2024年高考四川数学考纲

合集下载

2024 高考 数学考试大纲

2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。

2. 立方根:立方根的概念、立方根的计算、立方根的性质。

3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。

二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。

2. 一次函数:一次函数的定义、一次函数的图象与性质。

3. 二次函数:二次函数的定义、二次函数的图象与性质。

4. 分式函数:分式函数的定义、分式函数的图象与性质。

5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。

6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。

三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。

2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。

3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。

4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。

四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。

2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。

3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。

4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。

2024四川高考数学大纲

2024四川高考数学大纲

2024四川高考数学大纲2024年四川高考数学大纲在原有基础上做了一些调整和更新,旨在更好地培养学生的数学思维能力和解决实际问题的能力。

下面将针对2024四川高考数学大纲的相关内容进行详细介绍。

一、知识要点的调整2024年四川高考数学大纲对知识要点进行了一些调整。

首先,在基础知识的部分,对数列、函数、三角函数、概率等内容进行了强调,要求学生对这些知识点有更加深入的理解。

其次,在解析几何的部分,新增了对球、二次曲线、平面和立体图形的考查,要求学生能够掌握这些图形的性质和相关计算方法。

二、能力要求的变化2024年四川高考数学大纲对学生的能力要求也有一些变化。

首先,对解决实际问题的能力提出了更高的要求。

在选择题和解答题中,会增加一些与实际生活和实际工作相关的问题,考查学生的应用能力和创新思维。

其次,在计算和证明的要求上,要求学生能够进行更加复杂的计算和证明,培养学生的逻辑思维和推理能力。

三、题型和分值的变化2024年四川高考数学大纲对题型和分值也有一些变化。

首先,选择题的数量将有所增加,占总分的比重会有所增加。

这要求学生在短时间内能够准确地解答多个选择题。

其次,解答题的数量会有所减少,但每个题目的难度和分值会有所增加。

这要求学生能够在有限的时间内,深入思考和分析题目,准确地给出答案和解决思路。

四、备考建议针对2024四川高考数学大纲的调整和变化,下面给出一些建议供学生备考参考。

首先,要加强对基础知识的学习和理解。

数列、函数、三角函数、概率等知识点是整个数学学科的基础,对于其他高级知识的学习和应用有着重要的作用。

其次,要注重解决实际问题的能力培养。

通过阅读和分析实际问题,培养学生的应用能力和创新思维。

此外,要注重解答题的训练和练习。

解答题在2024年四川高考数学试卷中的比重虽然减少了,但每个题目的难度和分值增加了,要求学生能够在有限的时间内准确解答。

最后,要进行模拟考试和真题训练。

通过模拟考试和真题训练,能够让学生熟悉考试的形式和要求,提高解题速度和准确性。

2020年四川高考考试大纲:数学

2020年四川高考考试大纲:数学

2020年四川高考考试大纲:数学《2014年普通高等学校招生全国统一考试(四川卷)考试说明》的数学(理科)部分(以下简称《考试说明》)以既有利于数学新课程的改革、又要发挥数学作为基础学科的作用,既重视考查考生对中学数学知识的掌握程度、又注意考查考生进入高等学校继续学习的潜能,既符合四川省普通高等学校招生统一考试工作整体方案和普通高中课程改革的实际情况、又利用高考命题的导向功能推动新课程的课堂教学改革为基本原则,依据教育部颁布的《普通高中课程方案(实验)》、《普通高中数学课程标准(实验)》(以下简称《课程标准》)、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(理科·课程标准实验)》、《四川省普通高考改革方案》、《四川省普通高中课程设置方案》、《四川省普通高中课程数学学科教学指导意见》,并结合我省普通高中数学教学实际制定.Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.命题指导思想2014年普通高等学校招生全国统一考试数学科(四川卷)的命题,将遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意的命题指导思想,将知识、能力和素质融为一体,坚持正确导向,注重能力考查,力求平稳推进,确保命题质量,全面检测考生的数学素养和考生进入高等学校继续学习的潜能,有利于高校选拔新生和中学实施素质教育.数学科考试将充分发挥数学作为主要基础学科的作用,考查考生数学的基础知识、基本技能和数学思想方法,考查考生的数学基本能力、应用意识和创新意识,考查考生对数学本质的理解,体现《课程标准》中对知识与技能、过程与方法、情感态度与价值观等目标的要求.数学科命题将在试卷结构、难度控制及试题设计等方面保持相对稳定,适度创新,既体现新课程理念,又继承四川省历年高考数学命题的成果.Ⅲ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.考试时间为120分钟.考试时不允许使用计算器.二、考试范围考试内容如下:数学1(必修):集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数).数学2(必修):立体几何初步、平面解析几何初步.数学3(必修):算法初步、统计、概率.数学4(必修):基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换.数学5(必修):解三角形、数列、不等式.选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.选修2-2:导数及其应用(不含“导数及其应用”中“(4)生活中的优化问题举例”、“(5)定积分与微积分基本定理”及“(6)数学文化”)、数系的扩充与复数的引入.选修2-3:计数原理、统计与概率(不含“统计与概率”(1)“概率”中“④通过实例,理解取有限值的离散型随机变量方差的概念,能计算简单离散型随机变量的方差,并能解决一些实际问题”、“⑤通过实际问题,借助直观,认识正态分布曲线的特点及曲线所表示的意义”及(2)“统计案例”)三、试卷结构1.试题类型全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分为150分.试卷结构如下:。

2024年四川高考数学(理)试题及答案

2024年四川高考数学(理)试题及答案

2024年四川高考数学(理)试题及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9 C. {}1,2,3 D. {}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5 B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:.由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值.【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7. 函数()()2e e sin x x f x x x -=-+-在区间[2.8,2.8]-的大致图像为( )A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭,故选:B.9. 已知向量()()1,,,2a x x b x =+=,则( )A. “3x =-”是“a b ⊥”的必要条件 B. “3x =-”是“//a b”的必要条件C. “0x =”是“a b ⊥ ”的充分条件D. “1x =-”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac+=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2 B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以V h V h ====甲甲乙乙.15. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150=,用频率估计概率可得0.64p=,又因为升级改造前该工厂产品的优级品率0.5p=,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅- (2)(21)31n n T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,为所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =,故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k=-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值0,无极大值. (2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,为【故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.为[选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+ (2)34a =【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

2024高中数学高考考纲

2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。

二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。

2、培养数学思维和解决问题的能力。

3、检测学生对数学知识的理解和应用能力。

三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。

考试时间为120分钟。

2、题型结构:选择题、填空题、解答题。

其中选择题和填空题占60%,解答题占40%。

3、分值分布:总分为150分。

代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。

五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。

2、计算能力:能够准确、快速地进行基本的数学运算。

3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。

4、问题解决能力:能够运用所学知识解决实际问题或数学问题。

5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。

以上是一个简略的2024年高中数学高考考纲草案。

在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。

同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。

2024年四川数学学科考试说明

2024年四川数学学科考试说明

2024年四川数学学科考试说明2024年四川数学学科考试说明考试背景•2024年的四川数学学科考试是一项重要的教育考试,旨在评估学生对数学知识的掌握程度和解题能力。

•考试涵盖了初中和高中的数学内容,对学生的数学思维和推理能力提出了更高的要求。

考试内容•本次考试包括选择题、解答题和应用题三个部分。

•选择题占总分的40%,解答题占总分的30%,应用题占总分的30%。

•考试内容涵盖了数论、代数、几何等数学的不同领域和知识点。

考试要求•考试时间为3小时,每道题目都有明确的分数要求。

•学生需要熟练掌握数学的基础知识和运算方法,能够灵活运用解题技巧。

•考试要求学生准确、清晰地表达解题思路和方法,给出完整的解答过程。

备考建议•提前规划复习时间,合理安排学习计划。

•重点复习基础知识点,做好笔记整理和归纳总结。

•利用模拟试题和历年真题进行训练和自我评估。

•加强解题技巧和提高解题速度,注重对常用公式和定理的掌握。

•多与同学讨论,参加数学学科竞赛和讲座,拓宽数学思维和视野。

考试心态•考试前保持良好的心态,相信自己已经做好了充分的准备。

•注意考试时间的分配,遇到难题可以先跳过,最后再回头解答。

•考试中保持冷静和专注,不要被一道题的困难影响到整体表现。

结语•2024年四川数学学科考试是一次对学生数学能力的综合考核,学生们需要全面复习和准备。

•希望各位考生能够在考试中发挥出自己的水平和潜力,取得优异的成绩。

2024年四川数学学科考试说明 (续)考试注意事项•考生在考试前要提前熟悉考场规则和考试要求,遵守考场纪律。

•考试前要将相关文具和计算器准备好,确保考试过程中不会遇到不必要的困扰。

•考试时要认真阅读每道题目的要求,注意题目中的关键词和限制条件。

•在做选择题时,要仔细审题,排除错误选项,选择最合适的答案。

•在做解答题和应用题时,要充分展示自己的思路和解题方法,标注清晰的步骤和计算过程。

成绩评定和反馈•考试结束后,教师将根据考生的答卷进行评分,并及时公布成绩。

2024年四川高考考试大纲

2024年四川高考考试大纲2024年四川高考考试大纲是四川省教育厅根据国家教育部要求制定的一份高考考试指南,旨在规范四川省高中教育,统一高考命题和评卷标准,确保高考公平公正。

一、考试科目和安排根据2024年四川高考考试大纲,考生需要参加的科目包括语文、数学、外语、物理、化学、生物、历史、地理、政治等。

考试科目的安排一般是分为两天进行,每天考试时间为上午9:00至11:30,下午2:30至5:00。

二、考试内容和要求1. 语文考试:语文考试主要考查考生的文学常识、阅读理解、写作能力等方面。

考试内容包括诗歌、文言文、现代文等。

考生需要具备良好的阅读理解能力和写作能力。

2. 数学考试:数学考试主要考查考生的数学基本概念、计算能力、解决实际问题的能力等。

考试内容包括代数、几何、概率与统计等。

考生需要掌握数学的基本原理和解题方法。

3. 外语考试:外语考试主要考查考生的听力、口语、阅读和写作能力。

考试内容包括听力理解、口语表达、阅读理解和写作等。

考生需要具备良好的外语综合应用能力。

4. 理科综合考试:理科综合考试主要考查考生的物理、化学和生物的基本知识和实验操作能力。

考试内容包括选择题、填空题、解答题和实验操作等。

考生需要熟悉实验操作方法和科学实践能力。

5. 文科综合考试:文科综合考试主要考查考生的历史、地理和政治的基本知识和分析解决问题的能力。

考试内容包括选择题、判断题、解答题和分析解决问题等。

考生需要具备良好的分析和推理能力。

三、考试评分和录取规则根据2024年四川高考考试大纲,考试的评分和录取规则如下:1. 各科目考试的分数由主观题和客观题分别计分。

主观题由专业考试员评分,客观题由计算机自动评分。

2. 各科目考试的分数按照一定比例计入总分,总分由各科目的分数累加而得。

3. 录取规则根据考生的总分进行排名,按照分数从高到低的顺序依次录取。

录取分数线根据招生计划和考生报考情况而定。

四、考试安全和违规处理2024年四川高考考试大纲明确规定,考试过程中要确保考试的安全和公正。

2024年高考数学考试大纲全解析

2024年高考数学考试大纲全解析高考,对于每一位学子来说,都是人生中的一次重要挑战。

而数学作为其中的重要科目,其考试大纲的变化更是备受关注。

2024 年的高考数学考试大纲,在继承了以往的基础上,又有了一些新的调整和要求。

接下来,让我们一起深入剖析这份大纲,为广大考生和家长提供一个全面而清晰的解读。

首先,我们来看考试大纲中的知识范围。

2024 年高考数学依然涵盖了代数、几何、概率统计等主要板块。

代数部分,函数的性质、图像以及各种类型的函数(如一次函数、二次函数、指数函数、对数函数等)依旧是重点。

考生需要熟练掌握函数的定义域、值域、单调性、奇偶性等性质,并能运用函数解决实际问题。

方程与不等式也是代数中的重要内容,包括一元二次方程的求解、不等式的解法和应用。

几何方面,平面几何中的三角形、四边形等基本图形的性质和定理需要牢记。

空间几何中,直线与平面、平面与平面的位置关系,以及几何体的表面积和体积计算是常考的知识点。

解析几何则侧重于直线与圆、圆锥曲线(椭圆、双曲线、抛物线)的方程和性质,要求考生能够通过建立坐标系,运用代数方法解决几何问题。

概率统计部分,概率的基本概念、常见概率分布(如二项分布、正态分布等)以及统计中的数据处理和分析方法都是考查的重点。

考生要能够理解随机事件的概率,运用概率知识解决实际问题,并能对数据进行收集、整理、分析和解释。

在能力要求方面,大纲强调了考生的数学思维能力、运算能力、空间想象能力、逻辑推理能力以及应用数学知识解决实际问题的能力。

数学思维能力要求考生能够从数学的角度观察问题、分析问题,通过抽象、概括、归纳等方法找出问题的本质和规律。

运算能力不仅包括基本的四则运算,还包括代数式的化简、方程的求解、函数的运算等复杂运算。

空间想象能力主要体现在对空间几何体的结构和位置关系的理解和想象上。

逻辑推理能力则要求考生能够根据已知条件,进行合理的推理和论证,得出正确的结论。

而应用能力则是考查考生能否将数学知识与实际生活中的问题相结合,建立数学模型,解决实际问题。

2024年高考数学考试大纲详解

2024年高考数学考试大纲详解随着社会的不断发展,高考作为选拔人才的重要手段,对于学生们来说具有极大的意义。

数学作为高考的一门重要科目,也备受关注。

为了帮助考生更好地应对2024年高考数学考试,下面将对数学考试大纲进行详细解析。

一、考试内容概述2024年高考数学考试涵盖了基础数学和选修数学两个部分。

其中,基础数学包括数与代数、函数与方程、几何与变换等内容;选修数学则提供了数理方法与建模、统计与概率等多个选修模块。

二、基础数学1. 数与代数数与代数是数学学科的基础,也是高考数学的核心内容之一。

考生需要熟练掌握数的四则运算、数的性质以及各种数的表示方法。

代数部分包括代数式的化简、方程的解法、不等式的求解等。

2. 函数与方程函数与方程是高中数学中的重要内容,对于考生来说至关重要。

考生需要掌握函数的性质、图像与性质以及各种类型的方程解法。

特别需要强调的是,对于常用函数如一次函数、二次函数、指数函数和对数函数等,考生要了解其基本特点和图像变化规律。

3. 几何与变换几何与变换是高考数学中的另一个重点。

考生需要了解几何元素的定义、性质以及各种几何定理的应用。

此外,对于平面图形的变换,考生需要熟悉平移、旋转、翻折和对称等几何变换的基本概念与特点。

三、选修数学1. 数理方法与建模数理方法与建模是2024年高考数学的新选修模块。

这一模块旨在培养学生的数学建模能力和解决实际问题的能力。

考生需要掌握建模过程中的数学方法和技巧,能够将实际问题转化为数学问题,并运用相应的数学方法进行求解。

2. 统计与概率统计与概率是高中数学中的常见内容,也是选修数学中的一项重要内容。

考生需要熟悉统计学的基本概念和方法,能够对数据进行整理和分析。

概率部分主要涉及事件的概率计算和概率模型的应用,考生需要了解基本概率规律及其应用。

四、备考建议1. 熟悉考试大纲考生需要仔细阅读和理解2024年高考数学考试大纲,了解各个模块的要求和重点。

只有全面掌握考试大纲,才能有针对性地进行复习和备考。

2024届高考数学考纲解析和备考策略

2024届高考数学考纲解析和备考策略一、考纲解析:1.知识要求:2024届高考数学考纲要求考生掌握基本的数学算术运算和初步代数、几何、函数、统计与概率的基本概念、基本性质、基本技巧和基本计算方法。

要求考生具备一定的数学推理和解决实际问题的能力,能灵活运用基本的数学知识和技巧解决实际问题。

2.考试形式:2024届高考数学考试一共分为两个大题,每个大题包含若干个小题。

第一大题为选择题,包含单项选择题和多项选择题;第二大题为解答题,包含计算题和证明题。

3.考试内容:选择题部分主要包括数列与数系、函数、解析几何、导数与微分和统计与概率五个方面的基础知识。

解答题部分主要考察数与式、函数与方程、几何与变换和统计与概率等方面的综合应用能力。

二、备考策略:1.掌握基础知识:首先,需要全面掌握数学的基本知识和基本的解题技巧,包括数列与数系、函数、解析几何、导数与微分和统计与概率等方面的知识。

可以通过课本、习题册和一些专业的辅导资料进行系统的学习和巩固。

2.完成习题:做大量的习题是提高数学解题能力的关键。

可以根据自己的实际情况,选择适合自己的习题进行练习。

可以从易到难,由基础习题逐渐过渡到较难的高级习题,这样可以提高解题能力,同时逐步积累题目的经验和技巧。

3.做真题:通过做高考真题,可以了解考试的题型和出题规律,有针对性地进行备考。

可以分析和总结真题中的知识点和解题技巧,并结合自己的实际情况进行针对性的复习和训练。

4.建立解题思维:在备考的过程中,要注重培养解题的思维能力和方法。

要经常进行思维训练,学会运用数学的知识和技巧解决实际问题。

可以通过解决一些数学难题、数学建模等方式来培养解题思维和创新能力。

5.适时复习和休息:备考数学要掌握好复习的节奏和休息的时间。

要合理安排每天的学习和复习时间,适时进行休息和放松,保持好的学习状态。

同时要养成良好的生活和饮食习惯,保持良好的身体状况。

总之,备考高考数学要掌握好基本知识,做足够的习题和真题,并建立解题思维,适时复习和休息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2024年高考四川数学考纲
摘要:
1.2024年四川高考数学考纲概述
2.数学试卷结构与题型分布
3.考试要求与难度等级
4.备考策略与建议
正文:
一、2024年四川高考数学考纲概述
根据教育部颁布的《2024年普通高等学校招生全国统一考试大纲》,四川高考数学试卷分为理科数学和文科数学两个类别。

本文将对2024年四川高考数学考纲进行详细解析,以帮助广大考生更好地备战高考。

二、数学试卷结构与题型分布
1.理科数学:
(1)选择题:12题,每题6分,共计72分。

(2)填空题:10题,每题6分,共计60分。

(3)解答题:8题,每题20分,共计160分。

2.文科数学:
(1)选择题:10题,每题6分,共计60分。

(2)填空题:8题,每题6分,共计48分。

(3)解答题:6题,每题20分,共计120分。

三、考试要求与难度等级
1.理科数学:
(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。

(2)解题能力:能运用数学公式、定理、性质解决题目,具备一定的数学思维能力。

(3)计算能力:熟练掌握各类计算方法,保证计算准确率。

2.文科数学:
(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。

(2)解题能力:能运用数学公式、定理、性质解决简单题目,具备一定的数学思维能力。

(3)计算能力:熟练掌握基本计算方法,保证计算准确率。

四、备考策略与建议
1.制定合理的学习计划,确保复习进度。

2.立足教材,打牢基础知识。

3.针对性地进行题型训练,提高解题速度和准确率。

4.定期进行模拟考试,检验复习成果,调整学习方法。

5.保持良好的心态,积极面对高考挑战。

总之,了解2024年四川高考数学考纲对于考生至关重要。

通过掌握考纲要求,合理制定备考策略,相信广大考生定能取得优异的成绩。

相关文档
最新文档