初一上册应用题及答案50题(小编整理)
初一上册数学应用题50道

某几关有三个部门,A部门有84人,B部门有56人,C 部门有60人。
如果每个部门按照相同的比例裁减人员,使这个几关留下150人。
求C 部门留下的人数是多少?某车间有60名工人,生产某种配套产品,该产品由一个螺栓赔两个螺母而成。
每个工人每天平均生产螺栓14个或螺母20个。
应该分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套?某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.椐《新化日报》消息,巴西医生马廷恩经过10年研究后得出结论:卷入腐败行为的人容易得癌症、心血管病,如果犯有贪污、受贿罪的580名官员与600名廉洁官员进行比较,可发现后者的健康人数比前者的健康人数多272人,两者患病(包括致死)共444人,试问犯有贪污、受贿罪的官员的健康人数占580名官员的百分之几,廉洁官员的健康人数占600名官员的百分之几?某塑料厂有工人200名,为改善经营,增设塑料雨衣的制衣项目,已知每名工人每天能织塑料布30米或者利用所织的塑料布制衣4件,制衣一件需布1.5米,获利25元;将布直接出售每米可获利2元,若每名工人一天只能做一项工作,且不记其他因素,设安排x名工人制衣。
七年级上册数学应用题20道及答案题目简短

七年级上册数学应用题20道及答案题目简短1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?参考答案:1.解设:这根铁丝原来长X米。
X-[1/2(1/2X-1)+1]=2.5X=42.解设:高为Xmm100·100·Л·X=300·300·80X=720Л3.解设:走X千米X/50=[X-(40·6/60)]/40X= 204.甲:打9折后球拍为:22.5元/只球为1.8元/只球拍22.5·2=45元球:(90-45)÷1.8=25(只)乙: 25·2=50(元){送两只球}需要买的球:(90-50)÷2=20(只)一共的球:20+2=22(只)甲那里可以买25只,而乙只能买22只.所以,甲比较合算。
初一应用试题及答案

初一应用试题及答案一、选择题1. 如果小明每天读书1小时,一周共读了7小时,那么他一个月(假设一个月有4周)会读多少小时?A. 28小时B. 30小时C. 35小时D. 40小时答案:A2. 某班级有40名学生,如果每名学生需要交10元班费,那么总共需要多少钱?A. 400元B. 300元C. 200元D. 100元答案:B二、填空题1. 一个长方形的长是10米,宽是5米,它的面积是________平方米。
答案:502. 如果一个数的平方是81,那么这个数是________。
答案:±9三、解答题1. 某学校计划购买一批图书,每本书的价格是20元。
如果学校计划购买100本,那么总共需要多少钱?解:根据题目,每本书的价格是20元,学校计划购买100本,所以总共需要的钱数为:20元/本× 100本 = 2000元答:总共需要2000元。
2. 李华和张强两人同时从学校出发,李华每分钟走60米,张强每分钟走80米。
如果他们走了10分钟后,张强比李华多走了多少米?解:首先计算两人10分钟内各自走了多少米:李华:60米/分钟× 10分钟 = 600米张强:80米/分钟× 10分钟 = 800米然后计算张强比李华多走的米数:800米 - 600米 = 200米答:张强比李华多走了200米。
结束语:通过以上的试题及答案,同学们可以检验自己对于初一数学应用题的掌握程度。
希望同学们能够通过练习,不断提高自己的解题技巧和数学思维能力。
同时,也希望同学们能够享受数学学习的过程,发现数学的乐趣。
初一上初中数学应用题100题学生练习自编答案

1. 考点:多位数的表示+已知差设十位数为X ,则个位数为X+5,依题意得 10X+X+5=X+X+5-9 2. 考点:工程问题设乙还需要X 天完成任务 1)3(1213151=++⨯x 3. 考点:追及与相遇问题① 设快车开出后X 小时与慢车相遇480)1(90140=++x x②设X 小时后 480+(90+140)X=600 ③X 小时后 480+(140-90)X=600 ④X 小时后 (140-90)X=480 ⑤X 小时后 140X=90(X+1)+4804. 错车问题,方法可在车尾或车头各放一人,将错车问题变为两人的追及与相遇问题,设时间为X 秒两车相向:100+150=(10+15)X 两车同向:100+150=15X-10X 两车齐头:100=15xx-10x5. 考点:经济类问题 设X 折出售102200%)101(1600x⨯=+6. 考点:合成比例12125856,8568+=+====K K K KK K ,丙乙设甲::甲:乙:丙7. 考点:已知和设应安排X 人加工大齿轮,则安排85-X 人加工小齿轮)85(1083x x -=⨯8. 考点:流水行船问题h km V h km V /5/10==逆顺设AB 间的距离为x 751010=-+x x 9.考点:变相的相遇问题+已知倍数,()()2516131-613,⨯=+++==x x x v x v 甲乙设10.考点:浓度问题分析 由于已知条件中涉及到合金中含铜的百分数,因此只有增设这两个合金含铜的百分数为参数或与合金含铜的百分数有关的其他量为参数,才能充分利用已知,为列方程创造条件 .解法1 设所切下的合金的重量为x 千克,重12千克的合金的含铜百分数为p ,重8千克的合金的含铜百分数为q(p ≠q),于是有整理得 5(q -p)x=24(q -p).因为p ≠q ,所以q -p ≠0,因此x=4.8,即所切下的合金重4.8千克.11.考点:已知差设甲的速度为X,乙的速度为X+2 6092404082++=-X X 12. 考点:浓度问题 设倒入X 克85%的酒精%75)800(%85%50800X X +=•+⨯13. 考点:工程问题工效⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+125207154乙甲丙甲丙乙 钱 每天⎪⎪⎪⎩⎪⎪⎪⎨⎧÷=+÷=+÷=+762160000433150000522180000丙甲丙乙乙甲14.考点:不定方程甲 乙 原订购 3x x后订购 3x-6 x+6 ∴x ≥2 最后购 3x-6-(6-y) x+6-y=3x+y-12 =x-y+6 ∴y ≤6 ∴3x+y-12=2(x-y+6) ∴x+3y=24 解之∴⎩⎨⎧==舍)(73y x⎩⎨⎧==66y x ⎩⎨⎧==59y x ⎩⎨⎧==412y x ⎩⎨⎧==315y x ⎩⎨⎧==218y x ⎩⎨⎧==921y x ⎩⎨⎧==024y x 15.考点:行程问题最佳方案:将人分为两拨,第一拨先坐车,后走路,第二拨先走路,后坐车,若两拨人同时到,则两拨人走的路程一样,坐车路程也一样 设走路的路程长为Xkm从第一拨人与车分开后开始计时,第一拨人走路时间=车用的时间 6015602155x x x -+-= 16.考点:追及+相遇+相等的量车与车之间的距离=V 车×发车时间间隔 设发车时间间隔为x⎩⎨⎧+=+=)60(25.10)82(10车车车车v x v v x v 17.考点:统筹规则 尽量选用大车,即乙车乙车 甲车 钱数 8辆 3840 7辆 1辆 下略18.时钟问题V 时针=1格/小时,V分针=12格/小时 起始时间4:00∴该题为追及问题,4=(12-1)X 19.考点:相等量为1甲厂年产量占济南市场份数X,乙厂年产量占济南市场份数为Y⎪⎪⎩⎪⎪⎨⎧=+=+31312143Y X Y X 20. 考点:利润问题标价 售价 利润1 0.95 1×(1+60%)-0.95 新成本 0.95×(1+40%) ∴利润率%)401(95.095.0%)601(+-+21. 考点:相遇问题,设人的速度为X,从A 到B 时间4000/X 1240054004000⨯+⨯=X X 22. 考点:行程问题中的比与比例问题,设AB 之间路程为X 甲 乙 丙 乙-丙X X X 200- =240400--X X =24020023.考点:年龄问题,注意差不变,可列表找出其关系式 甲 乙以前 YX 21 现在 X Y 将来 2Y-7 X∴⎪⎩⎪⎨⎧--=--=-XY Y X Y X X Y 7221 24.考点:追 及问题+相等的量(可设为单位1或X)分析:甲第1次追 上乙与甲第2次追 上乙相隔时间为50秒,即甲每50秒追上乙一圈,同理,甲每40秒追上丙一圈,设一圈长度为单位为1,⎪⎪⎩⎪⎪⎨⎧==丙甲乙甲vv v v -401-50120120010501-401-===丙乙v v 因为甲乙丙三人出发点不在一起,初始乙在甲前10×(v 甲-v 乙)=51丙在甲前30×(v 甲-v 丙)=43,∴乙丙相距20115143=-∴乙追丙时间,秒丙乙112012011)-(2011=÷=÷v v 25.考点:分段求值①%144004008001200⨯⎩⎨⎧② 800~400间最高税=3200×14%=448∴280应为800-400之间税 280÷14%=2000元 ∴稿费=800+2000=2800元③ 对,如:某人稿酬4001,则税=4001×11%=440.11元 另一人稿酬4000,税=3200×14%=448元 26.考点:浓度问题+已知和设甲盐水需X 千克,则乙盐水需5-X 千克 40%×X+(5-X)×15%=5×25%27.考点:浓度问题需加水X 千克 等式构成可考虑利用盐=盐建立 600×40%=(600+X )×25%28.考点:行程问题中的比与比例问题 设河宽X 米第一次相遇 甲 乙 和 800 X-800 X—— —— = ——第二次相遇 X+600 2X-600 3X从头算29.考点:行程问题中,本题应将车与人晚点分别考虑 车晚点的时间30分=修车时间-少走一段路时间(往返)人晚点的时间30分=晚出发10分+步行走一段路比车走同一段路多用时间 ∵车速=人速的6倍,设车从学校走到碰见人的地方所用时间为X,人从学校走到碰见车的地方所用时间为6X ∴人:30=10+6X-X ∴X=4 ∴车 30=修车时间-4×2 ∴修车时间=3830.考点:行程问题+比与比例 设AB 间距离=X 速度未提高前甲乙v v x =+99 速度提高前甲乙v v x 222=+ ∴22299⨯+=+x x 31.考点:行程问题中的比与比例+追及+相遇 通信费 队伍 去 1998-x x ——— = ——— 回 x 1998-x 32.考点:画图,时间轴(略) 33.考点:已知倍数,质数 设乙年龄x,甲年龄2x ,丙x+767732677013=+++⇒⎩⎨⎧<=x x x 质数数字和34.考点:行程问题+比与比例 甲 乙x a a -=+100100100 ∴1001001002ax a x -=-= ∴甲快35.考点:行程问题中流水行船+相同的量 设甲乙码头的路程为1⎪⎪⎩⎪⎪⎨⎧-==+==水船逆船水顺vv v bv v v a11 211b a v v -==∴木块水∴木块顺水漂流时间ab baba b a -=-=-21122111 36.考点:))((22y x y x y x +-=-技巧 可设B 与C 的年龄和为M, ∴A-M=16,A 2-M 2=1632 ∴(A-M)(A+M)=1632 ∴A+M=10237.考点:行程问题中的比与比例问题甲乙分乙的时间甲的时间v v x x =+==603560 先解x ,即可求速度比 38.考点:函数极值 利润=【8+2(R-1)】×[60-3(R-1)]初一学生可将R=2,3,4,…,10代入 初二学生可配方求解 39.考点:利润进价 售价 利润 原来 x (1+20%)x 0.2x 现在 (1+25%)x 0.2x ∴m=0.2x ∴利润率=%16%)251(2,0=+xx40.考点:工程问题,重要利用工效甲工效=a 1 乙工效=ab c a b a c -=-1 ∴两人合作天数=c a b ababc a a -+=-+1141.考点:工程问题+不定方程甲+乙+丙=61①甲+丙+戊=103②甲+丙+丁=152③乙+丙+戊=51④该题可将甲、乙、丙、丁均用戊表示,也可等式加减 42.考点:相遇+追及+相等量设等距为单位1,车人车车人v x v v v v 1617241=⎪⎪⎩⎪⎪⎨⎧=-=+ 43.考点:工程问题 乙工效x,甲工效2x 112152253++=+x x x x 44.考点:盈亏问题设人数x 人,任务y 棵树⎪⎩⎪⎨⎧=+=+y x y x 43640%)501(6 45.考点:已知差设乙抽调x,则甲抽调x+1人 46.考点:已知和设实验中学x 人,潞河中学4415-x 4415-x=2x-1347.考点:分段求值15千米⎩⎨⎧=⨯→→元千米元千米2.132.1111110413.2+10>22 ∴不够48.考点:已知和设x 张铁皮作盒身,180-x 张铁皮作盒底 18x=2)180(45x -49.考点:分段求值 设用了x 立方米60×0.8+(x-60)×1.2=0.88x50.考点:欲求路程,已知时间,设速度 设原计划每小时生产x 个零件 13x=12(x+10)+60 51.考点:同上设原计划每小时生产x 个零件 5x=4(x+3)52.考点:工程问题,主要考虑效率,长蜡烛长为x ,短蜡烛长为y长一小时燃10,7y x 短一小时燃 5710673=∴=y x yx 53.考点:行程问题 设甲共行了x 分, 80x+120(x+2)+60=60054.考点:行程问题中的变相的相遇问题 甲的速度x,乙速度x+2 2.5x+2(x+2)=210+1055.考点:欲求路程,已知速度,设时间 设正点到用x 小时 8(x-1)=6(x+1)=路程 56.考点:流水行船设去时用x 小时,返回用5-x (30+6)x=(30-6)(5-x)=路程57.考点:工程问题,一人一小时工效401先安排x 人, 140)2(8404=++x x 58.考点:多位数表示设后两位数(即十位与个数)为x, 100+x+234=10x+159.考点:多位数表示设十位数字为x,则百位数字为x+1,个位数字为3x-2 ∴100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=1171200x+170(70-x)+160(40-x)+150(x-10)=17560 60B 考点:变相的相遇问题 设:甲的速度为x,乙的速度为y⎩⎨⎧=+=+3635365.45,2x y x y 61.考点:错车相遇+比与比例 设,3.,2k v k v ==乙甲190+170=6(2k+3k ) 路程和62.考点:行程问题,注意去时与返回时间一样 设甲的速度为x,乙的速度为y⎩⎨⎧=+=+202220)(2y y x 63.设小王原有书x 本,小张原有书y 本,⎩⎨⎧-=++=-101010)10(5x y x y 64.考点:欲求路程(任务量),已知速度(每人),设时间(多少人) 设人数为x 人, 12x+20=14x-1265.考点:流水行船问题⎪⎪⎩⎪⎪⎨⎧-=+=水船水船vv v v 32433666.考点:火车过桥设火车速度为x ,车长为y⎩⎨⎧-=+=∴yx yx 100040100060 67.考点:已知和设林地面积为x ,耕地面积为180-x 180-x=25%x68.考点:已知和设种茄子x 亩,种西红柿25-x 1700x+1800(25-x )=44000 则获利为2600x+2600(25-x ), 69.考点:已知和设x 天安排作粗加工,15-x 天安排作细加工 6(15-x )+16x=140获利为1000+2000(15-x ) 70.考点:已知和设甲种贷款x 万元,乙种贷款136-x12%x+13%(136-x )=16.84 71.考点:已知和,设甲种商品原单价x 万,乙商品原单价100-x X (1-10%)+(1+5%)(100-x )=100(1+2%) 72.考点:已知和设甲原售价x 元,乙原售价500-x 0.7x+0.9(500-x )=386 73.考点:已知和设甲购进了x 件,乙购进了50-x 件 35x ·20%+20(×50-x )·15%=278 74.考点:利润问题进价 定价 售价 利润 原 x x+48 x+48 48 0.9(x+48)×6-6x=9(x+48-30)-9x 75.考点:已知和+利润甲服装成本x 元,乙服装成本500-x成本 定价 售价 利润甲 x (1+50%)x (1+50%)x ·0.9 (1+50%)x ·0.9- x乙 500-x (1+40%)(500-x) (1+40%)(500-x) ·0.9 (1+40%)(500-x) ·0.9-(500- x)(1+50%)x ·0.9+(1+40%)(500-x) ·0.9=500+157 76.考点:已知倍数设原来下层x 本,上层3x 件 3x-40=x+4077.考点:已知倍数设乙=x ,甲=2x ,丙=2xX+2x+2x=70078.考点:行程问题中的追及问题 慢车每小时行x 千米 5x+30×2=60×5 79.考点:行程问题V 甲=80米/分,V 乙步=40米/分,V 乙骑=120米/分, 设乙借车前步行x 米,则骑车时间60-7-x 60×80=40x+120(60-7-x ) 80.考点:已知倍数设今年儿子x 岁,母亲4x 2(x+20)=4x+2081.设鱼身x 千克,鱼头24+xX=24+x +482.考点:已知和+平均数设男x 人,女生100-x100×64=60 x+70(100- x )83.考点:已知和设损坏了x 箱,未损坏2100-x 箱5(2100-x )-40x=969084.分段求值50千米千米千米2010330301020⎭⎬⎫⎩⎨⎧=÷→→ 85.A:倒推法(9+3)×2=24(24+4)×2=56(56+5)×2=12285.B:平均数 11+7=18,18÷3=6甲 乙 丙(游客)应吃 7米 11米 0米实际吃 6条 6条 6条∴每条鱼6÷6=1元,甲收1元,乙收5元86.考点平均数1.2÷2=0.6元20×0.6=12元87.平均数 设甲拿x 本,乙x+15,丙x+15 平均每人每人应该拿)(1031515+=++++x x x x ∴乙多拿了5本 ,∴一个本价格1.5÷5=0.327÷0.3=90个本88.考点:欲求路程,已知时间,设速度设甲速度x ,乙速度y8(x+y)=7(x+1+y+3)=路程∴x+y=28 ∴路程8×28=22489.考点:相遇问题AB 两地相距x 千米3x=6(75+65)90.考点:行程问题,全是路程比与比例设AB 相距x 千米李明 王华 路程和52 x-52 x 2x-44 3x31344252==-∴x x x 91.考点:容斥原理+等式加减设答对a 、b 、c 三题人数分别为a 、b 、c⎪⎩⎪⎨=+=+2025c b c a ∴a=17,b=12,c=8∴17×20+12×25+8×25总人数=a+b+c-15-2×1=20人92.考点:等式加减3甲+7乙+丙=31543甲+10乙+丙=42093.考点:不定方程中的等式加减+已知和设乙买A 型x 台,则乙买B 型8-x 台,丙买A 型8-x 台,丙买B 型x 台 设A 、B 两种类型单价为A ,BA+B=30000 ①xA+B(8-x)=110000 ②求(8-x)A+Xb=? ③②+③得110000+?=8(A+B )∴?=8×30000-110000=13000094.考点:假设甲、乙、丙三种产品的价值一样∴2A+2B=B+C=2A+C∴C=2B,B=2A∴A 零件价值为“1”,B 零件价值为2,C 零件价值为4,∴所有零件总价值:6的倍数+2×1+2=6K+4而组装一件产品价值为6,∴不论如何安排,剩的零件价值为4,不够组装一个完整产品95.考点盈亏问题蛛蛛x 蜻蜓y 蝉z⎪⎩⎪⎨⎧=++=+=++18202118668z y x z y z y x 96,四个数分别为a ,b ,c ,d⎪⎪⎩⎪⎪⎨⎧=++=++=++=++30292821d c b d c a d b a c b a 97.考点:连等连比设为K ,一件童装时间x ,一条裤子2x ,一件上衣3x∴2x+6 x+12 x=“1” ∴x=201 ∴6 x+20 x+14 x=40 x=2天98.考点:行程问题,去时步行速度为x ,骑车速度为y,⎪⎪⎩⎪⎪⎨=+=+5.42124124yx y x 99.考点:已知倍数设今年子女年龄和为x ,父母今年年龄和为6x,共有y 个子女⎩⎨⎧+=+-=-∴)6(3126)2(1046y x x y x x 100.考点:时钟问题中追及问题V 时针=1格/小时,V 分针=12格/小时起始时间为3:00,∴路程差为3格。
40道初一上册课外数学应用题带答案

最佳答案1.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元: ⑴什么情况下,购会员证与不购会员证付一样的钱? ⑵什么情况下,购会员证比不购会员证更合算? ⑶什么情况下,不够会员证比购会员证更合算? 注意:解题过程完整,分步骤,能用方程解的用方程解80+X=3x 80=2X X=40 X=40,购会员证与不购会员证付一样的钱X>40购会员证比不购会员证更合算X<40不够会员证比购会员证更合算2.从A地到B地,先下坡然后走平路,某人骑自行车以每小时12千米的速度下坡,而以每小时9千米的速度通过平路,到达B地共用55分钟。
回来时以每小时8千米的速度通过平路,而每小时4千米的速度上坡,回到A地共用1.5小时。
从A地到B地有多少千米? 设坡路为x千米,平路为y千米则有x/12+y/9=55/60 y/8+x/4=1.5 解方程得x=3,y=6 所以a,b两地距离为x+y=93.初一1班取走了100棵,又取走余下的10分之一,初一2班取走了200棵,又取走余下的10分之一......,如此下去,最后全部树苗被各班取完,而且各班所得的树苗相等,问共有多少棵树苗?初一年级有多少个班? 设共有x棵树100+(x-100)/10=200+[x-100-(x-100)/10-200]/10 100+x/10-10=200+x/10-10-x/100+1-20 x=8100 所以第一个班取走100+(8100-100)/10=900棵树共有8100/900=9个班4.当雷雨持续时间t(时)可以用公式估计:t^2=d^3/900,d(千米)表示雷雨区域的直径. 雷雨区域直径为6千米,雷雨大约能持续多长时间? 雷雨持续1小时,雷雨区域直径大约是多少? 1、t^2=d^3/900 t^2=6^3/900 t=根号6/5 2、t^2=d^3/900 1^2=d^3/900 d=三次根号9005.从甲站到乙站共有800千米,开始400千米是平路,接着300千米是上坡路,余下的是下坡路,已知火车在上坡路,平路,下坡路,的速度比是3:4:5.若火车在平路上的速度是80千米/小时,那么它从甲站到乙站所用的时间比从乙站到甲站所用的时间多多少?若要求火车来回所用时间相同,那么火车从甲站到乙站在平路上的速度与乙站到甲站的平路上的速度比是多少? 上坡速度:平路:下坡=3:4:5,平路速度=80, 所以上坡速度=60,下坡=100, 甲到乙时间:400/80+300/60+100/100=11, 乙到甲时间:100/60+300/100+400/80=29/3, 所以多11-29/3=4/3小时, (2)设甲到乙平路速度为x,乙到甲为y,依题意:400/x+300/[(3/4)x]+100/[(5/4)x]=400/y+300[(5/4)y] +100/[(3/4)y] 解得:x/y=33/296.某校运动会在400米环形跑道上进行米比赛。
初一上册数学有理数应用题

初一上册数学有理数应用题1、题目:小明家离学校的距离是4公里,他骑自行车以每小时12公里的速度从家出发去学校。
如果他已经骑了15分钟,那么他还有多远的距离到达学校?解答:小明每小时骑行的距离是12公里,因此15分钟(即1/4小时)骑行的距离是:12/4=3 公里。
小明家到学校的总距离是4公里,所以他还有4−3=1 公里的距离到学校。
2、题目:一个温度计显示的室内温度是20°C。
夜间温度下降了12°C,那么夜间的室内温度是多少度?解答:室内温度原来是20°C,下降了12°C后,温度变为 20−12=8°C。
3、题目:在一次测验中,小华得到了80分,这次成绩比上一次提高了20%。
请问小华上一次测验的分数是多少?解答:将提高的20%表示为小华上次成绩的百分比,设上次成绩为 x 分,则 x×20%=x ×0.2 分是成绩提高的分数。
由于这次成绩是80分,所以 x+x×0.2=80,解这个方程得1.2x=80,所以 x= 80/1.2=66.67(约等于67分)。
4、题目:一条河流的水位在连续下雨后上升了1.5米,而随后两天的水位分别下降了0.4米和0.3米。
请问两天后河流的水位比之前上升了多少米?解答:水位总共上升的量是 1.5−0.4−0.3=0.8 米。
5、题目:一个储蓄罐里有50个硬币,其中1元硬币和5角硬币的数量之和是50,但1元硬币的数量是5角硬币数量的两倍。
请问储蓄罐里各有多少个1元和5角硬币?解答:设1元硬币的数量是 x,5角硬币的数量是 y。
根据题目条件,有两个方程:x+y=50 和 x=2y。
将第二个方程代入第一个方程,得到 2y+y=50,解得 y=50/3≈16.67(约等于17个),所以 x=2×17=34。
所以储蓄罐里有大约34个1元硬币和17个5角硬币。
初一上学期数学应用题习题解析(含答案)

应用题综合练习一.选择题(共14小题)1.(和差倍问题)公务员录用考试是这样统计成绩的,综合成绩=笔试成绩×60%+面试成绩×40%,小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A.2.4分B.4分 C.5分 D.6分2.(和差倍问题)篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次是()A.6场 B.31场C.32场D.35场3.(和差倍问题)初三某班学生在会议室看录像,每排座位13人,则有1人无处坐,每排14人,则空12个座位,则这间会议室共有座位的排数是()A.12 B.14 C.13 D.154.(比例问题)一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm5.(其他问题)一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.616.(行程问题)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时7.(和差倍问题)幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,则小朋友的人数为()A.4个 B.5个 C.10个D.12个8.(工程问题)某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要()A.48天B.60天C.80天D.100天9.(行程问题)甲、乙两人分别从两地同时出发,若相向而行,则6h相遇;若同向而行,则12h甲追上乙,那么甲的速度是乙的速度的()A.倍 B.倍 C.3倍 D.倍10.(比例问题)小华的年龄与爷爷的年龄之和等于爸爸年龄的2倍,爸爸的年龄是小华年龄的3倍,则爷爷的年龄是小华年龄的()A.4倍 B.5倍 C.6倍 D.7倍11.(其他问题)某年的7月份有5个星期六,并且它们的日期之和为85,则7月4日是()A.星期四B.星期五C.星期六D.星期日12.(比例问题)桌上A,B两个大小相同的量杯内分别装有21mL,23mL的水.现在同时对A,B两个量杯注水,注入的水量之比为2:3,接着又同时倒水,倒出的水量之比为2:3,此时A,B两个量杯的水位高度相等,则B量杯注水前与倒水后相差()A.2mL B.4mL C.6mL D.8mL13.(工程问题)制作一副广告牌,徒弟单独做20天完成,师傅单独做12天完成,现由徒弟单独做4天后,师徒二人合做完成余下的任务,则师傅做了()A.4天 B.5天 C.6天 D.7天14.(工程问题)已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时()A.1天 B.2天 C.3天 D.4天二.解答题(共14小题)15.(其他问题)如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a=元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?16.(行程问题)一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)17.(工程问题)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?18.(行程问题)列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?19.(行程问题)一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?20.(行程问题)甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.21.(和差倍问题)某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?22.(和差倍问题)某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?23.(和差倍问题)为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个则少6个球,每两人领一个则余6个球,问这批足球共多少个?小明领到足球后十分高兴,就仔细地研究起足球上的黑白球(如图),结果发现,黑块呈五边形,白色呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?24.(行程问题)如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A 出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.25.(其他问题)牧场上的草长得一样地密,一样地快.已知70头牛在24天里把草吃完,而30头牛就可吃60天.如果要吃96天,问牛数该是多少?26.(比例问题)某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(比例问题)在水面高度为30cm的圆柱形水桶里浸没着一个圆柱形钢材A 和一个圆锥形钢材B.A与B的底面半径之比为3:2,A的高比B的高多,A 的侧面积为282.6平方厘米.如果取出圆锥形钢材B.桶里的水面下降cm.如果再把圆柱形钢材A垂直露出水面6cm,桶里的水面下降4cm.(1)求圆柱形钢材A的高.(2)圆锥形钢材B的体积为多少?(3)求圆柱形水桶里水的体积.28.(行程问题)甲、乙两车分别从A,B两地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米.两车分别到达B地和A地后,立即返回,返回时,甲车的速度增加二分之一,乙车的速度增加五分之一.已知两车两次相遇处的距离是50千米,则A,B两地的距离为多少千米?29.(销售问题)“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.30.(销售问题)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900获奖券金额(元)3060100130根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?31.(销售问题)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?32.(销售问题)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?33.(销售问题)某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?应用题综合练习参考答案与试题解析一.选择题(共14小题)1.【解答】解:设小红姐姐要使自己的综合成绩追平竞争对手,她的面试成绩必须比竞争对手多x分,根据题意得:82×60%+40%x=86×60%,解得:x=6.答:小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多6分.故选D.2.【解答】解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选C3.【解答】解:设这间会议室共有座位x排,根据题意得:13x+1=14x﹣12,解得:x=13.答:这间会议室共有座位13排.故选C.4.【解答】解:设正方形的边形为xcm,则长方形的长为(x+1)cm,长方形的宽为(x﹣2)cm,根据题意得:2×[(x+1)+(x﹣2)]=18,解得:x=5.故选A.5.【解答】解:设十位数字为x,则个位数字为7﹣x,由题意得:10x+7﹣x+45=10(7﹣x)+x,解得:x=1,所以个位数为:7﹣x=7﹣1=6,答:这个两位数这16.故选:B.6.【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选D.7.【解答】解:设小朋友的人数为x个,根据题意得:3x﹣3=2x+2,解得:x=5.故选B.8.【解答】解:设由甲、乙工程队合作承包,完成任务需要x天,根据题意得(+)x=1,解得x=48.答:由甲、乙工程队合作承包,完成任务需要48天.故选A.9.【解答】解:设乙的速度为1,则甲的速度是x,根据题意得6x+6×1=12x﹣12×1,6x+6=12x﹣12,6x=18,x=3,3÷1=3.故选C.10.【解答】解:设小华的年龄为a岁,爷爷的年龄是小华年龄的x倍,则爸爸的年龄为3a岁,爷爷的年龄为ax岁,根据题意得:a+ax=2×3a,即1+x=6,解得:x=5.答:爷爷的年龄是小华年龄的5倍.故选B.11.【解答】解:设7月份第一个星期六的日期为x,根据题意得:5x+7+14+21+28=85,解得:x=3,∴7月4日为星期日.故选D.12.【解答】解:设注入的水量为2x,3x,倒出的水量为2y,3y可得:21+2x﹣2y=23+3x﹣3y,解得:x﹣y=﹣2,所以B量杯注水前与倒水后相差为|3(x﹣y)|=6,故选C13.【解答】解:设师傅做了x天,依题意得:+=1,解得x=6.即:师傅做了6天.故选:C.14.【解答】解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x ﹣2)天,根据题意得:+=1,解得:x=4.答:完成这项工程共耗时4天.二.解答题(共14小题)15.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=40.故该用户实际用水40立方米.故答案为:2.3;60.8.16.【解答】解:(1)设这名队员从掉头返校到追上队伍,经过了y小时,根据题意得:50y﹣30y=30××2,解得:y=1.5.答:这名队员从掉头返校到追上队伍,经过了1.5小时.(2)设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意得:40x+30x=7×2.故答案为:40x+30x=7×2.17.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.18.【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.19.【解答】解:设通讯员需x小时可以追上学生队伍,根据题意得:5(x+)=14x,去括号得:5x+=14x,移项合并得:9x=,解得:x=,则通讯员需小时可以追上学生队伍.20.【解答】解:(1)由题意可得:这辆客车从甲地开往乙地的最短时间是:600÷120=5(h),这辆客车从甲地开往乙地的最长时间是:600÷60=10(h),故答案为:5,10;(2)设货车平均每小时行驶xkm,由题意,得3(x+x+20)=600,解得:x=90,x+20=110,答:货车平均每小时行驶90km,客车平均每小时行驶110km;(3)设客车行驶了yh进入加油站B,两车相遇前,(90+110)y=600﹣200.解得:y=2.110×2=220(km),两车相遇后,(90+110)y=600+200,解得:y=4,110×4=440(km),答:甲地与加油站B的路程是220km或440km.21.【解答】解:设安排生产螺栓x人,则安排生产螺母为(30﹣x)人由题得:答:安排10个人生产螺栓,安排20个人生产螺母能使每天生产的螺栓螺母刚好配套22.【解答】解:设安排x名工人生产螺钉,则安排(27﹣x)名工人生产螺母,根据题意得:2×1500x=2400(27﹣x),解得:x=12,∴27﹣x=15.答:安排12名工人生产螺钉、安排15名工人生产螺母.23.【解答】解:①设这批足球共有x个,则列方程得:x+6=2(x﹣6),解得:x=18.②设白块有y块,则:3y=5×12,解得:y=20.答:足球有18个,白块有20块.24.【解答】解:(1)设A出发后经过x秒与B第一次重合,依题意有(3﹣2)x=5,解得x=5.答:A出发后经过5秒与B第一次重合;(2)设经过y秒A与B第一次重合,依题意有(3+2)x=100×2,解得x=40.答:,经过40秒A与B第一次重合;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得ME=×2MN=MN,MF=2MN﹣×4MN=MN,依题意有:s﹣s=20,解得s=50.答:s=50米.25.【解答】解:设牧场上原来的草的量是1,每天长出来的草是x,则24天共有草1+24x,60天共有草1+60x,所以,去分母得:30(1+24x)=28(1+60x),∴960x=2,∴x=96天吃完,牛应当是(头).答:如果要吃96天,牛数该是20头.26.【解答】解:∵2300÷﹙1+15%﹚=2000﹙人﹚设去年男生有x人,则女生有﹙2000﹣x﹚人.﹙1+25%﹚x+﹙2000﹣x﹚×﹙1﹣25%﹚=2300,解得x=1600答:去年男女生各有1600人和400人.27.【解答】解:(1)由题意得r A=3acm,r B=2acm,h A=h B,则=,解得h B=,则h A=×=15(cm).故圆柱形钢材A的高是15cm.(2)由题意得:2π×3a×h A=282.6,解得a=1,r A=3,r B=2,圆锥形钢材B的体积:×π×22×=15π=47.1(cm3);故圆锥形钢材B的体积为47.1cm3.(3)水高:30﹣10﹣=(cm3),47.1+π×32×15=471(cm3),圆柱形水桶里水的体积:471÷(10+)×=800.7(cm3).故圆柱形水桶里水的体积是800.7cm3.28.【解答】解:设A,B两地的距离为x千米,依题意有2x﹣[x+x×2]﹣x=50,解得x=450.答:A,B两地的距离为450千米.29.【解答】解:由已知得:将毛竹全部粗加工后销售,则可获利为:1000×52.5=52500(元).故答案为:52500.30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利为:0.5×30×5000+(52.5﹣0.5×30)×100=78750(元).故答案分为:78750.由已知分析存在第三种方案.设粗加工x天,则精加工(30﹣x)天,依题意得:8x+0.5×(30﹣x)=52.5,解得:x=5,30﹣x=25,所以销售后所获利润为:1000×5×8+5000×25×0.5=102500(元).30.【解答】解:(1)优惠额:1000×(1﹣80%)+130=330(元)优惠率:×100%=33%;(2)设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.①当400≤a<500时,500≤x<625由题意,得:0.2x+60=x解得:x=450但450<500,不合题意,故舍去;②当500≤a≤640时,625≤x≤800由题意,得:0.2x+100=x解得:x=750而625≤750<800,符合题意.答:购买标价为750元的商品可以得到的优惠率.31.【解答】解:(1)当销售额为15000元时,工资总额=200+5000×5%=450元;当销售额为20000元时,工资总额=200+5000×5%+5000×8%=850元.因此450<800<850,设销售员甲该月的销售额为x元,则200+5000×5%+(x﹣15000)×8%=800,解得:x=19375元,故销售员甲该月的销售额为19375元.(2)设销售员乙未交个人所得税前的工资总额为a元,由题意得:a﹣(a﹣800)×5%=1275,解得:a=1300.所以超过20000元部分的销售额为(1300﹣850)÷10%=4500,∴销售员乙的销售总额=20000+4500=24500.设A型彩电销售x台,则B型彩电销售了(21﹣x)台,由题意得:1000x+1500(21﹣x)=24500,解得:x=14.故销售员乙本月销售A型彩电14台.32.【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.33.【解答】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.。
七年级上册数学20道应用题及答案

七年级上册数学20道应用题及答案1、有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?解设:这根铁丝原来长X米.X-[1/2(1/2X-1)+1]=2.5X=42、将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高? 解设:高为Xmm100·100·Л·X=300·300·80X=720Л3、列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?解设:走X千米X/50=[X-(40·6/60)]/40X=44、某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?解甲:打9折后球拍为:22.5元/只球为1.8元/只球拍22.5·2=45元球:(90-45)÷1.8=25(只)乙: 25·2=50(元){送两只球}需要买的球:(90-50)÷2=20(只)一共的球:20+2=22(只)甲那里可以买25只,而乙只能买22只.所以,甲比较合算.5、甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?解设:每份为X甲:5X 乙:6X 丙:9X5X+9X=6X·2+12X=6所以:甲:5·6=30(本)乙:6·6=36(本)丙:9·6=54(本)6、整理一批数据,由一个人做需80小时完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上册应用题及答案50题(小编整理)第一篇:初一上册应用题及答案50题1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,?≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?/ 286.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,?求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦??应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?/ 289.某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?10.修筑高速公路经过某村,需搬迁一批农户。
为了节约土地资源和保护环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得少于区域总面积的20%。
若搬迁农户建房每户占地1502 m,则绿色环境占地面积占总面积的40%;政府又鼓励其他有积蓄的农户到规划区建房,这样又有20户农户加入建房,若仍以每户占地1502 m计算,则这时绿色环境面积只占总面积的15%。
为了符合规划要求,又需要退出部分农户。
问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少2 m?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?11.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任/ 289.某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?10.修筑高速公路经过某村,需搬迁一批农户。
为了节约土地资源和保护环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得少于区域总面积的20%。
若搬迁农户建房每户占地1502m,则绿色环境占地面积占总面积的40%;政府又鼓励其他有积蓄的农户到规划区建房,这样又有20户农户加入建房,若仍以每户占地1502 m计算,则这时绿色环境面积只占总面积的15%。
为了符合规划要求,又需要退出部分农户。
问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少2 m?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?11.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务/ 2812.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)甲乙进价(元/件)1535[来源: 售价(元/件)20 45 若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?13.某种绿色食品,若直接销售,每吨可获利润0.1万元;若粗加工后销售,每吨可获利润0.4万元;若精加工后销售,每吨可获利润0.7万元.某公司现有这种绿色产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批绿色产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?/ 2814.某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表:品名西红柿豆角批发价(单位:元/千克)1.2 1.6 零售价(元/千克)1.82.5 问:他当天卖完这些西红柿和豆角能赚多少钱?15.如图为一块在电脑屏幕上出现的色块图,由6个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为1,求所拼成的长方形的面积.16.(6分)右表列出了几个国外城市与北京的时差(带正号的数表示同一时刻比北京时间晚的时数):例如:在卡塔尔首都多哈举行的第15届亚运会开幕式是在北京时间17:00开始进行的,而此时东京时间是18:00。
①如果现在是北京时间9:00,那么纽约时间是多少?②如果现在小东在北京想给远在巴黎的姨妈打电话,你认为是否合适,为什么?/ 28③2001年9月11日上午9时许(纽约时间),美国纽约世贸中心姊妹楼先后分别遭恐怖分子劫持的两架飞机的袭击,此时北京是什么时候?17.(6分)如图,将两块直角三角尺的直角顶点C叠放在一起,① 若∠DCB=35°,求ACB的度数② 若∠ACB=140°,求DCE的度数③ 猜想∠ACB与∠DCE的大小关系,并写出你的猜想,但不要说明理由。
18.(6分)轮船在点O测得岛A在北偏东60°,距离为4千米,以测得岛B在北偏西30°,距离为3千米。
用1厘米代表1千米画出A、B的位置,量出图上线段AB的长度,并计算岛A和岛B间的实际距离19.(7 分)老师在黑板上出了一道解方程的题 4 2 1312xx,小明马上举起了手,要求到黑板上去做,他是这样做的:)2(31)12(4xx ①63148xx②46138xx③111??x④ 1 ??x⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填编号0;然后,你自己细心地解下列方程:1 412xx 相信你,一定能做对!20.(7分)某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?21.(8分)某中学库存若干套桌椅,准备修理后支援贫困山区学校。
现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费。
(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。
你认为哪种方案省时又省钱?为什么?22.(9分)“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:用水量/月单位(元/吨)不超过40吨的部分 1 超过40吨的部分1.5 另:每吨用水加收0.2元的城市污水处理费(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43.2元,该用户2月份实际应交水费多少元?23.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数): 星期一二三四五六日增减/辆-1 +3-2 +4 +7-5-10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)(2)本周总的生产量是多少辆?(3分)24.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?25.(本题9分)观察一列数:1、2、4、8、16、?我们发现,这一列数从第二项起,每一第二篇:初一数学上册应用题1、为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。
若某用电户四月份的电费平均每度0.5元,问该用电户四月份应缴电费多少元?2、某大商场家电部送货人员与销售人员人数之比为1:8。
今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。
结果送货人员与销售人数之比为2:5。
求这个商场家电部原来各有多少名送货人员和销售人员?3、现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?4、甲、乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%,调价后两商品的单价和比原单价和提高2%,甲、乙两商品原单价各是多少?5、甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。
求原来每个车间各多少人?6、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时两人还相距36千米,到中午12时两人又相距36千米,求A、B两地间的路程?7、甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒二车的速度不变,求甲、乙两车的速度?8、两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时同时点燃两根蜡烛来电时同时吹灭,粗的是细的长度的2倍,求停电的时间?9、某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?10、甲骑自行车从A地到B地,乙骑自行车从B地到A地两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?11、跑得快的马每天走240里,跑得慢的马每天走150里。