八年级下册数学实验班提优训练答案沪科版2023

合集下载

1.3 站在巨人的肩膀上提优训练(pdf)(新版)(沪科版八年级全)

1.3 站在巨人的肩膀上提优训练(pdf)(新版)(沪科版八年级全)

(1)如图1,他是著 名 的 天 文 学 家,自 然 科 学 的 先 驱.他 用
“日心说”否定了影响人 类 达 千 年 之 久 的 托 勒 密 “地 心
说 ”,有 力 地 推 动 了 人 类 文 明 的 进 程 .他 是
.ቤተ መጻሕፍቲ ባይዱ
(2)如图2,他是经典力学和实验物理 学 等 的 先 驱,他 率 先
用望远镜观察天空,由 此 得 到 的 关 于 天 体 运 行 的 结 果
实事求是、


的精神.
3.物理 科 学 探 究 是 其 乐 无 穷 的,在 探 究 时,我 们 首 先 要
,明确方 向,接 着 进 行 合 理 的
,再 根 据
实际情况制定计划与设计 实 验,并 进 行 实 验 与 收 集 证 据,
接着对实验结果进行
,最 后 进 行 评 估 以 及 交 流
与合作.
4.要学好物理学,最重 要 的 方 法 是 要 进 行
.
多闻则守之以约,多见则守之以卓。———顾炎武 5
实验班提优训练
对 未 知 的 探 索 ,你 准 行 !
10.小芳同学观察到许多建筑材料的截面多是 V 形或 U 形, 这引起了她的好奇心. [提 出 问 题 ] 物体承受的压力与哪些因素有关? [猜 想 与 假 设 ] 猜 想 一 :物 体 承 受 的 压 力 与 物 体 的 形 状 有 关 . 猜 想 二 :物 体 承 受 的 压 力 与 物 体 的 材 料 有 关 . 于是小芳利用如图所 示 装 置,选 取 了 纸 条、细 绳、火 柴 盒 和 若 干 火 柴 棒 ,对 猜 想 进 行 实 验 探 究 .
勋卓著. 2.科学家们在科 学 探 究 的 过 程 中,还 为 后 人 留 下 了 永 远 高

2021-2022学年基础强化沪科版八年级下册数学综合训练 (B)卷(含答案及详解)

2021-2022学年基础强化沪科版八年级下册数学综合训练 (B)卷(含答案及详解)

沪科版八年级下册数学综合训练 (B )卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列各方程中,一定是一元二次方程的是( ) A .21120x x +-=B .20ax bx c ++=C .2(2)2(2)x x -=-D .223x y += 2、把方程()213x x x -=化成一元二次方程的一般形式,则二次项系数、一次项系数、常数项分别是( )A .2,5,0B .2,5,1C .2,-5,0D .2,1,0 31的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间4、若1x =-是关于x 的一元二次方程20x mx m +-=的一个根,则m 的值为( ) A .1- B .0 C .12 D .15、若关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =,那么m 的值是( ) ·线○封○密○外A .-1B .0C .1D .1或-16x 的取值范围是( )A .4x ≤-B .4x <-C .4x >-D .4x ≥-7、下面各命题都成立,那么逆命题成立的是( )A .邻补角互补B .全等三角形的面积相等C .如果两个实数相等,那么它们的平方相等D .两组对角分别相等的四边形是平行四边形8、估算1的值应在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间9、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是( )A .矩形B .菱形C .正方形D .等腰梯形10、方程2280x x +-=的两个根为( )A .124,2x x =-=-B .122,4x x =-=C .122,4x x ==D .124,2=-=x x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1x 的取值范围是____________. 2、如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,CD 的长为______.3、设m 、n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,则m 2+3m +n 的值为 _____.4、如图,在长方形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把B 沿AE 折叠,使点B 落在点B ′处.当CEB '为直角三角形时,BE 的长为______.5、设a ,b ,c ,d 是四个不同的实数,如果a ,b 是方程210110x cx d --=的两根,c ,d 是方程210110x ax b --=的两根,那么+++a b c d 的值为______. 三、解答题(5小题,每小题10分,共计50分) 1、某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB BC ⊥,绳索AC 比木柱AB 长三尺,BC 的长度为8尺,求:绳索AC 的长度. ·线○封○密○外2、某校组织1002名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机抽取一些学生在评比中的成绩制成的统计图表如表:频数分布表根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a=,b=;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数.3、为了加强安全教育,我校组织八、九年级开展了以“烤火必开窗,关窗先灭火”为主题知识竞赛,为了解竞赛情况,从两个年级各随机抽取了20名同学的成绩(满分为100分).收集整理数据如表:分析数据:根据以上信息回答下列问题: (1)a = ,b = ,c = ,d = ; (2)请通过平均数和方差分析两个年级掌握防火知识的情况; (3)该校八、九年级共有1000人,本次知识竞赛成绩不低于85分的为“优秀”.请估计这两个年级共有多少名学生到达“优秀”. 4、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形.如图1,四边形ABCD 中,AB =CD ,AB ⊥CD ,四边形ABCD 即为等垂四边形,其中相等的边AB 、CD 称为腰,另两边AD 、BC 称为底. ·线○封○密○外(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:①等垂四边形两个钝角的和为°;②若等垂四边形的两底平行,则它的最小内角为°.(2)拓展研究:①小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数.②如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是.(3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?5、如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AC的中点,请仅用无刻度的直尺........分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AD上的中线CM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.-参考答案-一、单选题1、C【分析】根据一元二次方程的定义逐项分析判断即可【详解】A 、含有分式,不是一元二次方程,故此选项不符合题意;B 、当0a =时,不是一元二次方程,故此选项不符合题意;C 、是一元二次方程,故此选项符合题意;D 、含有两个未知数,不是一元二次方程,故此选项不符合题意; 故选:C . 【点睛】 本题考查了一元二次方程的定义,掌握定义是解题的关键.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程. 2、C 【分析】 先把方程化为一般形式,再判断三项系数即可. 【详解】 解: ()213x x x -=, 2223,x x x 2250,x x 所以二次项系数、一次项系数、常数项分别是2,5,0-. ·线○封○密·○外故选C【点睛】本题考查的是一元二次方程的一般形式,二次项系数、一次项系数、常数项,掌握“一元二次方程的三项系数的判断”是解本题的关键.3、C【分析】根据二次根式的性质化简,进而根据无理数的大小估计即可求得答案【详解】111==54,78<<∴617<<故选C【点睛】本题考查了二次根式的混合运算,无理数的大小估算,掌握二次根式的性质是解题的关键.4、C【分析】将1x =-代入方程20x mx m +-=得到关于m 的方程,然后解方程即可.【详解】解:将1x =-代入方程20x mx m +-=得:10m m --=,解得:m =12.故选:C .【点睛】本题考查了一元二次方程根的定义,将已知方程的一个根代入方程得到新的方程是解答本题关键.5、A【分析】将0x =代入方程,得到关于m 的一元二次方程,解方程求解即可,注意二次项系数不为0.【详解】 解:∵关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =, ∴210,10m m -=-≠ 1m ∴=- 故选A 【点睛】本题考查了一元二次方程的解的定义,一元二次方程的定义,解一元二次方程,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程. 6、D 【分析】 根据被开方数必须是非负数,可得答案. 【详解】 解:由题意,得 x +4≥0, 解得x ≥-4, 故选D .·线○封○密○外【点睛】a≥0)叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.7、D【分析】逐个写出逆命题,再进行判断即可.【详解】A选项,逆命题:互补的两个角是邻补角.互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等.底为4高为6的等腰三角形和底为6高为4的等腰三角形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等.这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对角分别相等的四边形.这是平行四边形的性质,该逆命题成立,故D选项正确.故答案选:D.【点睛】本题考查判断命题的真假,写一个命题的逆命题.把一个命题的条件和结论互换后的新命题就是这个命题的逆命题.8、B【分析】被开方数越大,二次根式的值越大,由281100<<即可选出答案.【详解】解:281100<<9=10,∴910<,819∴<<,∴1在8和9之间, 故选:B . 【点睛】 本题主要考查二次根式的估值,解题的关键是要找到离99最近的两个能开方的整数,就可以选出答案. 9、B 【分析】 首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. 【详解】 解:过点A 作AE ⊥BC 于E ,AF ⊥CD 于F , 因为两条彩带宽度相同,所以AB ∥CD ,AD ∥BC ,AE =AF .∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC •AE =CD •AF .又AE =AF .∴BC =CD ,·线○封○密·○外∴四边形ABCD 是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE 和AF ,熟练掌握菱形的判定方法是解本题的关键10、D【分析】十字交叉相乘进行因式分解,各因式值为0,求解即可.【详解】解:2280x x +-=()()240x x -+=20x -=,40x +=解得1242x x =-=,故选D .【点睛】本题考查了解一元二次方程.解题的关键在于正确的进行因式分解.二、填空题1、1≥x 且3x ≠【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠ 故答案为:1≥x 且3x ≠ 【点睛】 本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数. 2、3cm 【分析】 由勾股定理求得AB =10cm ,然后由翻折的性质求得BE =4cm ,设DC =xcm ,则BD =(8-x )cm ,DE =x cm ,在△BDE 中,利用勾股定理列方程求解即可. 【详解】 解:∵在Rt△ABC 中,两直角边AC =6cm ,BC =8cm ,10AB cm ∴=(). 由折叠的性质可知:DC =DE ,AC =AE =6cm ,∠DEA =∠C =90°, ∴BE =AB -AE =10-6=4(cm ),∠DEB =90°, 设DC =x cm ,则BD =(8-x )cm ,DE =x cm , 在Rt△BED 中,由勾股定理得:BE 2+DE 2=BD 2, 即42+x 2=(8-x )2, 解得:x =3. 故答案为3cm . 【点睛】 ·线○封○密○外本题主要考查的是翻折变换以及勾股定理的应用,一元一次方程的解法,熟练掌握翻折的性质和勾股定理是解题的关键.3、11【分析】由m ,n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,推出m +n =-2,m 2+2m =13,由此即可解决问题.【详解】解:∵m 、n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,∴m +n =-2,m 2+2m =13,则原式=m 2+2m +m +n=m 2+2m +(m +n )=13-2=11.故答案为:11.【点睛】本题考查根与系数关系,解题的关键是记住x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.4、32或3 【分析】分两种情形:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,分别求解即可.【详解】解:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.四边形ABCD 是矩形,90B ∴∠=︒,5AC ∴, 3AB AB ='=, 532CB ∴'=-=,设BE EB x ='=,则4EC x =-, 在'Rt CEB 中,222CE B E B C ='+', 222(4)2x x ∴-=+, 32x ∴=, 如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,此时四边形ABEB '是正方形, 3BE AB ∴==, 综上所述,满足条件的BE 的值为32或3. ·线○封○密○外故答案是:32或3. 【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题. 5、1210【分析】由根与系数的关系得10a b c +=,10c d a +=,两式相加得()10a b c d a c +++=+,根据一元二次方程根的定义可得210110a ac d --=,可得211011100a a c ac -+-=,同理可得211011100c c a ac -+-=,两式相减即可得()()1210a c a c -+-=,根据a c ≠,求得121a c +=,进而可得()101210a b c d a c +++=+=【详解】解:由根与系数的关系得10a b c +=,10c d a +=,两式相加得()10a b c d a c +++=+. 因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以211011100a a c ac -+-=①同理可得211011100c c a ac -+-=②①-②得()()1210a c a c -+-=.因为a c ≠,所以121a c +=,所以()101210a b c d a c +++=+=.【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.三、解答题1、绳索长是736尺 【分析】设AC x =,则3=-AB x ,由勾股定理及即可求解.【详解】设AC x =,则3=-AB x ,在Rt ABC 中,222AB BC AC +=,∴()22238x x -+=, 解得:736x =, 答:绳索长是736尺. 【点睛】本题考查勾股定理得应用,用题意列出等量关系式是解题的关键.2、(1)40,40%(2)见解析(3)100人【分析】(1)首先求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a 值,用80除以样本容量即可求得b 值;(2)根据上题求得的数据补全统计图即可;(3)用总人数乘以获得一等奖的百分率即可求得获得一等奖的人数. 【小题1】 解:∵抽查的学生总数为:60÷30%=200(人), ∴a =200-80-60-20=40;b =80200×100%=40%. ·线○封○密·○外【小题2】成绩在95≤x<100的学生人数所占百分比为:20200×100%=10%,故频数分布表为:频数分布直方图为:【小题3】1000×10%=100(人),答:该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,读图时要全面细致,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.掌握好频率、中位数的概念.3、(1)2,85,85,85;(2)见解析;(3)共650名学生达到“优秀”【分析】(1)根据九年级共抽取了20人,其中除95分外的其它分数均已知,则可求得a 的值;由八年级抽取的20名学生的成绩可求得其平均数及中位数,即可求得b 与c 的值;根据九年级的学生成绩可求得众数d 的值; (2)比较两个年级的平均数和方差即可对两个年级掌握防火知识的情况作出比较; (3)计算出两个班竞赛成绩不低于85分在所抽取的总人数中所占的百分比,它与1000的积即为两个年级到达“优秀”的人数. (1) a =20−(0+2+5+8+2+1)=2(人); 八年级抽取的学生的成绩的平均数为: 1(7027538028549059531001)8520⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯=,即b =85; 八年级抽取的学生的成绩的中位数为:85,即c =85; 由表知,九年级抽取的学生的成绩的众数为:85,即d =85 故答案为:2,85,85,85 (2) 两个年级的平均数均为85分,说明两个年级掌握知识的平均水平相差不大;但九年级的方差小于八年级的方差,表明九年级学生掌握防火知识的情况普遍较好,八年级学生掌握的情况好的好,差的差,波动幅度较大. (3) (48)(52)(32)(11)100%65%2020+++++++⨯=+ ·线○封○密·○外1000×65%=650(名)即两个年级共650名学生达到“优秀”.【点睛】本题考查了平均数、中位数、众数、方差、用样本估计总体等知识,掌握这些知识并加以应用是关键.4、(1)①270;②45;(2)①MN AB =,AB 与MN 所在直线相交所成的锐角度数为45°,理由见解析;②3BC ≤+(3)650米【分析】(1)①延长CD 与BA 延长线交于点P ,则∠P =90°,可以得到∠B +∠C =90°,再由∠B +∠C +∠BAD +∠ADC =360°,即可得到∠BAD +∠ADC =270°;②延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E ,则∠DEC =∠B ,由等垂四边形的两底平行,即AD ∥BC ,可证四边形ABED 是平行四边形,得到DE =AB ,再由AB =CD ,AB ⊥CD 得到DE =CD ,DE ⊥CD ,则∠DEC =∠C =45°,即四边形ABCD 的最小内角为45°;(2)①延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,则CD =AB =DE ,AB ∥DE ,即可推出∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,由勾股定理得到CE ==,∠DEC =∠DCE =45°,再证MN 是△BCE 的中位线,得到12MN CE AB ==,MN ∥CE ,则∠NQC =∠DCE =45°,由此即可推出直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°,则1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==即可推出23BC PN =≤+PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC ==3BC ≤+(3)仿照(2)②进行求解即可.(1)解:①如图所示,延长CD 与BA 延长线交于点P ,∵四边形ABCD 为等垂四边形,即AB =CD ,AB ⊥CD ,∴∠P =90°,∴∠B +∠C =90°,∵∠B +∠C +∠BAD +∠ADC =360°,∴∠BAD +∠ADC =270°,故答案为:270; ②如图所示,延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E , ∴∠DEC =∠B , ∵等垂四边形的两底平行,即AD ∥BC , ∴四边形ABED 是平行四边形, ∴DE =AB , 又∵AB =CD ,AB ⊥CD ∴DE =CD ,DE ⊥CD , ∴∠DEC =∠C =45°, ∴四边形ABCD 的最小内角为45°, 故答案为:45; ·线○封○密○外(2)解:①MN AB =,AB 与MN 所在直线相交所成的锐角度数为45°,理由如下: 延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,∵四边形ABCD 是等垂四边形,∴AB =CD ,AB ⊥CD ,∴∠BPC =90°,∵M 是AD 的中点,∴MA =MD ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,∴CD =AB =DE ,AB ∥DE ,∴∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,∴CE =,∠DEC =∠DCE =45°,又∵M 、N 分别是BE ,BC 的中点,∴MN 是△BCE 的中位线,∴12MN CE AB ==,MN ∥CE , ∴∠NQC =∠DCE =45°,∵∠BPC =90°,∴∠QPF =90°,∴∠QFP =45°,∴直线AB 与直线MN 所在直线相交所成的锐角度数为45°; ②如图所示,延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°, ∴1322PM AD ==,12PN BC =,即2BC PN =, 由(2)①可知MN AB ==∵32PN MN PM ≤+=+∴23BC PN =≤+ 又∵∠PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC∴3BC ≤≤+故答案为:3BC ≤≤+ (3) 解:如图所示,取AB ,CD 的中点M ,N ,连接MN ,作点C 关于M 的对称点E ,连接CE ,AE ,DE ,设直·线○封○密·○外线l1与直线l2交于点P,由(2)可知,AE∥BC,AE=BC=240米,∵l1⊥l2,∴∠APB=∠PAE=90°,∴∠DAE=90°,∴400DE=米,∵M、N分别是CE,CD的中点,∴MN是△CED的中位线,∴12002MN ED==米,MN∥DE,∵M为AB的中点,∠APB=90°,∴11252PM AB==米,同理可得12PN CD=,即2CD PN=∴325PN PM MN≤+=米,∴2650CD PN=≤米,∴隔离带最长为650米.【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解.5、(1)见解析(2)见解析【分析】(1)连接BE 并延长交AD 于M ,易得四边形BCDM 为平行四边形,再根据三角形中位线判断M 点为AD 的中点,然后连接CM 即可; (2)连接BE 并延长交AD 于M ,M 点为AD 的中点,再连接CM 、DE ,它们相交于F ,连接AF 并延长交CD 于N ,则AN ⊥CD . (1)如图,CM 即为所求(2) 如图,AN 即为所求 ·线○封○密·○外【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质.。

沪科版八年级数学下册教案

沪科版八年级数学下册教案

第1课时二次根式的概念1.了解二次根式的概念;(重点)2.理解二次根式有意义的条件;(重点)3.理解a(a≥0)是一个非负数,并会应用a(a≥0)的非负性解决实际问题.(难点)一、情境导入1.小明准备了一张正方形的纸剪窗花,他算了一下,这张纸的面积是8平方厘米,那么它的边长是多少?2.已知圆的面积是6π,你能求出该圆的半径吗?大家在七年级已经学习过数的开方,现在让我们一起来解决这些问题吧!二、合作探究探究点一:二次根式的概念【类型一】二次根式的识别(2015·安顺期末)下列各式:①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个解析:根据二次根式的概念可直接判断,只有①③满足题意.故选B.方法总结:判断一个式子是否为二次根式,要看式子是否同时具备两个特征:①含有二次根号“”;②被开方数为非负数.两者缺一不可.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次根式有意义的条件代数式x+1有意义,则x的取值范围是()A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1 D.x≥-1解析:根据题意可知x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.方法总结:(1)要使二次根式有意义,必须使被开方数为非负数,而不是所含字母为非负数;(2)若式子中含有多个二次根式,则字母的取值必须使各个被开方数同时为非负数;(3)若式子中含有分母,则字母的取值必须使分母不为零.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:利用二次根式的非负性求值【类型一】利用被开方数的非负性求字母的值(1)已知a,b满足2a+8+|b-1|=0,求2a-b的值;(2)已知实数a,b满足a=b-2+2-b+3,求a,b的值.解析:根据二次根式的被开方数是非负数及绝对值的意义求值即可.解:(1)由题意知⎩⎪⎨⎪⎧2a +8=0,b -1=0,得2a =-8,b =1,则2a -b =-9; (2)由题意知⎩⎪⎨⎪⎧b -2≥0,2-b ≥0,解得b =2.所以a =0+0+3=3. 方法总结:①当几个非负数的和为0时,这几个非负数均为0;②当题目中,同时出现a 和-a 时(即二次根式下的被开方数互为相反数),则可得a =0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 与二次根式有关的最值问题当x =________时,3x +2+3的值最小,最小值为________.解析:由二次根式的非负性知3x +2≥0,∴当3x +2=0即x =-23时,3x +2+3的值最小,此时最小值为3.故答案为-23,3. 方法总结:对于二次根式a ≥0(a ≥0),可知其有最小值0.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课的内容是在我们已学过的平方根、算术平方根知识的基础上,进一步引入二次根式的概念.教学过程中,应鼓励学生积极参与,并让学生探究和总结二次根式在实数范围内有意义的条件 第2课时 二次根式的性质1.理解和掌握(a )2=a (a ≥0)和a 2=|a |;(重点)2.能正确运用二次根式的性质1和性质2进行化简和计算.(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是3,则面积是多少?如果正方形的面积是a ,那么它的边长是多少?若边长是a ,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】 利用(a )=a (a ≥0)计算计算:(1)(0.3)2; (2)(-13)2;(3)(23)2; (4)(2x -y )2.解析:(1)可直接运用(a )2=a (a ≥0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab )2=a 2b 2,再利用(a )2=a (a ≥0)进行计算.解:(1)(0.3)2=0.3;(2)(-13)2=(-1)2×(13)2=13; (3)(23)2=22×(3)2=12;(4)(2x -y )2=22×(x -y )2=4(x -y )=4x -4y .方法总结:形如(n m )2(m ≥0)的二次根式的化简,可先利用(ab )2=a 2b 2,化为n 2·(m )2(m ≥0)后再化简.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 计算:(1)22; (2)(-23)2; (3)-(-π)2. 解析:利用a 2=|a |进行计算.解:(1)22=2; (2)(-23)2=|-23|=23; (3)-(-π)2=-|-π|=-π.方法总结:a 2=|a |的实质是求a 2的算术平方根,其结果一定是非负数.变式训练:见《学练优》本课时练习“课堂达标训练”第9题 【类型三】 利用二次根式的性质化简求值先化简,再求值:a +1+2a +a 2,其中a =-2或3.解析:先把二次根式化简,再代入求值,即可解答.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值.变式训练:见《学练优》本课时练习“课堂达标训练”第10题探究点二:利用二次根式的性质进行化简【类型一】 与数轴的综合如图所示为a ,b 在数轴上的位置,化简2a 2-(a -b )2+(a +b )2.解析:由a ,b 在数轴上的位置确定a <0,a -b <0,a +b <0.再根据a 2=|a |进行化简. 解:由数轴可知-2<a <-1,0<b <1,则a -b <0,a +b <0.原式=2|a |-|a -b |+|a +b |=-2a +a -b -(a +b )=-2a -2b .方法总结:利用a 2=|a |化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】 与三角形三边关系的综合 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2.解析:根据三角形的三边关系得出b +c >a ,b +a >c ,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础.本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯.性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用第1课时 二次根式的乘法1.掌握二次根式的乘法运算法则;(重点)2.会进行二次根式的乘法运算.(重点、难点)一、情境导入小颖家有一块长方形菜地,长6m ,宽3m ,那么这个长方形菜地的面积是多少?二、合作探究探究点一:二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( )A .x ≤2B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0.解得-1≤x ≤2.故选C. 方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数是非负数这一条件.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:二次根式的乘法【类型一】 二次根式的乘法运算计算:(1)53×27125; (2)918×(-1654); (3)135·23·(-3416); (4)2a 8ab ·(-236a 2b )·3a (a ≥0,b ≥0). 解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘.解:(1)原式=53×27125=35; (2)原式=-(9×16)18×54=-32182×3=-273; (3)原式=-(2×34)85×3×16=-3245=-355; (4)原式=-2a ×238ab ·6a 2b ·3a =-16a 3b . 方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘.最后结果要化为最简二次根式,计算时要注意积的符号.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 化简:(1)196×0.25; (2)(-19)×(-6481); (3)225a 6b 2(a ≥0,b ≥0).解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号.解:(1)196×0.25=196×0.25=14×0.5=7;(2)(-19)×(-6481)=19×6481=19×6481=13×89=827; (3)225a 6b 2=225·a 6·b 2=15a 3b .方法总结:利用积的算术平方根的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式的乘法的应用小明的爸爸做了一个长为588πcm ,宽为48πcm 的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据“矩形的面积=长×宽”“圆的面积=π×半径的平方”进行计算.解:设圆的半径为r cm.因为矩形木板的面积为588π×48π=168π(cm)2,所以πr 2=168π,r =242(r =-242舍去).答:这个圆的半径为242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想. 变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数.在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算第2课时 二次根式的除法1.会利用商的算术平方根的性质化简二次根式;(重点,难点)2.掌握二次根式的除法法则,并会运用法则进行计算;(重点、难点)3.掌握最简二次根式的概念,并会熟练运用.(重点)一、情境导入计算下列各题,观察有什么规律?(1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法计算:(1)4872; (2)612518; (3)27a 2b 312ab 2; (4)12a 3b 5÷(-23a 2b 6)(a >0,b >0). 解析:(1)直接把被开方数相除;(2)把系数与系数相除,被开方数与被开方数相除;(3)被开方数相除时,注意约分;(4)系数相除时,把除法转化为乘法,被开方数相除时,写成商的算术平方根的形式,再化简.解:(1)4872=4872=23=63; (2)612518=651218=6523=256; (3)27a 2b 312ab 2=27a 2b 312ab 2=9ab 4=32ab ; (4)12a 3b 5÷(-23a 2b 6) =12×(-32)a 3b 5a 2b 6=-34a b =-34bab . 方法总结:①二次根式的除法运算,可以类比单项式的除法运算,当被除式或除式中有负号时,要先确定商的符号;②二次根式相除,根据除法法则,把被开方数与被开方数相除,转化为一个二次根式;③二次根式的除法运算还可以与商的算术平方根的性质结合起来,灵活选取合适的方法;④最后结果要化为最简二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:最简二次根式下列二次根式中,最简二次根式是( )A.8aB.3aC.a 3D.a 2+a 2b 解析:A 选项8a 中含能开得尽方的因数4,不是最简二次根式;B 选项是最简二次根式;C 选项a 3中含有分母,不是最简二次根式;D 选项a 2+a 2b 中被开方数用提公因式法因式分解后得a 2+a 2b =a 2(1+b )含能开得尽方的因数a 2,不是最简二次根式.故选B.方法总结:最简二次根式必须同时满足下列两个条件:①被开方数中不含能开得尽方的因数或因式;②被开方数不含分母.判定一个二次根式是不是最简二次根式,就是看是否同时满足最简二次根式的两个条件,同时满足的就是最简二次根式,否则就不是.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:商的算术平方根的性质 【类型一】 利用商的算术平方根的性质确定字母的取值若a 2-a =a 2-a,则a 的取值范围是( ) A .a <2 B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件. 【类型二】 利用商的算术平方根的性质化简二次根式化简: (1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:按商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题 探究点四:二次根式除法的应用 已知某长方体的体积为3010cm 3,长为20cm ,宽为15cm ,求长方体的高.解析:因为“长方体的体积=长×宽×高”,所以“高=长方体的体积÷(长×宽)”,代入计算即可.解:长方体的高为3010÷(20×15)=301020×15=30130=30(cm). 方法总结:本题也可以设高为x ,根据长方体体积公式建立方程求解.三、板书设计二次根式的除法是建立在二次根式乘法的基础上,所以在学习中应侧重于引导学生利用与学习二次根式乘法相类似的方法学习,从而进一步降低学习难度,提高学习效率第1课时 二次根式的加减1.经历探索二次根式的加减运算法则的过程,让学生理解二次根式的加减法则;2.掌握二次根式的加减运算.(重点、难点)一、情境导入计算:(1)2x -5x ; (2)3a 2-a 2+2a 2.上述运算实际上就是合并同类项,如果把题中的x 换成3,a 2换成5,这时上述两小题就成为如下题目:计算: (1)23-53; (2)35-5+2 5.这时怎样计算呢?二、合作探究 探究点一:同类二次根式 下列二次根式中与2是同类二次根式的是( )A.12B.32 C.23D.18 解析:选项A 中,12=23与2被开方数不同,故与2不是同类二次根式;选项B 中,32=62与2被开方数不同,故与2不是同类二次根式;选项C 中,23=63与2被开方数不同,故与2不是同类二次根式;选项D 中,18=32与2被开方数相同,故与2是同类二次根式.故选D.方法总结:要判断两个二次根式是否是同类二次根式,根据二次根式的性质,把每个二次根式化为最简二次根式,如果被开方数相同,这样的二次根式就是同类二次根式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:二次根式的加减【类型一】 二次根式的加法或减法(1)8+32; (2)1223+1332; (3)448-375; (4)1816-3296. 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.解:(1)原式=22+42=(2+4)2=62;(2)原式=166+166=(16+16)6=63; (3)原式=163-153=(16-15)3=3;(4)原式=36-66=(3-6)6=-3 6.方法总结:二次根式加减的实质就是合并同类二次根式,合并同类二次根式可以类比合并同类项进行,不是同类二次根式的不能合并.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】 二次根式的加减混合运算计算:(1)12-33-273; (2)324x -3x 9+3x 1x ; (3)3123-45+220-1260; (4)0.5-213-(18-75). 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并. 解:(1)原式=23-3-3=0;(2)原式=3x -x +3x =5x ;(3)原式=15-35+45-15=5;(4)原式=22-233-24+53=24+1333. 方法总结:二次根式的加减混合运算步骤:①把每个二次根式化为最简二次根式;②运用加法交换律和结合律把同类二次根式移到一起;③把同类二次根式的系数相加减,被开方数不变.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 二次根式加减法的应用 一个三角形的周长是(23+32)cm ,其中两边长分别是(3+2)cm ,(33-22)cm ,求第三边长.解析:第三边长等于(23+32)-(3+2)-(33-22),再去括号,合并同类二次根式.解:第三边长是(23+32)-(3+2)-(33-22)=23+32-3-2-33+22=42-23(cm).方法总结:由三角形周长的意义可知,三角形的周长减去已知两边的长,可得第三边的长.解决问题的关键在于把实际问题转化为二次根式的加减混合运算.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计通过合并同类项引入二次根式的加减法,让学生类比学习.引导学生归纳总结出二次根式加减运算的两个关键步骤:①把每个二次根式化为最简二次根式;②合并同类二次根式.并让学生按步骤解题,养成规范解题的良好习惯.教学过程中,注重数学思想方法的渗透(类比),培养学生良好的思维品质第2课时 二次根式的混合运算1.了解二次根式的混合运算顺序;2.会进行二次根式的混合运算.(重点、难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确的吗?二、合作探究探究点一:二次根式的混合运算【类型一】 二次根式的混合运算计算:(1)48÷3-12×12+24; (2)12÷43×23-50. 解析:(1)先算乘除,再算加减;(2)先计算第一部分,把除法转化为乘法,再化简.解:(1)原式=16-6+24=4-6+26=4+6;(2)原式=12×34×233-52=38×233-52=64×233-52=22-52=-922.方法总结:二次根式的混合运算与实数的混合运算一样,先算乘方,再算乘除,最后算加减,如果有括号就先算括号里面的.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型二】 运用乘法公式进行二次根式的混合运算计算: (1)(5+3)(5-3); (2)(32-23)2-(32+23)2.解析:(1)用平方差公式计算;(2)逆用平方差公式计算. 解:(1)(5+3)(5-3)=(5)2-(3)2=5-3=2; (2)(32-23)2-(32+23)2=(32-23+32+23)(32-23-32-23)=-24 6.方法总结:多项式的乘法公式在二次根式的混合运算中仍然适用,计算时应先观察式子的特点,能用乘法公式的用乘法公式计算.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】 二次根式的化简求值 先化简,再求值:x +xy xy +y +xy -y x -xy(x >0,y >0),其中x =3+1,y =3-1. 解析:首先根据约分的方法和二次根式的性质进行化简,然后再代值计算.解:原式=x (x +y )y (x +y )+y (x -y )x (x -y )=x y +y x =x +y xy. ∵x =3+1,y =3-1,∴x +y =23,xy =3-1=2,∴原式=232= 6. 方法总结:在解答此类代值计算题时,通常要先化简再代值,如果不化简,直接代入,虽然能求出结果,但往往导致烦琐的运算.化简求值时注意整体思想的运用.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】 二次根式混合运算的应用一个三角形的底为63+22,这条边上的高为33-2,求这个三角形的面积.解析:根据三角形的面积公式进行计算.解:这个三角形的面积为12(63+22)(33-2)=12×2×(33+2)(33-2)=(33)2-(2)2=27-2=25.方法总结:根据题意列出关系式,计算时注意观察式子的特点,选取合适的方法求解,能应用公式的尽量用公式计算.变式训练:见《学练优》本课时练习“课后巩固提升”第10题探究点二:二次根式的分母有理化【类型一】 分母有理化计算:(1)215+122; (2)3-23+2+3+23-2. 解析:(1)把分子、分母同乘以2,再约分计算;(2)把3-23+2的分子、分母同乘以3-2,把3+23-2的分子、分母同乘以3+2,再运用公式计算.解:(1)215+122=(215+12)×22×2=230+262=30+6; (2)3-23+2+3+23-2=(3-2)2(3+2)(3-2)+(3+2)2(3-2)(3+2)=5-263-2+5+263-2=5-26+5+26=10. 方法总结:把分母中的根号化去就是分母有理化,分母有理化时,分子、分母应同乘以一个适当的式子,如果分母只有一个二次根式,则乘以这个二次根式,使得分母能写成a ·a的形式;如果分母有两项,分子、分母乘以一个二项式,使得能运用平方差公式计算.如分母是a +b ,则分子、分母同乘以a -b . 【类型二】 分母有理化的逆用比较15-14与14-13的大小解析:把15-14的分母看作“1”,分子、分母同乘以15+14;把14-13的分母看作“1”,分子、分母同乘以14+13,再根据“分子相同的两个正分数比较大小,分母大的反而小”,得到它们的大小关系.解:15-14=(15-14)(15+14)15+14=115+14,14-13=(14-13)(14+13)14+13=114+13.∵15+14>14+13>0, ∴115+14<114+13即15-14<14-13. 方法总结:把分母为“1”的式子化为分子为“1”的式子,根据分母大的反而小可以比较两个数的大小.三、板书设计二次根式的混合运算可类比整式的运算进行,注意运算顺序,最后的结果应化简.引导学生勇于尝试,加强训练,从解题过程中发现问题,解决问题.本节课的易错点是运算错误,要求学生认真细心,养成良好的习惯。

(2023年最新)沪科版八年级下册数学期末测试卷

(2023年最新)沪科版八年级下册数学期末测试卷

沪科版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1B.a≠﹣1C.a≠±1D.为任意实数2、用配方法解方程x2+6x+1=0,配方后的方程是()A.(x+3)2=8B.(x﹣3)2=8C.(x﹣3)2=10D.(x+3)2=103、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为()A.26B.18C.20D.214、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )A. B. C. D.5、在Rt△ABC中,∠C=90°,AC=3,BC=4,CD是中线,则CD的长为()A.2.5B.3C.4D.56、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cmB.7 cmC.8 cmD.9 cm7、已知菱形的两条对角线长分别为10、24,则它的周长等于( )A.34B.240C.52D.1208、关于的方程的一个根是,则它的另一个根和的值分别是()A. B. C. D.9、如图,菱形ABCD的周长为52,对角线AC的长为24,,垂足为E,则DE的长为()A. B. C. D.10、关于x的方程(a﹣1)x2+ x+2=0是一元二次方程,则a的取值范围是()A.a≠1B.a≥﹣1且a≠1C.a>﹣1且a≠1D.a≠±111、如图,特殊四边形的面积表达式正确的是()A. 平行四边形ABCD中,AE⊥BC,则平行四边形ABCD的面积为:BC×AEB. 菱形ABCD中,AE⊥BC,则菱形ABCD的面积为:BC×AEC. 菱形ABCD中,对角线交于点O,则菱形ABCD的面积为:AC×BD D. 正方形ABCD中,对角线交于点O,则正方形ABCD的面积为:AC×BD12、已知抛物线,其顶点为A,与轴交于点B,将抛物线E绕原点旋转得到抛物线,点的对应点分别为,若四边形为矩形,则的值为()A. B. C. D.13、如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1,S 2, S3, S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③ .A.①②B.①③C.③D.①②③14、如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.415、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若x=4是二次方程x2+ax﹣4b=0的解,则代数式a﹣b的值为________.17、从一个多边形的一个顶点出发一共有7条对角线,则这个多边形的边数为________.18、统计得到一组数据,最大值是136,最小值是52,取组距为10,可以分成________组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档