冰蓄冷与蓄热电锅炉

冰蓄冷与蓄热电锅炉
冰蓄冷与蓄热电锅炉

冰蓄冷与蓄热电锅炉

蓄冰技术发展

国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代的教堂。

到了二十世纪七十年代中期,随着世界范围内的能源危机出现,蓄冷技术的发展得到了新的、更强大的推动力。美国南加利福尼亚爱迪生电力公司于1978年率先制定分时计费的电费结构,1979年编写并出版了《建筑物非峰值期降温导则》,1981年后推广应用蓄冷技术,并颁布相关的奖励措施。到90年代,美国已有40多家电力公司制定了分时计费电价,从事蓄冷系统开发及冰蓄冷专用制冷机开发的公司也多达数十家。

欧洲、日本等经济发达国家以及我国的台湾地区也在80年代开始了蓄冷技术的应用研究。日本由于战败引起的经济衰退、资金紧张,90年代前,主要是发展初投资较低的水蓄能系统,近年转而大量发展冰蓄冷系统;电网低谷电约有45%被加以利用,其特点是中小型空调系统也采用蓄能方式。

韩国已经在1999年立法,三千平方米以上的公共建筑必须采用蓄能空调系统。

我国在94年电力部郑州会议上,正式将蓄冰空调系统写入国家红头文件,被列为十大节能措施之一。国家经贸委办公厅颁发的经贸厅技[1997]298号文件将冰蓄冷空调作为今后的重点发展项目。国务院国发[1998]32号文件更强调了加快推广包括蓄冷空调在内的各种削峰填谷的技术措施。国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度。目前,辽宁、吉林、黑龙江、北京、天津、河北、山东、陕西、新疆、青海、甘肃、宁夏、上海、江苏、浙江、安徽、福建、江西、湖北、湖南、河南、四川、重庆、云南、广西、贵州、广东等省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠。

近几年,广州等地引进日本的动态蓄冰技术,为我国的蓄冰技术锦上添花。

锅炉技术发展

1830年左右,在掌握了优质钢管的生产和胀管技术之后出现了火管锅炉。一些火管装在锅壳中,构成锅炉的主要受热面,火(烟气)在管内流过。在锅壳的存水线以下装上尽量多的火管,称为卧式外燃回火管锅炉。它的金属耗量较低,但需要很大的砌体。

19世纪中叶,出现了水管锅炉。锅炉受热面是锅壳外的水管,取代了锅壳本身和锅壳内的火筒、火管。锅炉的受热面积和蒸汽压力的增加不再受到锅壳直径的限制。这种锅炉中的圆筒形锅壳遂改名为锅筒,或称为汽包。初期的水管锅炉只用直水管,直水管锅炉的压力和容量都受到限制。

二十世纪初期,汽轮机开始发展,它要求配以容量和蒸汽参数较高的锅炉。直水管锅炉已不能满足要求。随着制造工艺和水处理技术的发展,出现了弯水管式锅炉。开始采用多锅筒式锅炉。

辅助循环锅炉又称强制循环锅炉,它是在自然循环锅炉的基础上发展起来的。在下降管系统内加装循环泵,以加强蒸发受热面的水循环。直流锅炉中没有锅筒,给水由给水泵送入省煤器,经水冷壁和过热器等蒸发受热面,变成过热蒸汽送往汽轮机,各部分流动阻力全由给水泵来克服。

第二次世界大战以后,这两种型式的锅炉得到较快发展。70年代最大的单台容量是27兆帕压力配1300兆瓦发电机组。后来又发展了由辅助循环锅炉和直流锅炉复合而成的

复合循环锅炉。

在锅炉的发展过程中,燃料种类对炉膛和燃烧设备有很大的影响。因此,不但要求发展各种炉型来适应不同燃料的燃烧特点,而且还要提高燃烧效率以节约能源。此外,炉膛和燃烧设备的技术改进还要求尽量减少锅炉排烟中的污染物(硫氧化物和氮氧化物) 第二次世界大战后,石油价廉,许多国家开始广泛采用燃油锅炉。燃油锅炉的自动化程度容易提高。70年代石油提价后,许多国家又重新转向利用煤炭资源。这时电站锅炉的容量也越来越大,要求燃烧设备不仅能燃烧完全,着火稳定,运行可靠,低负荷性能好,还必须减少排烟中的污染物质。

进入新世纪,各国越来越重视节能环保,我国也开始大批量引进西方的电锅炉。电蓄热锅炉技术的不断完善,又掀起了新一轮的锅炉节能改造。我国也开始不断研发新型的蓄热电锅炉系统,以应付越来越严重的能源问题。

双蓄的结合

由上的历史可以看出,随着锅炉和蓄冷空调的发展,二者慢慢走向节能、环保、蓄能的方向。以前的双蓄,由于技术的限制,大多数是蓄冷空调和蓄热电锅炉分开,即使共用,占用空间也较大,浪费了大量的材料和管理人力。

近年,由于新技术的出现,新式储能式锅炉和动态蓄冰技术的出现,颠覆了传统的“双蓄不双”的观念和技术障碍。例如,大正永业公司的电锅炉就能够很好的与新式的动态蓄冰技术相融合,共用储能系统。蓄冰系统和蓄热电锅炉的极大共用,大大减少了空间的浪费,提高了设备的利用率,同时也减少了成本和客户的资金付出。

电锅炉经济性分析案例讲课讲稿

电锅炉推广经济性分析案例 1经济分析方法 拟定集中式电锅炉不同技术方案,编制典型案例,考虑初投资和年运行成本,以年费用为综合指标,与天燃气锅炉进行经济性比较,年费用低者经济性更优。 年费用计算式为: AC=I×i×(1+i)N/〔(1+i)N-1〕+C 其中,AC——年费用; I——初投资; i——折现率; C——年运行成本。 年供热运行成本计算式如下: C=D×H/(V×η)×P 其中:C——年供热运行成本; D——运行天数; H——日均供热量; V——燃料热值; η——锅炉效率; P——燃料价格。 鉴于人力成本和维修成本具有较强的地域性,故在案例计算中,不考虑人力成本和维修成本;电力增容及配网改造和燃气管道敷设产生费用与具体工程建设条件密切相关,因

此在典型案例计算中不考虑。 2典型分析范例 常见清洁能源锅炉系统包括电锅炉直供系统、电锅炉蓄热供热系统和燃气锅炉供热系统。鉴于这三种系统可适用于不同的供热规模,故宜建立典型供热范例,针对不同技术类型分别拟定技术方案,与燃气锅炉系统进行经济性比较。为确保典型案例分析的覆盖性,选择天然气价格较高的上海和较低的新疆分别进行计算。 典型范例主要边界条件如下: ●设计热负荷:1400kW ●项目性质为办公楼,正常供热时间设定为08:00~ 18:00,共10小时 ●采暖期的最大单日供热需求量:9100kWh ●采暖期平均单日供热需求量:5915kWh 在满足上述供热需求的情况下,拟定热产品为热水和蒸汽两类共5种类型锅炉系统的技术方案如下: (1)电锅炉蓄热供热系统 最大单日供热需求量在谷电8小时内全部蓄热完毕。国内组装常压电热水锅炉的热效率取98%,则小时装机功率为1160kW,故配置2台储热功率为520kW的电热水锅炉,并配置有效蓄热容积为174m3(供回水温差取45℃)的常压蓄热水箱。系统寿命周期为25年。 (2)电锅炉直供热水系统

五星级宾馆采暖蓄热电锅炉选型方案

项目名称: 五星级宾馆采暖用电锅炉 选型方案 电锅炉低谷电蓄热) xxx 设备有限公司 2011 年 5 月 5 日

电加热锅炉及蓄热水箱选型方案 、项目概况: 1宾馆地上四层,采暖总面积 25000m2。室内采暖为地暖盘管系统。 现在拟采用全自动常压电热水锅炉采暖,变压器容量须满足采暖电负荷使用的需要。 2、供热采暖温度:按国家有关规定要求,设计采暖室温 20 C 。 3、供热采暖时间: 主供暖时间为 6:00-22 : 00,计 16 小时, 22: 00 以后建筑物内值班低负荷保温供暖。 5、采暖供热锅炉:采用全自动常压电热水锅炉蓄热采暖技术,充分利用低谷电,配合蓄热水箱蓄 热。 6、系统组成: 本工程锅炉房系统分为二部分,一是蓄热部分,二是向系统供热部分。 蓄热部分由蓄热水箱+蓄热循环水泵+电锅炉组成,水箱最高水温为 85C ,最低水温为40C ; 供热部分由蓄热水箱+供热循环水泵+热交换系统+地热盘管组成,系统最高供水水温为 50C, 最低供水温度为 35 C 。 、系统供暖原则: 采暖供热集中在 6:00-22:00, 计 16 小时,其他时段 8小时相对供热要求低一点 ,因此,在供热时 应实行多供 6:00-22:00 ,其他时段相对少供的原则。 电锅炉蓄热式采暖工程是一个集暖通、电气、土建、自控、技经等专业的综合系统工程,采暖 方案设计就是要做到在保证供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到 最佳的技术经济比。 本方案运行方式: 采用全低谷电 8 小时 ,在每个采暖日采取了合理使用低谷电, 避开或慎用平峰电、 高峰电并配 合使用蓄热罐的供热方式。下面就这种情况计算锅炉的功率及蓄热水箱的容积。 四、采暖热指标 : 1、 在 6:00-22:00 时段 , 建筑采暖 正常补充热指标为: 80w/m 2 .h 2、 在22:00-6:00时段,建筑采暖保温补充热指标为: 48w/ m 2 . h (满负荷的60%) 五、蓄热式电锅炉及蓄热水箱的选型 1、 运行方式: 采暖采用全谷电8小时加热方式。即晚上23:00-7 : 00低谷电时段8小时锅炉边用蓄热水箱 蓄热边向宾 峰谷电时段表 23: 00--- -- 7 : 00 谷电 8 小时 电价: 0.36元/度 (估 值) 7: 00--- -- 8 : 00 平电 1小时 电价: 0.72 元/度( 估值) 8: 00--- ---11: 00 峰电 3 小时 电价: 1.04 元/度 (估值) 11: 00--- ---18 : 00 平电 7 小时 18: 00--- ---23 : 00 峰电 5 小时 值班低负荷保温期间为 22: 00—早上 6: 00,共计 8 小时。 4、

电极式电锅炉蓄热系统简介

电极式电锅炉蓄热系统 简介 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥ 6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施: 1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式: 功率调整范围:调整范围是1%-100%. 在 10%-100%的范围内可以做到无级调节。

优点: 锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。 当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图 二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。 年度主要发展里程碑 1905年世界上第一台电极锅炉在欧洲出现,电压等级限制在2000V以下 1920年代瑞典Z&I公司发明了浸没式电极锅炉,控制精度大幅度提高,采用高电压(6-15kV)直接供电,称为高压电极锅炉

电锅炉采暖方案

电锅炉供暖方案 、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011:00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23: 00~7: 00开启电锅炉加热水箱中的水,加热至95C,向系统供热; 7:00~23:00 关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21 元/度 平电0.52 元/ 度 峰电0.84 元/度 4、自控: 蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温

度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00 达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9C 采暖室内设计温度:20~22C 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa 2、淋浴系统按同时开启20个水龙头,开放时间每天2 小时计算。 五、设备造型及运行方案 根据需方实际情况,采用全谷电、谷+平的方式。全谷电:选一台900KW 的锅炉,水箱容积为100m3。

固体蓄热锅炉的发展前景及社会经济效益分析

固体蓄热锅炉的发展前景 及社会经济效益分析 Final revision by standardization team on December 10, 2020.

固体蓄热产品的发展前景及社会经济效益分析 一、固体蓄热产品的推广有利于电力工业的经济运行 随着我国经济快速发展,作为国民经济的基础产业, 电力工业也得到长足发展。电力装机容量以年平均%的速度高速增长, 发电量更以年平均8%的速度增长。无论电力装机容量还是发电量都进入世界顶级行列。在满足了电力负荷高峰需求之后, 电网的峰谷差也同时拉大, 直接影响了电网的安全经济运行。2016年夏季我国多地出现持续晴热高温高湿天气,以空调为主的制冷负荷大量增加,推动全社会用电负荷快速攀升。在空调制冷需求的推动下,北京、山东、上海、江苏、浙江、安徽、福建、湖北、湖南、江西、蒙东、新疆、重庆、广东等地用电负荷创历史新高,其中多地今年首次创新高。这一负荷加大了电力系统峰谷差, 是导致城市电网负荷率下降的重要原因。而在采暖和制冷系统中推行储能技术, 则是进行电网移峰填谷, 缓解电网高峰供电压力的重要方面。 发展蓄热式电热器(如蓄热式电锅炉、蓄热式电暖器、蓄热式电热水器等),增加电网低谷用电量,使电网负荷趋向均衡,是提高发电机组的运行效率,减少能源浪费的重要途径。 国家电力公司安全运行与发展输电部自1999年就专门发文推广应用蓄热式电锅炉。目前我国多地区和企业用电实行峰谷电价政策,为固体蓄热电锅炉,蓄热电暖器的发展提供了有利条件。 二、改善环境污染、顺应发展趋势

随着经济的发展,燃料的使用量也在大量增加,城市环境污染问题的日益加重,雾霾天气的频繁出现,调整能源结构,高效节能环保使用能源已被提到议事日程上来。 2014年11月6日发改委、能源局、环保部等七部委发布《燃煤锅炉节能环保综合提升工程实施方案》,该《方案》指出工业锅炉容量小、技术落后、污染高、效率低,已经成为大气污染的重要源头,规划到2018年推广高效锅炉50万吨;淘汰落后燃煤锅炉40万吨,完成节能改造40万吨,提高燃煤工业锅炉运营效率6个百分点,节能4000万吨标煤。 我国锅炉以燃煤占比超过80%,截止2012年底,在用工业锅炉达到万台,总量178万蒸吨,年消耗原煤约7亿吨,占全国耗煤量的18%左右;平均容量小、设备落后、运行效率低、污染物排放强度大的现状下,燃煤工业锅炉污染物排放将超过电力行业,已经成为大气污染的重要源头,也是雾霾治理的最重要战场。 据测算燃煤工业锅炉改造市场高达4500亿元,对应运营市场超过3750亿元。重点以燃煤清洁化、替代化为主线。替代化路线中,主要包括生物质、天然气、电能等替代化方案。使用电能无疑是最高效、环保的清洁能源。新兴的固体蓄热式电锅炉是利用电网低谷电运行,节能高效利国利民,市场前景广阔。 三、应用储能技术具有较大的社会效益和明显的经济效益 1、平衡电网峰谷负荷, 缓解电厂和输配电设施的建设投资压力。 2、稳定发电机组负荷, 改善发电机组效率, 减少环境污染。

电锅炉蓄热采暖系统的工作原理

电锅炉蓄热采暖系统的工作原理 电锅炉蓄热采暖系统是以电锅炉为热源,水为热媒,利用峰谷电价差,在供电低谷时,开启电锅炉将水箱的水加热、保温、储存;在供电高峰及平电时,关闭电锅炉,用蓄热水箱的热水供热。 系统是由电锅炉、蓄热水箱、换热器、水箱循环泵、供热泵、补水泵、定压装置、电动三通阀等设备组成。 电锅炉为热源,蓄热水箱用于蓄热和放热,定压装置用于用户侧定压,热交换器用于热源系统与采暖系统换热。 换热器一次侧由锅炉,蓄热水箱,蓄热泵,板换等组成热源系统。换热器二次侧由系统循环泵,换热器,定压装置,用户等组成了采暖供热系统。在系统中设置了电动三通调节阀,根据室外温度变化, 自动调节换热器二次侧的供水温度。从而节约能源,保证了采暖的舒适性。 系统内的电锅炉、水泵、电动三通阀均由系统控制柜控制,加上电动碟阀可做到无人值守全自动运行,在需要时全部设备也可手动操作运行。 电锅炉蓄热采暖的优越性 1.自动化程度高, 可根据室外温度变化调节采暖供水温度, 运行合理, 节约能源消耗。 2.运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。 3.无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。 4.热效率高,运行费用低,可充分利用低谷电。 5.操作方便, 值班人员劳动强度小,节约人工费用。 6.适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 电锅炉蓄热采暖运行方式介绍 蓄热式电锅炉的运行方式,主要分为两种形式: 一种是全部使用低谷电,(23:00~7:00为低谷电价)即低谷时段电锅炉开启运行并蓄热,平电及高峰用电时段(7:00~8:00、11:00~18:00执行平电电价,8:00~11:00、18:00~23:00执行峰电电价)关闭电锅炉,由蓄热水箱中的热水向系统供热。 另一种运行方式是在使用低谷电的同时使用一部分平电,即低谷时段电锅炉开启运行并蓄热;白天关闭电锅炉,由蓄热水箱中的热水向系统供热、同时使用一部分平电蓄热或供热。

135电锅炉水蓄热技术的应用实例

电锅炉水蓄热技术的应用实例 现代建筑设计集团上海建筑设计研究院有限公司张伟程 摘要:介绍了电锅炉水蓄热技术在具体工程设计中的应用,并着重介绍了该系统的概况、流程以及各种运行模式下的控制方式。 关键词:电锅炉水蓄热运行模式控制 1 电锅炉水蓄热技术介绍 集中空调的冬季供暖部分,根据热源的类型,可以分为空气(或水)源热泵、燃油、燃煤气(或天然气)、燃煤、用电等几大类。 从用户的角度看,使用电作为热源不需要排废水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作所带来的浪费及管理难度。 对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》GB50189-2005中有明确的规定:“除非夜间可利用低谷电进行蓄热、且蓄热式电锅炉不在日间用电高峰和平时段时间启用的建筑,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。 电锅炉水蓄热系统是指在电力低谷期间,以水为介质将电锅炉产生的热量储存在蓄热装置中,适时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段用电量,起到移峰填谷的作用。电锅炉水蓄热从系统构成上来说只是在常规电热锅炉的基础上增加了一套水蓄热装置,其他各部分在结构上与常规热源系统并无不同,它在使用范围方面也与常规供热系统基本一致。通常水蓄热装置有常温(常压、温度低于100℃)和高温(高压、温度高于100℃)两种,蓄热量有全量和分量两种模式,蓄热系统有串联和并联两种流程。 电锅炉水蓄热系统具有以下几个显著优点: 1)适合在无集中供热与燃气源,而电力充足、供电政策支持和电价优惠的地区使用。 2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全可靠性高。 3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。 4)可根据外界空调负荷的变化更及时、灵活、精确地供应储存的热量。 5)利用峰谷电价差,可以明显减少运行费用。有利于平衡用电负荷,缓解供电矛盾[2]。 6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠性。 2 工程概况 陆家嘴时代金融中心(B3-5地块)冬季空调供暖设计计算热负荷峰值为5 044 kW:1~6层(裙房)973 kW,8~20层(低区)1 331 kW,22~34层(中区)1 331 kW,36~46层(高区)1 409 kW。考虑到当时的市政能源条件(无集中供热与燃气源,电力充足、供电政策支持和电价优惠)和初投资与运行费用的效益比以及机房安全条件,本工程采用常压型电热水锅炉生产的蓄热水作为空调供暖热源,采用常温全量(不考虑不可预见系数)蓄热模式、并联流程,并根据楼层分布情况分设4套系统,机房分别布置于7层,21层,35层,PH1设备层。每套系统均设有2台675 kW的电锅炉、1个有效容积为200m3的蓄热水箱,其设计蓄热水温为45~90 ℃,蓄热量为10 465 kWh;考虑10%的余量,联合供热(板式换热器的)总供热能力为1 600 kW;板式换热器一次侧的设计进、出水温度为55 ℃/45 ℃、二次侧(空调末端设备)的设计供、回水温度为50 ℃/40 ℃。该水蓄热系统夏季可兼作蓄冷用,其蓄热水箱转变为蓄冷水箱,主要用于新风空调箱的供冷。 系统有冬季电锅炉单蓄热、电锅炉单供热、蓄热水箱单供热、电锅炉与蓄热水箱联合供热(蓄热水箱优先)、电锅炉边蓄热边供热以及夏季制冷机蓄冷、蓄冷水箱放冷共7种运行模式,其原理见图1。

五星级宾馆采暖蓄热电锅炉选型方案

项目名称:五星级宾馆采暖用电锅炉 选型方案 (电锅炉低谷电蓄热) xxx设备有限公司 2011年5月 5日

电加热锅炉及蓄热水箱选型方案 一、项目概况: 1、宾馆地上四层,采暖总面积25000m2。室内采暖为地暖盘管系统。 现在拟采用全自动常压电热水锅炉采暖,变压器容量须满足采暖电负荷使用的需要。 2、供热采暖温度:按国家有关规定要求,设计采暖室温20℃。 3、供热采暖时间: 主供暖时间为6:00-22:00,计16小时,22:00以后建筑物内值班低负荷保温供暖。 值班低负荷保温期间为22:00—早上6:00,共计8小时。 4、峰谷电时段表 23:00-------7:00 谷电8小时电价:0.36元/度(估值) 7:00-------8:00 平电1小时电价:0.72元/度(估值) 8:00------11:00 峰电3小时电价:1.04元/度(估值) 11:00------18:00 平电7小时 18:00------23:00 峰电5小时 5、采暖供热锅炉:采用全自动常压电热水锅炉蓄热采暖技术,充分利用低谷电,配合蓄热水箱蓄 热。 6、系统组成: 本工程锅炉房系统分为二部分,一是蓄热部分,二是向系统供热部分。 蓄热部分由蓄热水箱+蓄热循环水泵+电锅炉组成,水箱最高水温为85℃,最低水温为40℃; 供热部分由蓄热水箱+供热循环水泵+热交换系统+地热盘管组成,系统最高供水水温为50℃,最低供水温度为35℃。 二、系统供暖原则: 采暖供热集中在6:00-22:00,计16小时,其他时段8小时相对供热要求低一点,因此,在供热时应实行多供6:00-22:00,其他时段相对少供的原则。 三、运行方式: 电锅炉蓄热式采暖工程是一个集暖通、电气、土建、自控、技经等专业的综合系统工程,采暖方案设计就是要做到在保证供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到最佳的技术经济比。 本方案运行方式: 采用全低谷电8小时,在每个采暖日采取了合理使用低谷电,避开或慎用平峰电、高峰电并配合使用蓄热罐的供热方式。下面就这种情况计算锅炉的功率及蓄热水箱的容积。 四、采暖热指标: 1、在6:00-22:00时段,建筑采暖正常补充热指标为:80w/m2.h 2、在22:00-6:00时段,建筑采暖保温补充热指标为:48w/ m2.h(满负荷的60%)

固体材料蓄热式电锅炉的研究

———————————————————————————————————————————— 固体材料蓄热式电锅炉的研究(大正节能技术开发中心) 摘要:固体蓄热式电锅炉使用低谷电作能源,对电网日益严重的峰谷差削峰填谷有积极贡献它采用固体蓄热材料,较目前已有的热水蓄热电锅炉有显著优点、可自动运行,是一种新型清洁供热设备。 关键词:蓄热式电锅炉、固体材料、电网削峰填谷、清洁能源。 随着国民经济的发展,我国的电力事业有了长足的进步,1999 年底装机总容量达到12300 kWh。1997 年以来每年投产的大中型机组容量都在10 GW 以上。民用负荷逐年增大这就使供电曲线的峰谷差加大,给发电机组的安全、高效运行带来了困难,迫使电网建设蓄调谷峰及燃汽轮机调峰电站。而且为了使很多机组在低负荷下运行,降低了运行效率及可靠性,因而也降低了经济的发展,燃料的使用量也在大量增加全年的燃煤达非常大,燃煤产生了大量灰尘、SO2。如果能用蓄热式电锅炉代替部分小锅炉供给的取暖设备,用蓄热式电锅炉代替普通燃煤锅炉,用蓄热式电锅炉代替燃煤锅炉对改善环境,削峰填谷的作用肯定是显著的,是促进我国经济可持续发展的有力措施,我中心在成功开发蓄热式电锅炉的基础上又开发了固体材料蓄热式电暖器,已在某些工程中得到了成功应用,对改善环境,降低运行费用起到了显著作用。国家电力公司安全运行与发展输电部1998 年专门发文推广应用蓄热式电锅炉目前市场上销售的蓄热电锅炉多是利用常压固体蓄热方式蓄热,在常压下将热水加热1997年全国烟尘排放量达1873 10 95,假设回水温度为45 kcal。因此蓄热水箱体积庞大。 以目前市售最大容量民用全谷式蓄热式电锅炉为例,该类电锅炉容量为7875kW台,采暖面积排放量达2346 10 ,62%的大城市大气SO2,浓度超过国家三级标准,全国酸雨区面积已占国土面积的30 ,华中酸雨区酸雨频率高达90 %以上其中燃煤对环境污染占的份额最大。随着公众对改善环境的要求日益强烈,人们开始寻找污染少、运行费用也能承受的热能转换方式。随着城市环境污染问题的日益加重,燃用清洁能源的取暖锅炉已被提到议事日程上来。 目前包括首都北京在内的北方许多大城市环保部门已作出强制性规定,城市近郊区严禁再上任何燃煤锅炉新项目,现有锅炉也要限期全部更改为燃用清洁能源锅炉。根据我国电力市场的实际情况以及环境污染的状况,我国有必要发展蓄热式电热器,增加电网低谷用电量,使电网负荷趋向均衡,提高发电机组的运行效率。这里所说的蓄热式电锅炉包括蓄热式电锅炉、电暖器。我国城镇的采暖用热除部分由热电厂供应外,其余部分是由燃煤、燃油锅炉及电热供给的。燃煤燃油锅炉都有有害气体及烟尘排放,污染环境,普通的电暖器及电热水器常常是在用电高峰时间使用,增加热水箱容积900m ,若该水箱为一正方体,其边长接10m,仅此一座蓄热水箱的体积就相当于一座三层楼房,并且出于保温的考虑,水箱必须设置在有暖气设施的室内,建造这样一座锅炉房,连同其内部所有设备在内,其总投资将突破3000 万元。并且由于该蓄热水箱外表面积

电锅炉蓄热技术在北方地区的应用分析

电锅炉蓄热技术在北方地区的应用分析 蓄热2009-05-06 13:54:20 阅读63 评论0字号:大中小订阅 ?摘要:介绍了电锅炉固体蓄热技术应用的现状、设计原理、蓄热载体的选择、高温蓄热系统以及自控系统等,并以北京住宅为例分析了蓄热技术应用和运行费用的可行性。 ?? 1.引言?固体蓄热式电锅炉,不仅可以享受到峰谷电价和国家的优惠政策,而对于能量的有效利用和节能也非常有意义。?根据国家“十·五”计划,今后五年我国能源消费年均增长约3.26%,煤炭将下降3.88%,发电量年均增长约5.08%,水电、核电、天然气等清洁能源的比重达到17.88%,提高5.6%。根据国际能源机构预测,到2007年全球新能源和可再生能源的比例,将发展到世界能源构成的54%以上。可以说电做为热源比油、气、煤有着更广阔的前景。 根据目前了解到的可靠信息,在山东乳山、荣城等城市国家正在建设核发电站。青岛、威海、烟台、日照、南京、上海等很多的城市投入巨资建设风力发电站。国家投入巨资建设的长江三峡,黄河小浪底等大型水力发电站,以及现在正在全球讨论和研发的太阳能蓄能技术。这些都在意味着国家对洁净、环保、节能等电力的开发和利用。电力作为最环保的能源在各国家都在使用。 中国针对这些电能的开发,是为了有效利用再生能源和控制稀有资源,相对出台了《中华人民共和国可再生能源法》。相对电力能源的开发和建设,电力能源的使用同时也出现了浪费现象。这就是低谷电的使用。在国外低谷电有效的进行了使用。我们国家针对低谷电的使用相对比较晚,主要原因是在技术方面和国家政策方面的滞后。现在通过国家发改委和电业部门及环保部门的大力支持和政策方面的落实,对于蓄能的使用起到了很大的促进作用。市场前景一片光明。? 资源蓄热技术能够使能源得到合理有效的利用,通过控制技术,它可以按照系统所需要的热

电锅炉采暖方案

电锅炉采暖方案 Prepared on 22 November 2020

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间: 23:00~7:00 共计8小时; 平电时间: 7:00~8:00 11:00~18:00 共计8小时; 峰电时间: 8:00~11:00 18:00~23:00 共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;

7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电元/度 平电元/度 峰电元/度 4、自控: 蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。

电锅炉电热供暖设计方案

电锅炉电热供暖设计方案 生产【万家暖牌】电供暖设备 电加热产品 广 努力服务好我们的客户。 一、电热供暖设备优点 ①热效率高 ②采暖费用低 费用比燃油、燃气锅炉费用更低 ③有利于环保 益于身体健康 ④运行安全 ⑤使用方便 己需要自己设定 ⑥价格事宜 ⑦优质售后服务 顾之忧 ⑧最佳方式 有益于人身体健康。 二、主要技术指标 热转换率98.7% 泄露量0 噪音37dB 大气污染0 三、产品的技术优势 1、该产品对人体无辐射、温度适宜 地热。风机盘管等散热装置配合使用。 2、运行费用比燃油、燃气更便宜30 元左右/平方米 采暖条件和方式不同 3、低碳环保产品 有益身体健康。 4、运行安全 装置 5、使用方便 室温可由自己需要设定 6、价格便宜 第二部分方案设计分析 2.1供暖负荷 根据用户提供数据150m220kw。满足贵公司的采暖要求。 设备选型WJN-20KW型电热供暖设备1台。 2.2运行费用分析

根据贵处具体情况7小时18℃以 上0.488元/千瓦时计算。 整个采暖期一平方米的电采暖运行费用可按以下公式计算 单位面积热负荷×热负荷系数×每天工作时间×采暖期天数×电费单价 采暖费用为 0.08 kw/m2×0.8×7小时×120天×0.48元/度26.23元 m2/×150m2=3935元 注 以上数据、公式摘自参考文献-------- 中国建筑工业出版社 《制冷空调产品设备手册》--------国防工业出版社《实用制冷与空 调工程手册》--------机械工业出版社 几个造成电锅炉采暖效果不好的原因分析及解决办法 1、电锅炉功率选择过小 2、室内保温措施做得不好 3、暖气片内杂质及水垢影响

蓄热式电锅炉供暖工程设计介绍

蓄热式电锅炉供暖工程设计介绍北京国电华北电力工程有限公司徐新举m 摘要该工程采用直热式和蓄热式电热锅炉联合供暖方式,介绍了方案选择,设备选型, 锅炉运行方式,锅炉房工艺布置和供暖负荷计算。该工程可以充分利用低谷电蓄热供暖,实际运行效果良好。 关键词蓄热电锅炉供暖设计 Design of an electric boiler heating system with heat storage B y Xu X inju n Abs t r act Us es di r e c t-hea t i ng and s t or a ge heat i ng e l ec t r i c a l boi l e r s a s t he heat s our c e. P r es ent s t he s c heme s el ec t i on,e qui pm e nt s t y pe,ope r at i ng m o de o f el e c t r i c al boi l er s,d es i gn of boi l er pl a nt and hea t i ng l oa d c a l c ul at i on.T he pr oj ec t c an f ul l y us e t he l ower pr i c e el e c t r i c i t y f or hea t s t or a ge,and t he sy s t em ope r at e s we l l. Keywor ds hea t s t or a ge e l ec t r i c b oi l e r,hea t i ng,des i g n n North China Pow er Engineering(Beij ing)C o.,Ltd 1工程概况 本工程为燃煤锅炉房改造工程,采用直热式电锅炉加蓄热式电锅炉的供暖方式。总供暖面积为140800m2,其中生活区建筑面积77000m2,办公区建筑面积40000m2,科研楼建筑面积17000m2,国电宾馆建筑面积6800m2。由于科研楼高度近50m,结合原燃煤锅炉的运行方式,将供暖系统分为高压区和低压区两个系统。 高压区选用1台HW30D-720B-380型直热式电锅炉,锅炉容量为720kW;1台T X1-158-F704-H449型蓄热式电锅炉,锅炉容量为704kW,为科研楼提供供暖热源。总用电负荷为1424kW。 低压区选用2台HW48D-2400B-380型直热式电锅炉,单台锅炉容量为2400kW;2台T X1-396-F1728-H528型蓄热式电锅炉,单台锅炉容量为1728kW;2台T X1-275-F1216-H485型蓄热式电锅炉,单台锅炉容量为1216kW,为生活区、办公区和国电宾馆提供供暖热源。总用电负荷为10688kW。 2热源方案比较 根据现场实际情况,原燃煤锅炉房基本没有扩建的可能性,在不拆除原燃煤锅炉房的基础上进行部分改建,可节约大量土建投资。下面结合本工程实际情况,对燃油锅炉、燃气锅炉和电锅炉供暖方式进行比较。 a)燃油锅炉:初投资低,运行费用高,由于场地限制,无贮油罐布置场地,达不到防火要求,锅炉运行噪声大,对环境有一定污染; b)燃气锅炉:初投资低,运行费用高,气源接入困难,有可能影响供暖期供暖,锅炉运行噪声大,对环境污染甚微; c)电锅炉(直供式):初投资低,运行费用高,无污染,锅炉运行安全可靠,便于维修,布置灵活; d)电锅炉(直热式加蓄热式):初投资高,运行费用低,无污染,锅炉运行安全可靠,便于维修,蓄热锅炉占地面积较大。 随着近几年电力市场的转变,为了调整用电结构,开拓低谷电市场,华北电力集团公司(华北电管局)对京津唐电网区域内电力用户新报装蓄能用电设备的电贴实行优惠,用电设备全部低谷时段运行并蓄能,高峰、非高峰时段全部或部分用电设备停运,其停运部分设备用电容量全部免收增容费,主要包括蓄热电锅炉、蓄热水泵等。采用电锅炉蓄热式供暖方式,避开高峰电价时间段,可以大大降低运行费用。经过与业主讨论,决定采用蓄热式电锅炉的供暖方式。 # 94 #技术交流园地暖通空调HV&AC2003年第33卷第2期 1m徐新举,男,1968年5月生,大学,工程师 100011北京市西城区黄寺大街甲24号暖通室 (010)822811882583 收稿日期:20020813 修回日期:02

电极式电锅炉蓄热系统概述

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图

二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

电锅炉采暖方案

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011: 00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21元/度 平电0.52元/度 峰电0.84元/度 4、自控:

蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9℃ 采暖室内设计温度:20~22℃ 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa

电锅炉蓄热技术在供暖工程中的应用探讨

电锅炉蓄热技术在供暖工程中的应用探讨 发表时间:2019-08-06T09:42:49.360Z 来源:《建筑学研究前沿》2019年8期作者:安福来 [导读] 使供暖工程在电力供应负荷高时有效解决供暖的问题,本文就其应用进行了分析和探讨。 13098419911025xxxx 摘要:电力能源随着人们生活水平的提高,能源消耗也越来越大,对能源供应造成了极大的压力,因此需要利用科学的手段对供需之间的矛盾进行环境有。一方面减少新电厂的建设,对现有供电设备的使用率予以提高,另外通过电锅炉蓄热技术的应用,使供暖工程在电力供应负荷高时有效解决供暖的问题,本文就其应用进行了分析和探讨。 关键词:蓄热技术;供暖工程;应用探讨 一、传统锅炉设备存在的问题 在不少热电企业中,普遍存在着长期使用同一台锅炉的情况,主要从成本的角度考虑, 而对设备老化的问题予以忽视,增加了单位煤耗量,同时因燃烧造成的污染物也急剧增加,按照相关规定,对这些污染物必须进行处理,达到相关的排放标准也允许排放。这不仅使企业的运营成本有所增加,也对企业的长期发展造成了不利影响,随着国家节能减排政策的不断推进,企业必须从设备出发,对锅炉及时进行更换,同时不断加强新技术的应用,从长远利益和发展的眼光来看待设备更换增加的企业成本,从能源节约、污梁排放降低以及企业的可持续长展等方面来看,其带来的经济效益更显著[1]。 二、蓄热系统 (一)原理 采用串联循环回路原理进行常压蓄热系统的设计,通过热水循环泵、板式热器、电热水 锅炉、定压补水设备、常压蓄热水箱、释/蓄热循环泵以及控制系统共同构成了常压蓄热系统,其运行原理主要为:在夜间低峰时段,通过电锅炉将蓄热循环水进行加热处理,当温度到90℃时,利用蓄热水箱进行储存,并以热能的形式供高峰供电时段通过放热的形式使用,使高峰段用电量得以减少,使运行费用减少的目的得以实现。 (二)蓄热水箱 在电热水锅炉中进行加热处理,其温度不宜超过90℃,避免出现热水沸腾气化的现象。 温度分层型的蓄热水箱在实际应用中使用率较高;通过散流器对水箱内的水温进行分层,当进行冷水储存时,从立式水箱的下部往上流,热水则采用从上往下流的方式储存,使温度分层得以实现。 蓄热水箱采用直立平底圆柱体的形状最有利于实现自然分层,与其他立方体或长方体形 状相比,在同样的容量下,圆柱体的容量和面积之比较小,比值越小使造成的热损失也也越少,从而也使基建投资也得到了有效降低[2]。 (三)应用中的问题 蓄热系统的应用中需要注意软化水的注入,因蓄热系统温度过高时而出现结垢的现象, 避免电热管因此而发生爆管;在电源系统中应对漏电保护开关予以设置和安装,使电锅炉的运行安全得以有效保证;电压、电流指示仪表应设置在电锅炉控制柜上,有利于操作人员进行巡视和监查;时间继电器也应在接触器控制回路上进行设置,对用电的低谷、平谷以及高峰进段的手动或自动控制予以实现;在实际应用中,蓄热水箱与补水箱相连,会造成补水箱中水温过高的情况,因此在对补水口采取下移方案时,还需对补水箱和连接管路进行保温处理。 三、储热模式 蓄热系统中主要采用全量储热模式以及分量储热模式两种。在电力处于低谷期,电锅炉 采用全负荷运行的方式,加热处理所需要的全部热量。在平峰和高峰期,不需要再运行电锅炉来提供热能,蓄热设备就能提供供暖所需的所有的热负荷;分量储热模式可以有效保证负荷均衡。在采暖日蓄热装备采用满负荷运行的方式,释放全部热能,当热负荷量大于蓄热装置所供热量时,电锅炉将对不足的热量进行补充;在低谷时进行电锅炉的全功率运行,使蓄热装置存满所需的全部热能。通过分量蓄热模式,可有效避开电力高峰和平峰时段,使运行费用得到最大限度的降低[3]。 四、电锅炉储热技术应用的效益分析 采用电锅炉蓄热技术的供暖和传统的供暖方式相比较在初投资、运行费用以及社会效益方面都有着绝对的优势,比较表如表一所示。 表一四类锅炉的初投资和运行费用比较 通过上述对比表可以分析得出,在初投资之及运行费用中,燃煤锅炉的投入成本较少,但在环境污染方面却表现较为严重,因此其在实际应用方面受到了极大的限制;其他三种锅炉在初投资方面费用相差不大,但电锅炉的运行费用比其他两种减少了将近一半,并且在环境污染方面表现理想。 在采暖季中,电锅炉实际运行时间根据天气的变化以及月份的不同而不等,根据天气情况进行设计考虑时,可有效避免初期投资过多、电锅炉型号过大以及满负荷率下降等问题出现;同时也避免因锅炉功率不够的原因,平峰时段时用过多造成运行费用增加的情况[4]。 根据天气温度的变化对电锅炉的加载负荷进行增减,天气较冷的时候,可采用少部分平电进行补充的方式,天气暖和的时候,采用部分加载负荷的方式,可是初期投资得以降低,使性价比提高,后期运行费用和初投资的的最佳比值能在电锅炉的使用期间得以实现。自然因素会对电锅炉的运行费用造成影响外,相关管理人员的管理因素也会对其造成影响,所以根据实际的天气状况,合理调整电锅炉的运行

峰谷电地区蓄热电锅炉供暖方式经济性分析

峰谷电地区蓄热电锅炉供暖方式经济性分析 摘要目前我国北方大多数城市仍以分散式小锅炉供热为主,且该地区通常较难以进行集中供热,如何在减少污染的同时,综合考虑能源、经济、环境三方面的关系是提出采用电蓄热锅炉供暖的前提。以某小区为例进行分析。 关键词电锅炉;蓄热;供暖 现阶段,我国城市能源供应结构和供热方式日益多元化和多样化,一般来说,供热可分为集中式、分布式和分散式等多种方式。不同的能源种类、价格及其供热系统形式使得各种供热方式在能源、经济和环境三方面互有优势。我国北方大部分地区供热采暖一直以燃煤为主,烟尘和二氧化硫是构成我国大气污染的主要因素。据统计,当今全球空气污染最严重的10大城市中,中国就占有5位。目前,部分城市实施分时电价政策,在此条件下可应用电蓄能技术的应用,如蓄冷式空调系统和蓄热式电锅炉供热系统,是缓解电网峰谷差矛盾的有效手段。 近年来,蓄能技术已在我国空调领域得到强劲的发展与推广,最常见的是冰蓄冷和水蓄热系统。本文介绍在中小型建筑物中采用电锅炉加水蓄热方式作为系统热源,以此作为减少环境污染、降低能源消耗,同时利用夜间低谷电,减轻白天电网负荷,真正实现“绿色”供暖的一个途径。 1蓄热电锅炉 自储能电锅炉是一种新型的电储热系统。采用高密度铁基合金作为储热材料,将加热、储热、取热、换热及控能功能组合在一台无压的一体化结构内。与其它类型储能电锅炉相比较,它具有占地面积小,系统热效率高,便于操作,性能稳定,安全性高及运行费用低等特点。 蓄热电锅炉主要利用峰—谷电价价差进行供热,即在谷电时供热和蓄热,峰电时利用蓄热的能量供热,从而可以降低成本。其主要优势如下:1)自动化程度高,可根据室外温度变化调节采暖供水温度,运行合理,节约能源消耗。2)运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。3)无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。4)热效率高,运行费用较低,可充分利用低谷电或增加夜晚用电负荷。5)操作方便,值班人员劳动强度小,节约人工费用。6)适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 2电蓄热系统方案 1)供热需求计算。以某小区为例,建筑面积约35000m2,通过分析计算,其尖峰热负荷为2800Kw。2)电锅炉。本工程采暖系统选用2台1260kW的电热水锅炉用于蓄热与供热,每日夜间00:00-8:00的电力低谷时段内,电锅炉在供热的同时蓄

相关文档
最新文档