2017年全国高中数学联合竞赛竞赛一试(A卷)答案

合集下载

2023年全国中学生数学奥林匹克竞赛(预赛)暨全国高中数学联合竞赛一试及加试试题(A卷)

2023年全国中学生数学奥林匹克竞赛(预赛)暨全国高中数学联合竞赛一试及加试试题(A卷)

2023年全国中学生数学奥林匹克竞赛(预赛)暨全国高中数
学联合竞赛一试及加试试题(A 卷)
学校:___________姓名:___________班级:___________考号:___________
二、解答题
9.平面直角坐标系xOy 中,抛物线2:4y x Γ=,F 为Γ的焦点,A ,B 为Γ上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.
10.已知三棱柱111:ABC A B C Ω-的9条棱长均相等.记底面ABC 所在平面为α.若Ω的另
(1)点K在TDP
的外接圆上;
(2)K为定点.
13.正整数n称为“好数”,如果对任意不同于
参考答案:
取卡片(顶点)的规则可解释为:
(ⅰ)若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完;
(ⅱ)若顶点P 未取走,则必为某个()(),,0G m n m n ≥的情形,此时若号顶点,
【详解】
()11,x y ,()22,B x y .)1,0.由于点P 位于线段t ,22y t =-,则1x ,B 不重合知0t ≠,所以)2x x +【详解】
,1B ,1C 在平面α上的投影分别为1C ,11ABB A ,11ACC A ,BCC

的圆心O,过点O作AB的平行线l ,D,P,K共圆及KD KP
=,可知=︒-∠=︒-∠=∠
9090
DTB ATD PBA
∠的平分线.所以点K在直线为DTP。

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)暨2025年全国高中数学联合竞赛 一试全真模拟试题1参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.已知函数()sin()f x x 是定义在R 上的偶函数,则cos(2) 的值为 . 答案:0.解:由于()sin()f x x 是偶函数,故()2k kZ ,所以 cos(2)cos cos sin 02k k. 2.若关于z 的复系数一元二次方程2i 0()z z R 的一个根为11z =,则另一个根2z .答案:i 12. 解:由题意得201i 1 ,解得i 12.因此12i 12i z z ,所以2i 12z . 3.设数列{}n a 的通项公式为2[log ]n a n n ,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为 .答案:631.解:事实上,22[log ][log ]n a n n n n .而当1n 时,2[log ]0n ;当2,3n 时,2[log ]1n ;当4,5,6,7n 时,2[log ]2n ;当8,9,,15n 时,2[log ]3n ;当16,17,,31n 时,2[log ]4n ;当32n 时,2[log ]5n ,因此{}n a 的前32项和为321232102142831645631S .4.已知向量,a b的最小值为 .答案:2.解:设向量,a b的夹角为 ,其中(0,) ,则. 令254()((1,1))1x f x x x ,则222(2)(21)()(1)x x f x x .因此()f x 在11,2 单调递减,1,12单调递增,所以()f x 的最小值为142f .2,此时1cos 2 . 5.在梯形ABCD 中,,2260A D C A B B ,M 为CD 边点Q (异于的中点,动点P 在BC 边上,ABP 与CMP 的外接圆交于点P ),则BQ 的最小值为 .1.解:由熟知的结论,,,ABP CMP AME 的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在AME 的外接圆上,如图所示.而AME 是直角三角形,故其外接圆半径1R AD .在ABD中,由余弦定理,BD ,所以BQ1,此时P 在线段BC 上,且CP .6.已知双曲线 的两条渐近线互相垂直,过 的右焦点F 且斜率为3的直线与 交于,A B 两点,与 的渐近线交于,C D 两点.若||5AB ,则||CD .答案:.7.已知某圆台的侧面是一个圆环被圆心角为90 的扇形所截得的扇环,且圆台的侧面积为2 ,则该圆台体积的取值范围是 .答案:.解:设圆台上底面为圆1O ,半径为1R ,下底面为圆2O ,半径为2R ,圆台母线为l .由圆台的侧面积为2 可得21(222)π2lR R ,故212l R R ①.由侧面展开是圆心角为90 的扇形所截得的扇环,可得 11122222l R l l R,故2144l R R ②.因此圆台的高21)h R R ,圆台的体积2222121212211(()3)V R R h R R R R R R .结合①②可得222112R R.由于210R R,故21R R.令21x R R ,则12124124x R x x R x,进而可得3134V x x .令31()34f x x x x ,则43()304f x x .因此()f x在 上单调递增,故()f x f .所以V ,即圆台体积的取值范围是 . 8.用 表示11元集合{1,2,3,,10,2024}A 的三元子集的全体.对 中任意一个三元子集{,,}()T x y z x y z ,定义()m T y ,则()T m T的值为 .答案:990.解:不妨将集合A 视为{}1,2,3,,10,11 (这是因为,将“2024”改成“11”不影响每个()()m T T 的值).对每个T ,定义*{12|}T t t T ,则*T ,且*)12()(T m T m . 由于当T 遍历 的所有三元子集时,*T 也遍历 的所有三元子集,所以**311()666C 990()()(2)T T T T m T m T m T m T .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知,,0a b c ,二次函数2()f x ax bx c 存在零点,求a b cb c a的最小值.解:令,b c m n a a ,则,0m n 且1a b c mn b c a m n.由题意得240b ac ,即24m n,故m .考虑11()f m m m n,则()f m在) 上单调递增.所以()a b c f m n f n n b c a,当n m 时等号成立.因此a b c b c a. 10.(本题满分20分)在ABC 中,,30AB AC BAC .在AB 边上取五等分点12345,,,,T T T T T (12345,,,,,,A T T T T T B 顺次排列).记(1,2,3,4)k k BT C k ,求31141tan tan tan tan tan tan k k k A B 的值.解:在AB 延长线上任取一点D ,记05,A DBC B ,则所求式子即为410tan tan kk k.为方便,记05,T A T B .作CH AB 于点H ,则tan (04)k k CH k T H(这里及以下,有向线段的方向约定为AB方向).注意到,30AB AC BAC ,有111112tan tan 555k k k k k k AC T H T H T T ABCH CHCH CH , 故115tan tan (tan tan (04))2k k k k k .进而4411500055tan tan (ta )n tan (tan tan 22)k k k kk k575tan tan (252126211.(本题满分20分)已知A 是抛物线22(0)y px p 上一点(异于原点),斜率为1k 的直线1l 与抛物线恰有一个公共点A (1l 与x 轴不平行),斜率为2k 的直线2l 与抛物线交于,B C两点.若ABC 是正三角形,求12k k 的取值范围.解:设(,),(,),(,)A A B B C C A x y B x y C x y .设直线):(A A AB y y t x x −=−,代入抛物线22y px 得2220A A y p y y p x t t ,故2B A p y y t. 设直线):(A A AC y y s x x ,同理可得2C A py y s. 由AB AC 知2222111)(1()B A C A y y y y t s. 不妨设,,A B C 是绕着ABC 的重心逆时针排列的,则由3BAC知s t ,代入化简得)2A A p t y t p y t.结合t 0t 时B A y y 与C A y y 同号可知A py , 又22B C B C B C y y p k x x y y,进而121112B C AA y y k p k y t s y ,代入化简得1211k k0,t . 因此121111,,00,227k k.当t时,易知AC x 轴,B 位于坐标原点,此时12122B C A y y k k y.而0,t 均不符合题意.k k 的取值范围是1(1,0)0,7.因此,12。

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2017年全国初中数学联合竞赛试题一试a

2017年全国初中数学联合竞赛试题一试a

2017年全国初中数学联合竞赛试题第一试(A )(3月26日上午8﹕30——9﹕30)考生注意:1. 本试两个大题共10个小题,全卷满分70分.2. 用圆珠笔或钢笔作答.3. 解题书写不要超出装订线.一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.已知实数,,a b c 满足213390a b c ,3972a b c ,则32b c ab=()A. 2.B. 1.C. 0.D.1.2.已知△ABC 的三边长分别是,,a b c ,有以下三个结论:(1)以,,a b c 为边长的三角形一定存在;(2)以222,,a b c 为边长的三角形一定存在;(3)以||1,||1,||1a b b c c a 为边长的三角形一定存在. 其中正确结论的个数为()A .0. B.1. C.2. D.3.3.若正整数,,a b c 满足a bc 且2()abca bc ,则称(,,)a b c 为好数组.那么,好数组的个数为()A. 1. B.2. C .3. D.4.4.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BADACB ,且3BC ,4AD ,5AC ,6AB ,则DO OB =()A.109. B.87. C.65. D.43.得分评卷人市(区、县)学校姓名性别准考证号_________________________(密封装订线内不要答题)一试分二试分总分计分人2017年全国初中数学联合竞赛试题第一试(A) 第1页(共2页)5.设A 是以BC 为直径的圆上的一点,AD BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足BAF CAE .已知15BC,6BF,3BD,则AE =()A.43.B.213.C.214.D.215.6.对于正整数n ,设n a 是最接近n 的整数,则1232001111a a a a ()A.1917. B. 1927. C.1937.D.1947.二、填空题(本题满分28分,每小题7分)本题共有4个小题,要求直接将答案写在横线上.1.使得等式311aa 成立的实数a 的值为_______.2.如图,平行四边形ABCD 中,72ABC ,AF BC 于点F ,AF 交BD 于点E ,若2DE AB ,则AED =.3.设,m n 是正整数,且mn .若9m 与9n的末两位数字相同,则m n 的最小值为.4.若实数,x y 满足3331xyxy ,则22xy 的最小值为.(密封装订线内不要答题)得分评卷人2017年全国初中数学联合竞赛试题第一试(A) 第2页(共2页)E FCADB。

2017数学试题及答案a卷

2017数学试题及答案a卷

2017数学试题及答案a卷一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为:A. 0B. 2C. -2D. 42. 已知数列{an}的前n项和为Sn,且满足a1=1,an+1 = 2an + 1(n≥1),则a5的值为:A. 15B. 17C. 19D. 213. 若直线l的方程为y=kx+b,且经过点(1,2)和(2,3),则直线l的斜率k为:A. 1/2B. 1C. 3/2D. 24. 已知圆C的方程为(x-1)^2+(y-1)^2=9,圆心C到直线l: 2x+y-3=0的距离为:A. √5B. 2√5C. √10D. 2√105. 对于函数f(x)=x^3-3x,求其导数f'(x)为:A. 3x^2-3B. x^2-3xC. x^3-3D. 3x^2+3x6. 已知向量a=(2,-3),b=(1,2),求向量a与b的数量积a·b的值为:A. -4B. -1C. 1D. 47. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部的值为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i8. 已知函数f(x)=x^2-6x+8,求其在区间[2,4]上的最大值和最小值分别为:A. 最大值8,最小值-4B. 最大值8,最小值0C. 最大值4,最小值-4D. 最大值4,最小值09. 已知等比数列{an}的公比q=2,且a1=1,则其前5项的和S5为:A. 31B. 63C. 33D. 6510. 若双曲线C的方程为x^2/a^2-y^2/b^2=1,且经过点(2,3),则双曲线的离心率为:A. √5B. √10C. 2√5D. 5二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x,求其在x=1处的导数值f'(1)为_________。

12. 已知抛物线y=x^2-4x+c与x轴有两个交点,则c的取值范围为_________。

《全国高中数学联赛真题暨答案(2011-202

《全国高中数学联赛真题暨答案(2011-202

−−→ AF1
·
−−→ AF2
+
−−→ BF1
·
−−→ BF2
=
0,

|AB| |F1F2|
的值为

3.
设a
>
0,函数 f (x)
=
x+
100 x
在区间 (0, a] 上的最小值为 m1,在区间 [a, +∞) 上的
最小值为 m2,若 m1m2 = 2020,则 a 的值为 .
4.
设z
为复数,若
z−2 z−i
为实数(i 为虚数单位),则 |z + 3| 的最小值为
.
5. 在 △ABC 中,AB = 6,BC = 4,边 AC 上的中线长为 √10,则 sin6 A + P − ABC 的所有棱长均为 1,L, M, N 分别为棱 P A, P B, P C 的中点,则该 正三棱锥的外接球被平面 LM N 所截的截面面积为 .
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

历年全国高中数学竞赛试卷及答案(77套)

8.设 ,其中 是虚数单位,若 成等比数列,则实数a的值是___________.
9.若 是双曲线 上的点,则 的最小值是_________.
10. 如图,设正方体 的棱长为1,α为过直线 的平面,则α截该正方体的截面面积的取值范围是_________.
11.已知实数 满足: 的最大值是____.
12.设集合 则集合A中元素的个数是___________
二.填空题(本大题共4小题,每小题10分):
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
解:a2-a1= (y-x),b4-b3= (y-x), = .
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
解:( +2)2n+1-( -2)2n+1=2(C 2xn22n+1).
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
3.在△ABC中,已知∠A=α,CD、BE分别是AB、AC上的高,则 =.
4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
⑵kn+1=an-bn,其中kn+1是ln+1的斜率,an和bn分别是ln在x轴和y轴上的截距,(n=1,2,3,……);
⑶knkn+1≥0,(n=1,2,3,……).

2024年全国中学生数学奥林匹克竞赛(预赛)一试参考答案与评分标准(A卷)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r . 根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x ≤−,则2()24f x x x =−,在这一区间上的最小值为(116f −=+;2.若(13x ∈−−,则()88f x x =−+,在这一区间上的最小值为(316f =−+…………15分3.若31x ∈− ,则2()24f x x x =−+,在这一区间上的最小值为((3116f f =−+=−+;4.若13x ∈− ,则()88f x x =−,在这一区间上的最小值为(116f −+=−+;5.若3x ≥+,则2()24f x x x =−,在这一区间上的最小值为(316f =+.综上所述,所求最小值为((3116f f =−+=−.…………20分。

历年全国高中数学竞赛试卷及答案(77套)

A.M P NB.M N PC.P N MD.A、B、C都不成立
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.

A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);

重磅丨2017年全国高中数学联赛试题(AB卷)出炉!

重磅丨2017年全国高中数学联赛试题(AB卷)出炉!
2017年第33届全国高中数学联赛于今天上午8:00至12:10进行。

一试11题,二试4题,共计300分。

竞赛由全国高中数学竞赛组委会统一命题。

自主招生在线团队第一时间收集到本届高中数学联赛试题及赛场花絮,供考生查阅。

★赛场花絮★
2017年全国高中数学联赛试题
本次竞赛将产生省级一、二、三等奖,并会选拔出省队成员参加中国数学奥林匹克(CMO)。

各省获奖名单预计在9月下旬录取公布,自主招生在线会持续关注赛事信息,并第一时间为大家分享,请保持关注!
数学联赛后,还有哪些事要关注?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年全国高中数学联合竞赛竞赛一试(A卷)答案
****************;*****************
许康华老师联系方式:
微信(xkh3121);QQ(1090841758)
《(2016)高中数学奥林匹克竞赛全真试题:全国联赛卷》
详解版,南秀全主编,湖北教育出版社,2015
《(2016)高中数学奥林匹克竞赛全真试题:全国联赛卷(详解版)》全面反映了近几年中、小学数理化竞赛的题型,及所考查的知识点和解题方法,从而可以看出未来竞赛命题的走向和原则。

所选内容均是经过我们筛选的近几年的国际国内竞赛试题,不仅内容新、题型新,而且具有广泛的代表性。

用后一定会感到内容新鲜,题目新颖,精彩有趣。

解析时,注意做到语句通俗、简明,思路清晰、简捷。

有的还配有图表说明,便于学生理解。

对于一题多解,限于篇幅,一般只采用一两种最简便巧妙的方法。

这对拓展学生思路,启迪思维,发展智力,将有很大帮助。

相关文档
最新文档