过输入电能产生主动力,需要外部能量较大.作为改善轮毂电机平顺性负效应的一种有力措施,主动悬架具有控制更好的优点.然而,主动悬架应用需要解决内部不确定性和外部干扰影响的鲁棒控制问题[18],轮毂电机电动汽车主动悬架鲁棒控制,即H∞控制的研究还有待深入开展.当汽车在道路上行驶时,会遇到脉冲路面,如道路上的凸起或减速带等障碍.虽然脉冲路面的作用时间较短,但会使汽车振动突然加大,立刻降低乘员舒适性,还会对车辆零部件和运载货物造成损伤或破坏.以往的研究较少考虑脉冲路面对轮毂电机电动汽车平顺性的影响,针对轮毂电机电动汽车脉冲路面平顺性开展研究,将使轮毂电机电动汽车平顺性的研究更加全面.本文研究轮毂电机电动汽车状态反馈H∞控制问题,考虑脉冲路面和轮毂电机实现脉冲路面主动悬架和被动悬架的平顺性对比分析.1轮毂电机电动汽车振动模型1.1脉冲路面车轮激励GB/T 4970—2009规定[19],脉冲路面车轮激励由三角形凸块确定.脉冲路面前轮激励q f (t)为:式中:u为车速;h为凸块高度;l为凸块长度;t0为汽车以车速u行驶时前轮到达凸块的时间.脉冲路面后轮激励q r(t)为:q r(t)=q f(t-t d),t d=L/u(2)式中:L为车辆轴距;t d为后轮滞后前轮的时间.1.2轮毂电机激励选取典型的四相8/6极开关磁阻电机作为轮毂电机,其垂向激励为单相转子垂向激励之和[13,20],即式中:F v为电机垂向激励;F vj分别为6个单相转子a、b、c、a′、b′和c′的垂向激励.1.3车辆模型以往研究轮毂电机电动汽车平顺性,多采用汽车二自由度振动单轮模型,具有可以揭示基本概念、基本性能和分析简单明确等优点.然而,二自由度振动单轮模型反映的是汽车一个角的作用,即单个车轮及其上面部分簧载质量的作用,只能用于研究簧载质量和车轴非簧载质量的垂直振动,无法反映簧载质量同时存在的垂直振动和俯仰振动以及两种运动对平顺性的影响,与汽车实际存在差距.而汽车四自由度振动平面模型既能反映车身质量的垂直振动和俯仰振动,也能反映前轴和后轴的非簧载质量的垂直振動,是研究轮毂电机电动汽车平顺性更合适的模型[21].基于上述分析,建立包含轮毂电机的电动汽车四自由度振动平面模型,如图1所示.在图1中,m s和I sL分别为簧载质量和簧载俯仰转动惯量;m uf和m ur分别为包含电机质量的前轴和后轴的非簧载质量;c sf和c sr分别为前轴和后轴的悬架阻尼;k sf和k sr分别为前轴和后轴的悬架刚度;k tf和k tr分别为前轴和后轴的轮胎刚度;L f和L r分别为簧载质量质心与前轴和后轴的距离;F vf和F vr分别为前轴和后轴的电机垂向激励;F af和F ar分别为前轴和后轴的悬架控制力;z s和φs分别为簧载质量的垂向位移和俯仰角位移;z sf和z sr分别为前轴和后轴的悬架与簧载质量连接点垂向位移;z uf和z ur分别为前轴和后轴的非簧载质量垂向位移.1.4微分方程针对z sf、z sr、z uf和z ur,由Lagrange方程建立4个自由度的微分方程如下:1.5状态方程其中由可控性定理[18],上述状态方程可以实现主动悬架控制.此外,当u(t)=0时,上述状态方程也适用于考虑被动悬架的轮毂电机电动汽车.2约束状态反馈H∞控制方法2.1线性矩阵不等式及其求解线性矩阵不等式F(x)<0,表示对于任意n维非零向量u,u T F(x)u<0.F(x)的具体表示如下:式中:x i=[x1,x2,…,x m]T为待求的m维向量;F0和F i=F i T为已知的n×n阶对称矩阵.通过MATLAB的LMI工具箱可以求解得到x*,以使F(x*)<0(11)成立,或者无解.2.2约束状态反馈H∞控制考虑如下表示:u(t)=Kx(t)(13)式中:K为状态反馈增益矩阵.约束状态反馈H∞控制问题,可以描述为:对于给定常数γ>0,求使得闭环系统稳定的状态反馈控制方程.对应式(12)第一个方程和第二个方程,有式中:Q=P-1;N=KQ;ρ=γ2w max;w max=max w(t).通过式(14)和式(15),约束状态反馈H∞控制问题转化为线性矩阵不等式求解问题.在已知A、B1、B2、C1、D1、C2、D2和γ的条件下,其求解过程为:首先,求解式(14)和式(15)表示的线性矩阵不等式得到Q和N;其次,由Q和N确定K=NQ-1,将u(t)=Kx(t)代入式(12)第一个方程求解,得到约束状态反馈H∞控制的状态向量x(t);最后,由式(12)后两个方程得到控制输出向量z u(t)和约束输出向量z(t).当汽车在道路上行驶时,会遇到脉冲路面,如道路上的凸起或减速带等障碍.虽然脉冲路面的作用时间较短,但会使汽车振动突然加大,立刻降低乘员舒适性,还会对车辆零部件和运载货物造成损伤或破坏.以往的研究较少考虑脉冲路面对轮毂电机电动汽车平顺性的影响,针对轮毂电机电动汽车脉冲路面平顺性开展研究,将使轮毂电机电动汽车平顺性的研究更加全面.本文研究轮毂电机电动汽车状态反馈H∞控制问题,考虑脉冲路面和轮毂电机实现脉冲路面主动悬架和被动悬架的平顺性对比分析.1轮毂电机电动汽车振动模型1.1脈冲路面车轮激励GB/T 4970—2009规定[19],脉冲路面车轮激励由三角形凸块确定.脉冲路面前轮激励q f (t)为:式中:u为车速;h为凸块高度;l为凸块长度;t0为汽车以车速u行驶时前轮到达凸块的时间.脉冲路面后轮激励q r(t)为:q r(t)=q f(t-t d),t d=L/u(2)式中:L为车辆轴距;t d为后轮滞后前轮的时间.1.2轮毂电机激励选取典型的四相8/6极开关磁阻电机作为轮毂电机,其垂向激励为单相转子垂向激励之和[13,20],即式中:F v为电机垂向激励;F vj分别为6个单相转子a、b、c、a′、b′和c′的垂向激励.1.3车辆模型以往研究轮毂电机电动汽车平顺性,多采用汽车二自由度振动单轮模型,具有可以揭示基本概念、基本性能和分析简单明确等优点.然而,二自由度振动单轮模型反映的是汽车一个角的作用,即单个车轮及其上面部分簧载质量的作用,只能用于研究簧载质量和车轴非簧载质量的垂直振动,无法反映簧载质量同时存在的垂直振动和俯仰振动以及两种运动对平顺性的影响,与汽车实际存在差距.而汽车四自由度振动平面模型既能反映车身质量的垂直振动和俯仰振动,也能反映前轴和后轴的非簧载质量的垂直振动,是研究轮毂电机电动汽车平顺性更合适的模型[21].基于上述分析,建立包含轮毂电机的电动汽车四自由度振动平面模型,如图1所示.在图1中,m s和I sL分别为簧载质量和簧载俯仰转动惯量;m uf和m ur分别为包含电机质量的前轴和后轴的非簧载质量;c sf和c sr分别为前轴和后轴的悬架阻尼;k sf和k sr分别为前轴和后轴的悬架刚度;k tf和k tr分别为前轴和后轴的轮胎刚度;L f和L r分别为簧载质量质心与前轴和后轴的距离;F vf和F vr分别为前轴和后轴的电机垂向激励;F af和F ar分别为前轴和后轴的悬架控制力;z s和φs分别为簧载质量的垂向位移和俯仰角位移;z sf和z sr分别为前轴和后轴的悬架与簧载质量连接点垂向位移;z uf和z ur分别为前轴和后轴的非簧载质量垂向位移.1.4微分方程针对z sf、z sr、z uf和z ur,由Lagrange方程建立4个自由度的微分方程如下:1.5状态方程其中由可控性定理[18],上述状态方程可以实现主动悬架控制.此外,当u(t)=0时,上述状态方程也适用于考虑被动悬架的轮毂电机电动汽车.2约束状态反馈H∞控制方法2.1线性矩阵不等式及其求解线性矩阵不等式F(x)<0,表示对于任意n维非零向量u,u T F(x)u<0.F(x)的具体表示如下:式中:x i=[x1,x2,…,x m]T为待求的m维向量;F0和F i=F i T为已知的n×n阶对称矩阵.通过MATLAB的LMI工具箱可以求解得到x*,以使F(x*)<0(11)成立,或者无解.2.2约束状态反馈H∞控制考虑如下表示:u(t)=Kx(t)(13)式中:K为状态反馈增益矩阵.约束状态反馈H∞控制问题,可以描述为:对于给定常数γ>0,求使得闭环系统稳定的状态反馈控制方程.对应式(12)第一个方程和第二个方程,有式中:Q=P-1;N=KQ;ρ=γ2w max;w max=max w(t).通过式(14)和式(15),约束状态反馈H∞控制问题转化为线性矩阵不等式求解问题.在已知A、B1、B2、C1、D1、C2、D2和γ的条件下,其求解过程为:首先,求解式(14)和式(15)表示的线性矩阵不等式得到Q和N;其次,由Q和N确定K=NQ-1,将u(t)=Kx(t)代入式(12)第一个方程求解,得到约束状态反馈H∞控制的状态向量x(t);最后,由式(12)后两个方程得到控制输出向量z u(t)和约束输出向量z(t).当汽车在道路上行驶时,会遇到脉冲路面,如道路上的凸起或减速带等障碍.虽然脉冲路面的作用时间较短,但会使汽车振动突然加大,立刻降低乘员舒适性,还会对车辆零部件和运载货物造成损伤或破坏.以往的研究较少考虑脉冲路面对轮毂电机电动汽车平顺性的影响,针对轮毂电机电动汽车脉冲路面平顺性开展研究,将使轮毂电机电动汽车平顺性的研究更加全面.本文研究轮毂电机电动汽车状态反馈H∞控制问题,考虑脉冲路面和轮毂电机实现脉冲路面主动悬架和被动悬架的平顺性对比分析.1轮毂电机电动汽车振动模型1.1脉冲路面车轮激励GB/T 4970—2009规定[19],脉冲路面车轮激励由三角形凸块确定.脉冲路面前轮激励q f (t)为:式中:u为车速;h为凸块高度;l为凸块长度;t0为汽车以车速u行驶时前轮到达凸块的时间.脉冲路面后轮激励q r(t)为:q r(t)=q f(t-t d),t d=L/u(2)式中:L为车辆轴距;t d为后轮滞后前轮的时间.1.2轮毂电机激励选取典型的四相8/6极开关磁阻电机作为轮毂电机,其垂向激励为单相转子垂向激励之和[13,20],即式中:F v为电机垂向激励;F vj分别为6个单相转子a、b、c、a′、b′和c′的垂向激励.1.3车辆模型以往研究轮毂电机电动汽车平顺性,多采用汽车二自由度振动单轮模型,具有可以揭示基本概念、基本性能和分析简单明确等优点.然而,二自由度振动单轮模型反映的是汽车一个角的作用,即单个车轮及其上面部分簧载质量的作用,只能用于研究簧载质量和车轴非簧载质量的垂直振动,无法反映簧载质量同时存在的垂直振动和俯仰振动以及两种运动对平顺性的影响,与汽车实际存在差距.而汽车四自由度振动平面模型既能反映车身质量的垂直振动和俯仰振动,也能反映前轴和后轴的非簧载质量的垂直振动,是研究轮毂电机电动汽车平顺性更合适的模型[21].基于上述分析,建立包含轮毂电机的电动汽车四自由度振动平面模型,如图1所示.在图1中,m s和I sL分别为簧载质量和簧载俯仰转动惯量;m uf和m ur分别为包含电机质量的前轴和后轴的非簧载质量;c sf和c sr分别为前轴和后轴的悬架阻尼;k sf和k sr分别为前轴和后轴的悬架刚度;k tf和k tr分别为前轴和后轴的轮胎刚度;L f和L r分别为簧载质量质心与前轴和后轴的距离;F vf和F vr分别为前轴和后轴的电机垂向激励;F af和F ar分别为前轴和后轴的悬架控制力;z s和φs分别为簧载质量的垂向位移和俯仰角位移;z sf和z sr分别为前轴和后轴的悬架与簧载质量连接点垂向位移;z uf和z ur分别为前轴和后轴的非簧载质量垂向位移.1.4微分方程针对z sf、z sr、z uf和z ur,由Lagrange方程建立4个自由度的微分方程如下:1.5状态方程其中由可控性定理[18],上述状态方程可以实现主动悬架控制.此外,当u(t)=0时,上述状态方程也适用于考虑被动悬架的轮毂电机电动汽车.2约束状态反馈H∞控制方法2.1线性矩阵不等式及其求解线性矩阵不等式F(x)<0,表示对于任意n维非零向量u,u T F(x)u<0.F(x)的具体表示如下:式中:x i=[x1,x2,…,x m]T为待求的m维向量;F0和F i=F i T为已知的n×n阶对称矩阵.通过MATLAB的LMI工具箱可以求解得到x*,以使F(x*)<0(11)成立,或者无解.2.2约束状态反馈H∞控制考虑如下表示:u(t)=Kx(t)(13)式中:K为状态反馈增益矩阵.约束状态反馈H∞控制问题,可以描述为:对于给定常数γ>0,求使得闭环系统稳定的状态反馈控制方程.对应式(12)第一个方程和第二个方程,有式中:Q=P-1;N=KQ;ρ=γ2w max;w max=max w(t).通過式(14)和式(15),约束状态反馈H∞控制问题转化为线性矩阵不等式求解问题.在已知A、B1、B2、C1、D1、C2、D2和γ的条件下,其求解过程为:首先,求解式(14)和式(15)表示的线性矩阵不等式得到Q和N;其次,由Q和N确定K=NQ-1,将u(t)=Kx(t)代入式(12)第一个方程求解,得到约束状态反馈H∞控制的状态向量x(t);最后,由式(12)后两个方程得到控制输出向量z u(t)和约束输出向量z(t).当汽车在道路上行驶时,会遇到脉冲路面,如道路上的凸起或减速带等障碍.虽然脉冲路面的作用时间较短,但会使汽车振动突然加大,立刻降低乘员舒适性,还会对车辆零部件和运载货物造成损伤或破坏.以往的研究较少考虑脉冲路面对轮毂电机电动汽车平顺性的影响,针对轮毂电机电动汽车脉冲路面平顺性开展研究,将使轮毂电机电动汽车平顺性的研究更加全面.本文研究轮毂电机电动汽车状态反馈H∞控制问题,考虑脉冲路面和轮毂电机实现脉冲路面主动悬架和被动悬架的平顺性对比分析.1轮毂电机电动汽车振动模型1.1脉冲路面车轮激励GB/T 4970—2009规定[19],脉冲路面车轮激励由三角形凸块确定.脉冲路面前轮激励q f (t)为:式中:u为车速;h为凸块高度;l为凸块长度;t0为汽车以车速u行驶时前轮到达凸块的时间.脉冲路面后轮激励q r(t)为:q r(t)=q f(t-t d),t d=L/u(2)式中:L为车辆轴距;t d为后轮滞后前轮的时间.1.2轮毂电机激励选取典型的四相8/6极开关磁阻电机作为轮毂电机,其垂向激励为单相转子垂向激励之和[13,20],即式中:F v为电机垂向激励;F vj分别为6个单相转子a、b、c、a′、b′和c′的垂向激励.1.3车辆模型以往研究轮毂电机电动汽车平顺性,多采用汽车二自由度振动单轮模型,具有可以揭示基本概念、基本性能和分析简单明确等优点.然而,二自由度振动单轮模型反映的是汽车一个角的作用,即单个车轮及其上面部分簧载质量的作用,只能用于研究簧载质量和车轴非簧载质量的垂直振动,无法反映簧载质量同时存在的垂直振动和俯仰振动以及两种运动对平顺性的影响,与汽车实际存在差距.而汽车四自由度振动平面模型既能反映车身质量的垂直振动和俯仰振动,也能反映前轴和后轴的非簧载质量的垂直振动,是研究轮毂电机电动汽车平顺性更合适的模型[21].基于上述分析,建立包含轮毂电机的电动汽车四自由度振动平面模型,如图1所示.在图1中,m s和I sL分别为簧载质量和簧载俯仰转动惯量;m uf和m ur分别为包含电机质量的前轴和后轴的非簧载质量;c sf和c sr分别为前轴和后轴的悬架阻尼;k sf和k sr分别为前轴和后轴的悬架刚度;k tf和k tr分别为前轴和后轴的轮胎刚度;L f和L r分别为簧载质量质心与前轴和后轴的距离;F vf和F vr分别为前轴和后轴的电机垂向激励;F af和F ar分别为前轴和后轴的悬架控制力;z s和φs分别为簧载质量的垂向位移和俯仰角位移;z sf和z sr分别为前轴和后轴的悬架与簧载质量连接点垂向位移;z uf和z ur分别为前轴和后轴的非簧载质量垂向位移.1.4微分方程针对z sf、z sr、z uf和z ur,由Lagrange方程建立4個自由度的微分方程如下:1.5状态方程其中由可控性定理[18],上述状态方程可以实现主动悬架控制.此外,当u(t)=0时,上述状态方程也适用于考虑被动悬架的轮毂电机电动汽车.2约束状态反馈H∞控制方法2.1线性矩阵不等式及其求解线性矩阵不等式F(x)<0,表示对于任意n维非零向量u,u T F(x)u<0.F(x)的具体表示如下:式中:x i=[x1,x2,…,x m]T为待求的m维向量;F0和F i=F i T为已知的n×n阶对称矩阵.通过MATLAB的LMI工具箱可以求解得到x*,以使F(x*)<0(11)成立,或者无解.2.2约束状态反馈H∞控制考虑如下表示:u(t)=Kx(t)(13)式中:K为状态反馈增益矩阵.约束状态反馈H∞控制问题,可以描述为:对于给定常数γ>0,求使得闭环系统稳定的状态反馈控制方程.对应式(12)第一个方程和第二个方程,有式中:Q=P-1;N=KQ;ρ=γ2w max;w max=max w(t).通过式(14)和式(15),约束状态反馈H∞控制问题转化为线性矩阵不等式求解问题.在已知A、B1、B2、C1、D1、C2、D2和γ的条件下,其求解过程为:首先,求解式(14)和式(15)表示的线性矩阵不等式得到Q和N;其次,由Q和N确定K=NQ-1,将u(t)=Kx(t)代入式(12)第一个方程求解,得到约束状态反馈H∞控制的状态向量x(t);最后,由式(12)后两个方程得到控制输出向量z u(t)和约束输出向量z(t).。

双差速驱动移动机器人路径跟踪混合控制律研究_武星

双差速驱动移动机器人路径跟踪混合控制律研究_武星
在计算出控制量后由式1和式7就可得到20mm1020混合控制律的流程图figflowcharthybridcontrollaw偏差智能转化评价函数法在偏差转化过程中姿态角偏差和距离偏差都需要同时考虑因此定义了一种综合评价函数表示姿态角偏差和距离偏差的权值之比即表示姿态角偏差分别为姿态角偏差和距离偏差的纠偏急需性系数当偏差变化率和偏差同号时此偏差更需要及时纠正纠偏急需性系数计算式为分别为姿态角偏差和距离偏差的纠偏正确性系数当偏差的二阶导数和偏差异号则偏差就能够更快地减小纠偏正确性系数计算式ed10mme10mmed在纠偏过程中并非要一直增大偏差的变化率来减小偏差大偏差的智能转化最多有个阶段以姿态角偏差为例
2015年3月 1298. 2015. 03. 008 doi: 10. 6041 / j. issn. 1000-
农 业 机 械 学 报
第 46 卷 第 3 期
双差速驱动移动机器人路径跟踪混合控制律研究
武 星 朱琳军 石陈陈 楼佩煌 钱晓明
( 南京航空航天大学机电学院 ,南京 210016 )
*
摘要: 针对双差速驱动移动机器人的路径跟踪问题 , 建立了双输入双输出的非线性运动学模型并进行了输入 - 输 出线性化, 分析了冗余运动约束的速度协同条件 , 提出了一种融合偏差智能转化评价函数法和指数稳定控制的混 合控制律。评价函数法可针对不同的偏差状态智能选择合适的控制量以将其转化到指数稳定控制的适用范围 , 再 通过指数稳定控制实现姿态角偏差和距离偏差向零的同步收敛 。数字仿真和实验测试结果表明 , 该混合控制律可 平滑转化偏差状态、 同步消除位姿偏差, 使移动机器人精确、 稳定地跟踪直线和圆弧导引路径 。 关键词: 移动机器人 中图分类号: TP242 路径跟踪 双差速驱动 评价函数 指数稳定 文献标识码: A 1298 ( 2015 ) 03005108 文章编号: 1000-

一类非线性系统有限时间流形吸引的浸入与不变控制

一类非线性系统有限时间流形吸引的浸入与不变控制

一类非线性系统有限时间流形吸引的浸入与不变控制黄显林;张旭;卢鸿谦【摘要】本文对一类非线性系统,提出了一种设计渐近稳定控制律的有效方法.其中,通过更新系统浸入与不变流形理论的应用方法,流形的吸引坐标可以在有限时间内收敛到平衡点.为了得到闭环系统的稳定性,增广系统的各个信号被证明是有界的.本文得出的一个重要成果是流形吸引有限时间的计算方法.此外,在施加了有限时间流形吸引控制器之后,流形对外部有界未知扰动具有不敏感性.最后利用车摆系统来论述所提出的控制方法的设计步骤,以及通过仿真验证控制器的性能.【期刊名称】《控制理论与应用》【年(卷),期】2015(032)012【总页数】7页(P1592-1598)【关键词】非线性系统;系统浸入;不变流形;有限时间;外部扰动【作者】黄显林;张旭;卢鸿谦【作者单位】哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001;哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001;哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001【正文语种】中文【中图分类】TP273Over the past few decades,stabilization control in finite time for nonlinear systems,for affine nonlinear systems in particular,has played animportant role in the control field.Natural nonlinearities and diversity of nonlinear systems are the most significant constraints onapplicability.Many research groups have devoted themselves to identifying reliable stabilizing control laws and applying them successfully to various systems.Acosta et al.,for example,proposed an interconnection and damping assignment passivity-based control(IDA-PBC)for underactuated mechanical systems.This algorithm was derived from the passivity-based theory in order to provide a natural procedurethat shapeskineticand potential energy[1-3].Themost crucial issue which remains is effectively solving a partial differential equation(PDE).As degree of freedom(DOF)increases,IDA-PBC implementation becomes increasingly complex.Thus,considering calculation difficulties,this algorithm is only applicable for the lower-order nonlinear systems.A sliding mode control was proposed to stabilize a class of underactuated systems in cascaded form[4-5].One of the promising and effective control methods is the immersion and invariance(I&I)theorem,proposed by Astolfi and Ortega in 2003[6-7],which has been further developed in additional studies[8-11].System immersion is based on the nonlinear regular theory,where the required mappings can integrate the desired dynamical behavior with the reduced-order systems toward the high-order systems.Manifold invariance is derived from geometric nonlinearity to ensure the stability of closed-loop systems.Immersion and invariance control is not needed for the Lyapunov candidate function in the controller design phase.A notable advantage ofthis approach is the perfect decoupling calculation between manifold attractivity and invariance.Recently,researchers have evaluated the use of I&I for tracking control on a pneumatic actuator with a proven tracking theorem[12].Manjarekar et al.applied I&I to stabilize a single machine infinite bus(SMIB)system using a controllable series capacitor(CSC)[13].This technique has also been applied to tendon-controlled systems with variable stiffness[14].An adaptive-state feedback controller was designed for n-dimensional nonlinear systems in feed-back form,as well [15].An adaptive regulation via state feedback for discrete-time nonlinear systems in a parametric strict-feedback form has also been proposed[16].In actuality,the off-the-manifold coordinate converges to equilibrium in the exponential form such that the distance from the state space of closed-loop systems to the manifold is rendered asymptotically attractive.However,low convergence rate may decrease the transient performance of closed-loop systems.Furthermore,robustness of stabilization cannot be theoretically ensured due to external pared to asymptotically stable manifold,finite-time attractivity controls possess the following properties:first,it shows better convergence performance around the equilibrium point,and second,it has better disturbance rejection erformance[17].In one relative study [18],two globally stable control algorithms for robust stabilization of spacecraft in the presence of control input saturation,parametric uncertainty,and external disturbances were proposed,and fast andaccurate response was designed.In another study[19],a finite-time control technique for a rigid spacecraft with external disturbances was proposed.This work mainly focuses on the finite-time attractivity-based immersion and invariance stabilizing control for a class of nonlinear systems.A detailed procedure for designing the immersion and invariance controller is provided.Mapping can be obtained by selecting a target system and solving a partial differential equation.The stability proof of closed-loop systems accounting for the boundedness of actual states is described.The finite time is computed,in which the manifold is rendered attractive;The manifold does remain insensitive to bounded unknown disturbance under the proposed method.Simulation results validate the stabilizing control laws,based on this novel technique,through a cart-pendulum system.The proposed algorithms are computationally simple and involve straightforward tuning.Preliminary results of the immersion and invariance theorem for an affine nonlinear system are described in Section 2.Section 3 describes the primary results of the finite-time attractivity-based immersion and invariance controllerdesignforanonlinearsystemclass,andprovides the stability proof and the computations of finite time.An analysis of the disturbance rejection is also described in Section 3.The controller performance is demonstrated by a cart-pendulum system in Section 4,and Section 5 provides concluding remarks.2.1 System descriptionIn this section,a class of nonlinear systems are considered as follows:with state xi∈R for i=1,2,3,input u∈R,the vector fields f2(x1),f3(x1),g2(x1):R→R and an equilibrium x*(t)to be asymptotically stabilized.The functions f2(x1),g2(x1),and f3(x1)are assumed to be known.The finite-time attractivity of manifold based immersion and invariance control requires the following assumption on the continuity of f2(x1),g2(x1),and f3(x1).Assumption 1For each i=2,3,the functions fi(x1),g2(x1)and their derivatives are continuous and bounded on any compact set D⊂R.The main objective for this work is to design a control law to asymptotically stabilize system(1)based on the I&I theorem,while making the manifold attractive in finite time.2.2 Preliminary results Thissectionrecalledthefundamentaltheorem,serving asprincipaltoolofthe immersionand invarianceapproach.Theorem 1[6]Consider an affine nonlinear systemwith x∈Rn,u∈Rmand an equilibrium point x*∈Rnto be stabilized.Let p<n,and assume that there exist smooth mappings α(.):Rp→Rp,π(.):Rp→Rn,c(.): Rp→Rm,φ(.):Rn→Rn-p,ψ(.):Rn×(n-p)→Rm,such that the following hold.H1)Target system.The target systemwith ξ∈Rphas a globally asymptotically stable equilibrium ξ*∈Rpandx*=π(ξ*).H2)Immersion condition.For all ξ∈Rp,H3)Implicit manifold.The following set identityholds.H4)Manifold attractivity and trajectory boundedness. All trajectories of the systemare bounded and satisfyThen x*is a globally asymptotically stable equilibrium of the closed-loop systemTaken from[20],this theorem provides us an explicit procedure to design stabilizing control laws for a class of nonlinear systems.The objective is to find a manifold M={x∈Rn|x=π(ξ),ξ∈Rp}based on the system(2)and the target dynamics(3).This manifold can be rendered invariant and attractive,and such that the welldefined restriction of the closed-loop system to M is described by the target system.Note that the control inputu that makes the manifold invariant is not unique,since it is uniquely defined only on M.One possible control,that drives the off-the-manifold coordinates z to zero and keeps the system bounded,is selected.The I&I concept is illustrated for p=2 and n=3 in Fig.1.This section details the procedures for modified immersion and invariance control for a class of nonlinear systems.3.1 Controller designFirst,the conditions of Theorem 1 must be verified.Step 1The objective here is to find a target dynamics and immerse it into the original system(1).The dimension of this target dynamics is strictly lower than the original system.From Eq.(1),the target dynamics arewhere ξ1,ξ2∈R are two states of system(12),V(ξ1): R→R is potential energy,and R(ξ1,ξ2):R×R→R is a damping injection function.To ensure that the target dynamics have an asymptotically stable equilibrium at the origin,the following assumption is required.Assumption 21)The damping injection function R(ξ1,ξ2)is positive definite,i.e.R(0,0)≥0.2)The potential energy function V(ξ1)satisfiesA Lyapunov function is defined as follows:The derivative of this positive function along the solution of(12)is According to Assumption 2,≤0 for t>0.Therefore,the target dynamic system(12)has an asymptotically stable equilibrium at ξ1=0,ξ2=0. Step 2From the system(1),the immersion condition of Theorem 1 requires rank(π(ξ))=2,so that a natural choice of the mapping π(ξ)can be provided bywhere x1=π1(ξ)=ξ1,x2=π2(ξ)=ξ2,and π3(ξ1,ξ2):R×R→R is an unknown mapping.From Eqs.(4)-(6),the relationships on the manifold M defined in(22)are as follows:where c(π(ξ))is a controller that ensures the manifold M is invari ant.This controller is not used,however,because the manifold M cannot be rendered attractive.In other words,c(π(ξ))cannot make an off-the-manifold coordinate,the distance from x to π(ξ),converge to zero in finite time.After replacing the controller c(π(ξ))from(17)into(16)and making a few rearrangements,a partial differential equation(PDE)to bewhere the funtion(x)is defined asAccording to Theorem 1,the PDE(18)could be solved only ifand R(x1,x2)are known.Two degrees of freedom(DOF)and R(x1,x2),are then added.The mappingπ3(ξ)playsanimportantroleincontrollerdesign,where the following assumption is necessary.Assumption 3There exist a mapping π3and positive constant σ>0 such thatis independent of x2,and consequently,|(0)|≥σ>0.If Assumption 3 holds,the PDE(18)can be solved by selectingEqs.(21)and(22)provide a selection of 1-dimensional mapping functions π3so that Assumption 3 holds.The explicit form of π3can be obtained in terms of the specified nonlinear systems.Step 3The application of the set identity(7)permits the derivation of the following implicit manifold:Step 4The off-the-manifold coordinate z=φ(x) is defined as follows:Then,considering a Lyapunov candidate function:which can be differentiated along the solutions of(1)and(12),and produces the following after straightforward computations:The stabilizing controller ψ(x,φ(x))for the system(1)is obtained from Eq.(25)as such that the off-the-manifold coordinate converges to equilibrium at z=0 in finite time. The explicit form of the controller follows:where the parameter γ is a positive constant,and sgn(.) denotes a sign function,i.e.Substituting(26)into(25)yieldsAll trajectories of the closed-loop systemremain bounded,because the stabilizing controller is obtained.In the following section,a summary of of this method is proposed and the proof of stability is described.3.2 Stability analysisStabilization can be summarized via the finite-time attractivity-based immersion and invariance control as follows.Proposition 1Consider a class of nonlinear systems(1)that satisfies Assumption 1,and equilibrium x*(t).Then,all trajectories of closed-loop system(1)and off-the-manifold dynamics are bounded,andx*(t)holds. Prior to the stability proof,an assumption is necessary.Assumption 4There existsϵ1,ϵ2,ϵ3>0,such thatProofStability analysis is completed by proving that there exists a set of initial conditions(x(0),z(0))such that the corresponding trajectories x(t)of (29)are bounded. From(20)and(21)and after some simple calculations,all trajectories of the system(29)can be rewritten as follows:Consider a positive definite functionthe derivative of which,along the trajectories of(30),isAll trajectories of the system(29)are bounded on t∈(0,∞).Two cases should be considered:1,andCase 1In this case,z(t)<z(0),and Eq.(32)satisfies the following:where the second inequality follows from Young’s inequality.In other words,the above inequality shows that the system energy is bounded.Case 2In this case,z(t)=0,and(z)≤is easily obtained.Hence there exists a ball around zero and a finite time tf,where all trajectories starting from all initial conditions converge in the ball at tf,then converge to equilibrium asymptotically.The boundedness of x3is expressed asAccording to the boundedness of x1,x2,then x3∈L∞.3.3 Speed of manifold responseIn this section,the finite time tf,from which the offthe-manifold coordinate z can be rendered attractive,is computed.Proposition 2Considering a manifold(7),all trajectories of the n-dimensional closed-loop systems converge to the manifold M in finite time tffor any initial condition z(0)=z0,and the attractivity of the manifold is described bProofDue to the fact thatwhere∥.∥represents the Euclidean normis defined bythe derivative along the trajectories of˙z=-Σ(z)γ is provided byThen,Integrating the differential inequality,According toTherefore,the finite time tfis provided byand the off-the-manifold coordinate z(t)converges to equilibrium at tffrom an initial condition z0.Remark 1The dimension of the manifold dynamics(23)is one,so that the attractivity of finite time is3.4 Disturbance rejectionThis section analyzes the disturbance rejection using the proposed finite-time control law.A class of nonlinear systems in the presence of bounded unknown disturbance is described as follows:where all variables are defined above.With regards to this study’s objective,an Assumption is necessary.Assumption5Ingeneral,theexternaldisturbance d(t)is time-varying and bounded,i.e.,∥d(t)∥≤δ,where δ is a positive constant.By selecting the controller(26),the derivative of H2(z)is rewritten asThe design parameter γ is set to γ≥δ to ensure that the term(γ-δ)∥z∥is positive,so(z)≤0.When computing the finite time,the disturbance must also be considered.From Eq.(45),the finite time tfis expressed as follows:whereis defined as=min{γi}.Therefore,the attractivity of finite time for the manifold coordinate(23)isRemark 2The manifold is insensitive to unknown bounded disturbance.Accordingly,the robustness of stabilization of the nonlinear system(1)with the proposed finite-time controller can be ensured.This section describes the construction of a cartpendulum system as an example of mastering the modified I&I technique(see Fig.2).A partial feedback linearization stage is assumed to have been applied [21].After normalization,the state equation becomes:where x1and x2∈R are the pendulum angle with respect to the upright vertical axis and its velocity,respectively,x3∈R is the velocity of the cart,and u∈R is the control input.The positive consta nts a>0 and b>0 are physical parameters.The equilibrium to be stabilized is the upward position of the pendulum after the cart stops,which corresponds to x*=0.The state equation(49)has the same form as the system(1),i.e.:andAssumption1isautomaticallysatisfied.FromEq.(26),the I&I stabilizing control law is specified by the following:where π3andare obtained based on Assumptions 2-3.plays a fundamental role in the stabilization of closedloop systems.Select the following:with k1>0,k2>0,so the stabilizing control law for the cart-pendulum system becomeswith γ>0.Replacing the explicit form f2(x),g2(x)and f3(x),the stability proof can be completed.(This procedure is omitted for brevity.)Note that V has an isolated global minimum at zero andis a constant.The controller is not globally defined because x1has a singularity atThe proposed stabilizing control law was implemented on a MATLAB Simulink simulation.It was assumed that a=24.5,b= 2.5.The domain of attractionfor the cart-pendulum system wasThe initial conditions were x(0)=-0.1,0,0),and parameters were k1=5,k2=3,and γ=5.Simulation results are shown in Figs.3-5. Fig.3 shows that the state variables x1,x2,andx3converge to zero at time t=5s,with the proposed I&Imethod.Convergencetozeroatahighspeedwasachieved. Fig.4 displays the curves of the corresponding input of the system(1).Fig.5 shows that the off-the-manifold coordinate z converged to equilibrium in finite timetf.From z(0)=x3(0)-π3(x1(0),x2(0))=7.354,the finite time tf=1.47s isobtained by replacing the initial condition in(45).Simulation results conducted for disturbance d(t)= 5cos(1.5t+)at 10~15s are shown in Figs.6-8.Parameters were k1=5,k2=3,and γ=9.A slight fluctuation in x1can be observed at 10~15s in Fig.6,the amplitude of which is about 0.5 rad.Fig.7 shows that the control input converged to zero after a sine disturbance at 10~15s,whereas the response curve oscillated at the zero point.Fig.8 shows that manifold z was rendered insensitive to bounded disturbance.The mode of the system response was inclined to chatter along z=0,as shown in Figs.4 and 7.The reason for manifold chatter is that the attractivity speed was limited,and inertia existed in the system.Rejecting manifold chatter is the primary objective of our laboratory’s future research.Remark 3The off-the-manifold coordinate depicted in Figs.5 and 8 converged to zero in finite time with the proposed I&I method.That said,manifold chatter directly affected the control input and reduced the performance of the closedloop system(1).This study developed a finite-time attractivity-based immersion and invariance control for a class of nonlinear systems.This novel approach modified the standard immersion and invariance theorem and focused on computations of finite time.The controller design was detailed above,and stability proofs were provided.A manifold was successfully designed to be insensitive to bounded unknown disturbance by implementing the finite-time attractivity controller.Controller performance was demonstrated usinga cart-pendulum system with various simulations. Clearly,the proposed control algorithm is effective for this class of nonlinear systems.[1]ACOSTA J,ORTEGA R,ASTOLFI A,et al.Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one[J].IEEE Transactions on Automatic Control,2005,50(12):1936-1955.[2]ORTEGA R,SPONG M,GOMEZ-ESTERN F.Stabilization of a class of uneractuated mechanical systems via interconnection and damping assignment[J].IEEE Transactions on Automatic Control,2002,47(8):1218-1232.[3]ORTEGA R,CANSECO E.Interconnection and damping assignment passivity-based control:a survey[J].European Journal of Control,2004,10(5):432-450.[4]MUSKE K,ASHRAFIUON H,NERSESOV S,et al.Optimal sliding mode cascade control for stabilization of underactuated nonlinear systems [J].Journal of Dynamic Systems,Measurement,and Control,2012,134(2):1-11.[5]XU R,¨OZG¨UNER¨U.Sliding mode control of a class of underactuated systems[J].Automatica,2008,44(1):233-241.[6]ASTOLFI A,ORTEGA R.Immersion and invariance:a new tool for stabilization and adaptive control of nonlinear systems[J].IEEE Transactions on Automatic Control,2003,48(4):590-606.[7]ASTOLFI A,KARAGIANNIS D,ORTEGA R.Nonlinear and Adaptive Control with Applications[M].London:Springer,2008.[8]LIU X,ORTEGA R,SU H,et al.Immersion and invariance adaptive control of nonlinear parameterized nonlinear systems[J].IEEE Transaction on Automatic Control,2010,55(9):2209-2214.[9]DONAIRE A,PEREZ T,TEO Y.Robust speed tracking control of synchronous motors using immersion and invariance[C]//IEEE Conference on Industrial Electronics and Applications.Singapore:[s.n.],2012:1482-1487.[10]SARRAS I,ACOSTA J,ORTEGA R.Constructive immersion and invariance stabilization for a class of underactuated mechanical systems [J].Automatica,2013,49(5):1442-1448.[11]KEMMETM¨ULLER W,KUGI A.Immersion and invariance-based impedance control for electrohydraulic systems[J].International Journalof Robust and Nonlinear Control,2010,20(7):725-744.[12]RAPP P,KL¨UNDER M,SAWODNY O,et al.Nonlinear adaptive and tracking control of a pneumatic actuator via immersion and invariance[C]//IEEE Conference on Decision and Control.Maui,HI:[s.n.],2012:4145-4151.[13]MANJAREKAR N,BANAVAR R,ORTEGA R.Stabilization of a synchronous generator with a controllable series capacitor via immersion and invariance[J].International Journal of Robust and Nonlinear Control,2012,22(8):858-874.[14]THOMAS W,CHRISTIAN O,GERD H.Immersion and invariance control for an antagonistic joint with nonlinear mechanical stiffnes[C]//IEEE Conference on Decision and Control.Atlanta,GA:[s.n.],2010:1128-1135.[15]KARAGIANNIS D,ASTOLFI A.Nonlinear adaptive control of systems in feedback form:an alternative to adaptive backstepping[J]. Systems&Control Letters,2008,57(9):733-739.[16]YALC¸IN Y,ASTOLFI A.Immersion and invariance adaptive control for discrete time systems in strict feedback form[J].Systems& Control Letters,2012,61(12):1132-1137.[17]BHAT S,BERNSTEIM D.Geometric homogeneity with applications to finite-time stability[J].Mathematics of Control,Signals and Systems,2005,17(2):101-127.[18]BOSKOVI`C J,LI S,MEHRA R.Robust adaptive variable structure control of spacecraft under control input saturation[J].Journal of Guidance,Control,and Dynamics,2001,24(1):14-22.[19]LI S,DING S,LI Q.Global set stabilisation of the spacecraft attitude using finite-time control technique[J].International Journal of Control,2009,82(5):822-836.[20]ACOSTA J,ORTEGA R,ASTOLFI A,et al.A constructive solution for stabilization via immersion and invariance:The cart and pendulum system [J].Automatica,2008,44(9):2352-2357.[21]TEEL A.A nonlinear small gain theorem for analysis of systems with saturation[J].IEEE Transactions on Automatic Control,1996,41(9):1256-1270.黄显林(1956-),男,教授,博士生导师,目前研究方向为飞行器导航、制导与控制技术、非线性系统鲁棒控制、复杂系统自适应控制方法、欠驱动控制系统的研究,E-mail:********************;张旭(1986-),男,博士研究生,目前研究方向为高阶非线性系统控制方法、系统浸入与不变流形理论、拮抗肌腱式机械手的控制方法、超视距捷联/红外复合制导技术,E-mail:********************;卢鸿谦(1975-),男,副教授,目前研究方向包括非线性控制与应用、组合导航与控制技术、恒拉力控制系统,E-mail:******************.。

纯电动车辆传动系统扭振模糊PID主动抑制仿真

纯电动车辆传动系统扭振模糊PID主动抑制仿真

纯电动车辆传动系统扭振模糊PID 主动抑制仿真刘辉1,2,陈胤奇1,2,马越1,2,张勋1,2(1.北京理工大学机械与车辆学院,北京100081;2.北京理工大学车辆传动国家重点实验室,北京100081)来稿日期:2019-12-04基金项目:国家自然科学基金(51775040)作者简介:刘辉,(1975-),女,辽宁人,博士生导师,教授,主要研究方向:车辆系统动力学,机电复合传动;陈胤奇,(1994-),男,湖北人,硕士研究生,主要研究方向:车辆传动系统振动主动控制技术研究1引言随着世界化石能源的减少和人们对环保的日益重视,清洁无污染不使用化石能源的纯电动汽车在汽车保有量中占比不断提高,纯电动汽车也成为近些年车辆工程领域的开发热点之一[1-2]。

由于电机的良好特性和更快控制响应速度,和传统车辆相比,纯电动车辆具备更好的加速能力,且传动系统省略了离合器和液力变矩器,具有电机-变速器直接耦合的特点[3],结构相对简单,然而这也使传动系统阻尼减小[4],考虑到传动轴等刚度有限[5],传动系统在车辆起步、突加/减速以及再生制动等驱动/负载转矩快速变化工况下极易发生冲击振动,降低车辆的乘坐舒适性。

为提高电动车辆的动力学性能,国内外很多学者对车辆传动系统扭振及控制进行了深入研究。

文献[6]以乘客座椅振动为评价指标,采用反馈控制器调节电机转矩的输出以实现抑制电动客车在加速和换挡过程中传动系统转矩振动的目的,采用有限元方法验证了模型的准确性,通过仿真对所提出的扭振控制器进行了摘要:基于纯电动汽车传动系统集中质量-弹性轴动力学模型,分析了输入转矩突变工况下传动系统的冲击振动。

将传动系统扭振响应转化为车辆加速度,以抑制车辆加速度波动为控制目标,采用PID 控制器对传动系统扭转振动进行主动抑制。

为提高扭振控制器对模型参数变化和建模误差的鲁棒性,采用模糊控制对PID 控制器参数进行了实时整定。

设计低通滤波器对车辆加速度进行滤波,以得到了车辆加速度的跟踪目标,并通过理论分析给出了该低通滤波器的解析表达式。

带有饱和输入和转弯半径限制的Dubins' Car位姿镇定

带有饱和输入和转弯半径限制的Dubins' Car位姿镇定王能建;张德福;周丽杰【摘要】A continuous posture stabilization approach of the nonlinear system is presented which has constraint on saturated input and the minimal turning radius of Dubins' Car. Artificial attractive coordinating fields ( AACF) is established whose coordinating factor is determined on line via variable universe adaptive fuzzy control (VUAFC ). The line speed of the system is regulated accordingly. To obtain a convergence trajectory of the least energy, an angular velocity control law is derived from trajectory shaping guidance (TSG) law. The speed limit of saturated input and the minimal turning radius constraint are taken into account. Arbitrary point-to-point stabilization which meets the minimal turning radius constraint on plane can be realized with the extended control law. The proposed technique guarantees the exponential stability of the system and ensures the convergence of the posture to their desired fixing. Simulation results show that the precision of posture stabilization obtained is high.%针对具有饱和输入和最小转弯半径约束的Dubins' Car,提出一种非线性系统连续位姿镇定方法.通过建立人工吸引协调场,用变论域自适应模糊控制在线调整协调因子,调节系统的线速度.由弹道成型制导律推导出角速度控制律,获取能量最省的收敛轨迹.考虑了实际系统的输入饱和限制和最小转弯半径约束.扩展后的控制律可实现平面内满足最小转弯半径约束的任意点一点镇定.确保系统的指数稳定性,位姿指数收敛到期望值.仿真结果表明具有较高的位姿镇定精度.【期刊名称】《南京理工大学学报(自然科学版)》【年(卷),期】2012(036)004【总页数】7页(P593-599)【关键词】饱和输入;最小转弯半径;非完整约束;人工吸引协调场;弹道成型制导律;位姿镇定【作者】王能建;张德福;周丽杰【作者单位】哈尔滨工程大学机电工程学院,黑龙江哈尔滨150001;哈尔滨工程大学机电工程学院,黑龙江哈尔滨150001;哈尔滨工程大学机电工程学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】TP242Dubins’Car的运动控制问题可以分为两类:一类是轨迹跟踪,另一类是位姿镇定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档