光纤色散损耗和非线性 对通信系统的传输特性的影响

光纤色散损耗和非线性 对通信系统的传输特性的影响
光纤色散损耗和非线性 对通信系统的传输特性的影响

光纤色散损耗和非线性对通信系统的传输特性的影响

摘要:光纤通信是以激光作为载体,以光纤作为传输媒介的通信方式。与电缆与微波等电通信相比,光纤通信具有传输频带宽、传输衰减小、信号串扰弱、抗电磁干扰等优点。因此,当今全世界通信方式中已构成了一个以光纤通信为主,微波、卫星通信为辅的格局。现在,以光纤放大器和波分复用技术共同组成的密集波分复用光纤传输系统已普及到全世界的核心网以及城域网。由光纤构筑的网络拓扑已延伸到地球的各个角落,光缆的敷设正向着光纤到家庭、到桌面的方向发展。本文主要介绍光纤通信系统以及光纤色散损耗和非线性对其的影响的计算方法。一、光纤通信系统1、光纤通信系统光纤通信系统与其他通信系统的区别从原理上讲只是载波频率的不同,光载波的频率在约100THz 的数量级,而微波载频范围在1 到10GHz,由于光载波频率与微波频率之间的差别,光通信等的信息容量可以比微波系统高出10000 倍,调制带宽可以达到约1Tbps 的量级,正是由于光通信系统具有如此大的宽带潜力,才使得人们不断研究和开发光通信系统。图 1 示出了IM/DD 光纤通信系统的组成框图。它由发送端机、光纤传输信道,接收端机三个主耍部分组成。图1 光纤通信系统组成框图光源产生的光信号耙合到光纤中,经光纤传输到接收端机。在接收端机,由光检测器直接检测光纤中传来的光

信号并进行光电转换,形成电信号,再由电接收机恢复成原来的信号。在光纤通信系统中,除光源、光纤和光俭测器外,都是电子线路。这些电子线路基本上由功率放大器、低噪声放大器、编码、整形、控制及保护等电路构成,与电通信所用的技术相同。光源、光纤和光检测器则完成电光转换、光的传输和光电转换的功能,正是这一功能实现了光纤通信系统大容量、高质量的传输特性。光纤是光纤通信系统中最重要的组成部分,它是(载有信号的)光波的传输媒介,其传输特性直接影响系统的通信质量。光纤的主要传输待性是损耗与色散。光纤的传输损耗特性用衰减系数表示.它与光波频率和光纤中的杂质浓度等因素有关。目前,在波长为 1.55 微米波段可以得到衰减系数小于0.2dB/km 的光纤。光纤的色散特性是指光纤中因不同频率、不同模式的光波的传输速度不同而使已调信号失真的现象。色散影响传输带宽,从而限制了通信容量和传输距离(无中继)。目前的光纤主要为石英光纤,其典型结构如图2 所示。内部圆柱由折射率为M的石英材料组成(称为纤芯),外部圆柱完由折射率为nz 的石英材料组成(称为包层)。当在两种介质分界面上满足全反射条件时,可将光波限制在纤芯区域经多次全反射传输到目的地。图2 光纤结构2、光纤通信的发展趋势(1)举例:光纤到家庭(FTTH)的发展FTTH 可向用户提供极丰富的带宽,所以一直被认为是理想的接入方

式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH 所需要的光纤可能是现有已敷光纤的2~3 倍。过去由于FTTH 成本高,缺少宽带视频业务和宽带内容等原因,使FTTH 还未能提到日程上来,只有少量的试验。近来,

由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH 的实用化进程。发达国家对FTTH 的看法不完全相同:美国AT&T 认为FTTH 市场较小,在0F62003 宣称:FTTH 在20-50 年后才有市场。美国运行商Verizon 和Sprint 比较积极,要在10—12 年内采用FTTH 改造网络。日本NTT 发展FTTH 最早,现在已经有近200 万用户。目前中国FTTH 处于试点阶段。FTTH 遇到的挑战:现在广泛采用的ADSL 技术提供宽带业务尚有一定优势。与FTTH 相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前

1Mbps—500kbps 影视节目的传输可满足需求。FTTH 目前大量推广受制约。FTTH 的解决方案:通常有P2P 点对点和PON 无源光网络两大类。(2)结论对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV 高清数字电视,上下行传输不对称的业务,AD8L 就难以满足。由此可以看出光通信系统的巨大发展潜力。二、光纤损耗对通信系统传输特性的影响的计算方法1、光纤损耗特性的测量方法(1)剪断测

量法在图 3 中,示出了用剪断法测量光纤损耗特性的测量原理图。图 3 剪断法原理图A.测量原理首先在被测光纤的输出端(远端)用光功率计测得光纤的输出功率(记为 E P )。然后,在不改变输入条件的条件下,在距远端L(km)处把光纤剪断,并用光功率计测得此处(称为近端)光纤的输出功率(记为N P ),则该光纤的平均损耗系数由下式绘出10 lg ( / ) N E (1)B.误差分析剪断法是一种破坏性的测量方法。影响其测量精度的主要原因如下:光源的稳定性。本测量方法对光源的最重要的要求是,光源发射的光功率必须稳定。这种稳定性要求除了包括光源发射的光功率的数值保持稳定(不变)之外,还包括光源发射光波的光斑尺寸及其在光纤入光端面的数值孔径的稳定,并要求光斑尺寸小于纤芯尺寸。否则。入射光束投射在纤芯以外,以及位于光纤数值孔径以外的那部分光功率将被损失掉.加之高次模的功率损耗等都将影响测量的精度。为此.必须对半导体光源辅加一定的稳定其输出功率的有效措施。此外,为了测量光纤损耗的频谱特性,还必须设计一个能改变发射波长的稳定光源,图 4 示出了一个典型的可变波长的光束发射装置。图 4 典型的可变波长的光束发射装置(2)光学时域反射法 A. 光学时域反射法的工作原理与测量光纤损耗特性所采用的剪断法不同,光学时域反射法(OTDR)没有破坏性,而且还可以给出光纤各

段损耗的详细情况。光学时域反射法的工作原理如图 5 所示。图 5 光学时域反射法的工作原理测量时,利用分光器(或定向招合器)把窄激光脉冲功率(如图 5 中虚线所示)

注入被测光纤的一端,该端而的反射波(如图 5 中实线所示)再经分光器注入光检测(放大) 器,并由示波器显示与反射光波成线性关系的电信号的幅度—时间特性曲线。由此,可以分析获得光纤的损耗特性参数。 B. 光学时域反射法的误差分析影响光学时域反射法测量精度的主要因素为系统的噪声、光源输出脉冲的起伏和外界干扰。由于返回到光检测(放大)器的后向散射允很微弱,噪声和干扰的影响将使示波器上观察到的后向散射光功率波形产生随机起伏,从而影响测量精度。为了提高测量精度,可以来用“取样积分平均器”,以便消除围噪声和干扰而导致的示波器输出的后向散射光功率波形的随机起伏,从而保证用该方法推各地、可重复地、且非破坏性地测量光纤的损耗特性(参数)。2、光纤损耗特性的远程测量在工程实际中,常需测量已经敷设的光缆的损耗恃性。此时、光源与光检测器相隔很远。在采用剪断法时,两次功率测量常常需要两台光功率计,仪表的差别将会带来相应的测量误差。在图 6 中,示出了一种消除仪表差别带来的相应远程测量误差的方法的测量原理示意图。在甲地,光源的输出功率为' 1 S ,耦合系数为 1 k ,光功率计 1 D 的功率(增益)系数为 1 R ;在乙地(与甲地相

距为L(km)),光源的输出功率为' 2 S ,耦合系数为 2 k ,光功率计 2 D 的功率(增益)系数为 2 R 。首先,在甲地用 1 S 作光源,在乙地用光功率计 2 D 测得的光功率12 P 为图6 远程(甲乙两地)测量光纤损耗的原理图然后,在甲地将被测光纤剪断,用光功率汁 1 D 测得的光功率11 P ,为' 11 1 1 1 l P S k e

接下来,在乙地用 2 S 作光源,在甲地用 1 D 侧很的光功率21 P 为(4)然后,在乙地将被测光纤剪断,用 2 D 得的光功率为22 P

(5)利用式(2)(3)(4)(5)进行下面的运算,可得

(6)即

2 2 1 1 2 2 1 5 l g l n / l n 2 P P

(7)三、光纤色散对通信系统的传输特性影响的计算方法色散是影响光纤传输质量的另—重要特性,它将导致光脉冲波形在传输过程中畸变——称为脉冲展宽,这种展宽将使相邻两个光脉冲发生重叠.严重时将难以区分。脉冲的展宽程度决定了光纤的信息承载容量(或称最大码速率)。在数字光纤通信系统中,为了不使脉冲展宽对信息传输质量产生较大的影响,常对光纤的色散特性提出如 F 技术要求:①光纤传递函数的3dB 带宽不得小于系统

的码速率之半;②光纤的冲击响应的均方根脉冲宽度必须小于四分之—·码元间隔。造成脉冲展宽的原因有三种:①模式色散;⑦材料色散;②波导色散。从测量的角度而言,光纤色散的测量方法大致可分为两大类:(1)时域测量法。直接测量光脉冲在光纤出光端面处的波形畸变应或传递函数。(2)频域测量法。在频域中直接测量光纤的基带领率特性。再反推出光纤的冲击响。对于多模光纤而言,从模式色散和频率色散(材料色散与波导色散的统称)是否分开单

独测量的方式出发,色散的测量方法又分为两大类:(1)全色散测量法。这种方法只能测量光纤的总色散特性参量。(2)单独测量频率色散(或模式色散)的方法。1、时域中光纤色散特性的测量(脉冲法) A.测量原理在时域中测量光纤总色散特性的最简单的方法是,用窄的光脉种注入光纤的入光

端面,并在光纤的出光端面检测发冷了展宽的输出脉冲,进

而得到对应光纤的均方根脉冲展宽.其汁算公式为

(8)式中,为光纤的时域响应函数。B.误差分析测量的精度取决于光纤的输出脉冲较输入脉冲展宽的明显程度,一般来讲,两者的均方根脉冲展宽(或半宽)的差别越大,测量的精度就越高。而两者的脉宽差别的大小主要受下面两个因素的影响。(1)光源发射脉冲的宽度。光源发射脉冲阂合到被测光纤中形成输入脉

冲.光源发射脉冲越窄,光纤输出脉冲的展宽(相对)越明显,测量精度越高。理想情况:光源发射冲击脉冲时,光纤输出脉冲的均方根展宽就是光纤的均方根脉冲展宽。(2)光纤中光脉冲传输的距离。如果被测光纤较短,则光纤输出脉冲较输入脉冲展宽的程度将很不明显,导致测量不准确。为了提高测量精度,必须尽可能增加光脉冲在被测光纤中传输的距离(或称为行程),采用下面介绍的往复脉冲法,可以达到此目的。2、多模光纤频率色散分离测量法团7 为多模光纤频率色散分离测量装置的原理框图。图7 频率色散分离测量装置的原理框图本测量装置与图 6 所示的扫

描调制法的装置的一个主要不同之处就在光路中被测光纤与光检测器之间有一个可以随意插入或取出的滤光片,这个滤光片的通带宽度比LED 的谱线宽度窄得多.但它的通带中心波长与LED 的螃值波长相同。正是由于滤光片的加入,才使本装置可以单独测量多模光纤的频率色散特性。设由正弦波调制的光源的归一化频谱函数为,它在被测光纤中激发起N 个模式删光纤中第n 个模式在波长处单位波长范围内所携带的

功率为

(9)将在光源的螃值波长处展开,并忽略高次项,可得

(10)被测光纤中传输的总功率为

(11)未描人滤光片时,光检测器检测并转换成的交变光生电流

0 1 ,

(12)在插入滤光片之后,设滤光之后光束的归一化频谱函数为

(13)将式(12)与式(13)相除,即可消掉模式色散制约项而保留频率色散制约项,即有

在光纤通信系统中,大多数光源都可以

近似认为具有高斯型的频谱函数,即有

(15)把式(15)代人式(14)中,经推导可得

(16)或者

(17)式(17)即为光纤的频率色散系数。四、光纤的非线性对通信系统传输特性的影响任何介质都是非线性的。因为它们在强电磁场作用下,都呈现Q4k 线性效应。当然,光学非线性本身极其微弱,是一种具有阐值的物理效应,其大小取决于介质的非线性系数、光场强度以及光场与介质的有效作用长度等因素。在光纤通信中,光纤的低损耗使传输距离很长,加上密集波分复用技术和掺钨光纤放大器技术的不断进步,将使相当强的光场限制在芯径很小的单模光纤中传输,非线性效应对光纤通信的影响变得不可忽视。非线性光学效应是光和物质相互作用时存在的一种物理现象。光纤作为电介质,束缚在原子或分子内部的电子在光场作用下产生非简谐运动,介质产生极化而出现电偶子,这些电偶极子将辐射相应频率的电磁波形成附加电场。感生的附加电场和施加的外电场叠加形成介质午的总电场。光与介质相互作用用电偶极子感应的极化强度矢量P 与辽的关系来表示

、受澈喇量散射和受澈布里渊散射(1)受激喇曼散射受激喇曼散射和受激布里渊散射效应的产生可用经典的波动理论和量子理论来解释,

这里从量子理论来说明其物理机理。在晶体中,原子在其平衡位置附近不停的振动,由于原子间的相互作用,每一个原子的振动要依次传递给其他原子,从而形成品体中的格波。格波的形式很复杂,它可分解成一些简谐波的更加。(2)受激布里渊散射入射光波受介质中的弹性声波场散射作用称作布里渊散射。能散射入射光波的声波由光波本身产生,从而出现受激布里渊散射现象。受激布里渊散射的经典图像可描述为,入射到介质的频率为。,的泵浦光,通过电致伸缩作用,在介质中产生压力波,导致介质的密度及折射率的变化。五、小结现在,以光纤放大器和波分复用技术共同组成的密集波分复用光纤传输系统已普及到全世界的核心网以及城域网。由光纤构筑的网络拓扑已延伸到地球的各个角落,光缆的敷设正向着光纤到家庭、到桌面的方向发展。本文主要介绍光纤通信系统以及光纤色散损耗和非线性对其的影响的计算方法。参考文献:1、光纤通信,西北工业大学出版社2、光纤通信,北京邮电大学出版社3、光纤通信系统,高等教育出版社

光纤的传输特性

光纤的传输特性 光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。损耗限制系统的传输距离,色散限制系统的传输容量。 (1)光纤的损耗特性。在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。光纤损耗是光纤传输系统中限制中继距离的主要因素之一。下表列出了3种石英光纤的典型损耗值。 (2)光纤的色散特性。色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。 光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。 ①模式色散。模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。 ②材料色散。材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。 ③波导色散。波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。

波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。这种色散通常很小,可以忽略不计。

第六章随机信号通过非线性系统习题

1. 非线性系统的传输特性为:()x y g x be ==其中b 为正的实常数。已知输入()X t 是一个均值为m x ,方 差为 2x σ 的平稳高斯噪声。试求 (1)输出随机信号Y (t )的一维概率密度函数; (2)输出随机信号Y (t )的均值和方差。 作业 2 非线性系统的传输特性为 ()y g x b x ==,b 为正的实常数。已知输入()X t 是一个均值为0方差为1 的平稳高斯噪声。试求 (1)输出随机信号()Y t 的一维概率密度函数; (2)输出随机信号()Y t 的平均功率。 作业 3.单向线性检波器的传输特性为 ||0()00b x x y g x x >?==?≤? 输入()X t 是一个均值0的平稳高斯信号,其相关函数为()x R τ。求检波器输出随机信号()Y t 的均值和方差。 4.设有非线性系统如图所示。输入随机信号()X t 为高斯白噪声,其功率谱密度0()2x N S ω=。若电路本 身热噪声忽略不计,且平方律检波器的输入阻抗为无穷大。试求输出随机信号的自相关函数和功率谱密度函数。 5. 非线性系统的传输特性为 20()00 x e x y g x x ?≥==?

作业 7.设非线性系统的传输特性为2 y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的一维概率密度函数和二维概率密度函数。 8. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的均值和自相关函数。 作业 9. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值的高斯平稳过程,求输出低频直流功率、低频总功率和低频起伏功率。 10. 一般说来,信号和噪声同时作用于非线性系统的输入端,其输出功率有三部分组成: 0()s Ω---信号自身所得到的输出平均功率 0()N Ω---噪声自身所得到的输出平均功率 0()SN Ω---信号与噪声得到的输出平均功率 对于通信系统中的非线性系统,计算输出信噪比的公式为: 0000 ()()()s N SN S N Ω??= ?Ω+Ω?? 对于通信系统中的非线性系统,计算输出信噪比的公式为: 000 0()()()s SN N S N Ω+Ω??= ?Ω?? 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()(1)sin t S t A t ξω=+,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过包络检波,输出信号的信噪比。 11. 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()sin t S t A t ω=,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过平方率检波器,输出信号的信噪比。 12. 设3 ()()()Y t X t X t =+,若()X t 是理想白噪声,求()Y t 的自相关函数。

光纤通信课后答案

第一章基本理论 1、阶跃型折射率光纤的单模传输原理是什么?答:当归一化频率V小于二阶模LP11归一化截止频率,即0<V<2.40483时,此时管线中只有一种传输模式,即单模传输。 2、管线的损耗和色散对光纤通信系统有哪些影响?答:在光纤通信系统中,光纤损耗是限制无中继通信距离的重要因素之一,在很大程度上决定着传输系统的中继距离;光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。 3、光纤中有哪几种色散?解释其含义。答:(1)模式色散:在多模光纤中存在许多传输模式,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。(2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此引起的色散称为材料色散。(3)波导色散:统一模式的相位常数随波长而变化,即群速度随波长而变化,由此引起的色散称为波导色散。 5、光纤非线性效应对光纤通信系统有什么影响?答:光纤中的非线性效应对于光纤通信系统有正反两方面的作用,一方面可引起传输信号的附加损耗,波分复用系统中信道之间的串话以及信号载波的移动等,另一方面又可以被利用来开发如放大器、调制器等新型器件。 6、单模光纤有哪几类?答:单模光纤分为四类:非色散位移单模光纤、色散位移单模光纤、截止波长位移单模光纤、非零色散位移单模光纤。 12、光缆由哪几部分组成?答:加强件、缆芯、外护层。 *、光纤优点:巨大带宽(200THz)、传输损耗小、体积小重量轻、抗电磁干扰、节约金属。*、光纤损耗:光纤对光波产生的衰减作用。 引起光纤损耗的因素:本征损耗、制造损耗、附加损耗。 *、光纤色散:由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,导致信号的畸变。 引起光纤色散的因素:光信号不是单色光、光纤对于光信号的色散作用。 色散种类:模式色散(同波长不同模式)、材料色散(折射率)、波导色散(同模式,相位常数)。 *、单模光纤:指在给定的工作波长上只传输单一基模的光纤。

第三章 单模光纤传输特性及光纤中非线性效应

第三章单模光纤的传输特性及光纤中的非线性效应 3.1.2 单模工作模特性及光功率分布 (3) 3.1.3单模光纤中LP01模的高斯近似 (4) 3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6) 3.2.1双折射概念 (6) 3.2.2 偏振模色散概念 (8) 3.2.3 单模光纤中偏振状态的演化 (9) 3.2.4 单模单偏振光纤 (10) 3.3单模光纤色散 (11) 3.3.1 色散概述 (11) 3.3.2 单模光纤的色散系数 (13) 3.4 单模光纤中的非线性效应 (15) 3.4.1 受激拉曼散射(SRS) (16) 3.4.2 受激布里渊散射(SBS) (19) 3.5 非线性折射率及相关非线性现象 (21) 3.5.1 光纤的非线性折射率 (21) 3.5.2 与非线性折射率有关的非线性现象 (22) 3.5.3 自相位调制 (23) 第三章单模光纤的传输特性及光纤中的非线性效应 3.1 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃型光纤只传播HE11模(或LP01)的光纤。

由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的采用单模光纤作为传输介质。由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。 3.1.1 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0

光纤通信系统中色散补偿技术

光纤通信系统中色散补偿技术 蒋玉兰 (浙江华达集团富阳,31 1400) 【摘要】本文叙述了光通信系统中一个重要的参数—色散,以及G65光纤通信系统的色散补偿技术。文章还详细说明了各种补偿技术原理,并比较其优缺点。最后强调说明色散补偿就是用来补偿光纤线路色散和非线性失真的技术。 1概述 光纤通信的发展方向是高速率、大容量。它从PDH 8 Mb/s, 34Mb/s,140Mb/s, 565Mb/s 发展到SDH 155Mb/s,622Mb/s,2.5Gb/s,10Gb/s。现在又进展为波分复用WDM、密集型波分复用DWDM。同时,光纤的结构从G652、G653、G654,发展到G655,以及G652C 类。光纤的技术指标很多,其中色散是其主要的技术指标之一。 色散就是指不同颜色(不同频率)的光在光纤中传输时,由于具有不同的传播速度而相互分离。单模光纤主要色散是群时延色散,即波导色散和材料色散。这些色散都会导致光 脉冲展宽,导致信号传输时的畸变和接收误码率的增大。 对于新建工程新敷设高速率或WDM光缆线路,可以采用非零色散位移光纤(NZ-DCF),ITU一T将这种光纤定名为G655。G655光纤在1 550 nm处有非零色散,但数值很小(0.1~10.0pb/nm·km)。其色散值可以是正,也可以是负。若采用色散管理技术,可以在很长距离上消除色散的积累。同时,对WDM系统的四波混频现象也可压得很低,有利于抑制非线性效应的影响。 自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的 光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。所以,对高速率长距离的系统必须要考虑色散补偿问题。 光纤色散产生的因素有:材料色散、波导色散、模式色散等等。但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。解决光信号色散引起群时延差的方法就是色散补偿技术。 2光纤色散述语 色散: 光源光谱组成中的不同波长的不同群速度在一根光纤中传输所引起的光脉冲展宽。 材料色散: 因折射率随光的波长不同呈非线性,所以产生材料色散。由单模光纤的纤芯和包层材料所引起的色散,考虑到光纤的弱导条件(△<

光纤通信 期末考试试卷(含答案)

、光在光纤中传输是利用光的( 折射 )原理。 、光纤通信系统中最常用的光检测器有:( ???光电二极管 )、( 雪崩光电二极管 )。 、要使物质能对光进行放大,必须使物质中的? 受激辐射 ?强于? 受激吸收 ?,即高能级上的粒子数多于低能级上的粒子数。物质的这一种反常态的粒子数分布,称为粒子数的反转分布。 、在多模光纤中,纤芯的半径越? 大 ?,可传输的导波模数量就越多。 、( 波导色散 )是指由光纤的光谱宽度和光纤的几何结构所引起的色散。 ?、 ??的缺陷之一:在复用信号的帧结构中,由于? 开销比特 ?的数量很少,不能提供足够的运行、管理和维护功能,因而不能满足现代通信网对监控和网管的要求。 、光接收机的主要指标有光接收机的动态范围和( 灵敏度 )。 ?、激光器能产生激光振荡的最低限度称为激光器的( 阈值条件 )。 ?、光纤的( 色散 )是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。 、误码性能是光纤数字通信系统质量的重要指标之一,产生误码的主要

原因是传输系统的脉冲抖动和( 噪声 )。 二、选择题:(每小题 分,共 ?分。 单选题, :多选题) 、 ????于()年接受了 ????概念,并重新命名为 ??。?、 ?? 、 ?? 、 ??? 、 ?? 、掺铒光纤放大器(????)的工作波长为( )??波段。?、 ?? 、 ?? ?、 ? ?、 ? 、发光二极管发出的光是非相干光,它的基本原理是( )。?、受激吸收 、自发辐射 ?、受激辐射 ?、自发吸收 、要精确控制激光器的输出功率,应从两方面着手:一是控制( ? );二是控制( ? )。 ?、微型半导体制冷器 ?、调制脉冲电流的幅度 、热敏电阻 ?、激光器的偏置电流 、光纤传输特性主要有( ?? ) ?、色散 ?、损耗 ?、模场直径 ? 、截止波长 三、简答题( 、 题各 分, 题 分,共 ?分。) 、什么是光纤色散?光纤色散主要有几种类型?其对光纤通信系统有何影响? 由于光纤中传输的信号包含不同的频率成分或各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真、脉冲展宽的物理现象称为色散。??分? 光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理 优点 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。 组成部分 光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。 按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。 光缆:点对点光纤传输系统之间的连接通过光缆。光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。 单、多模光纤传输设备的原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

光纤非线性效应及对光纤通信的影响

光线非线性效应及其对光纤通信系统的影响摘要:随着科技的飞速发展、信息时代的到来,信息的传输变得越来越重要。光纤作为众多传输介质中的一种有着其它介质不可替代的优越性。它传输容量大、传输带宽宽、抗干扰能力强。然而,由于光纤中的损耗和色散的限制,使得光纤通信的发展受到了制约。如果要获得更长的传输距离,则要加大入纤光功率,这样就引起了光纤非线性效应的产生。本文详细地讨论了几种重要的光纤非线性效应,如受激布里渊散射(SBS)、受激喇曼散射(S RS)、自相位调制(SPM)、交叉相位调制(XPM)、克尔效应(Kerr)、超短脉冲孤立子(S oliton)等现象。并对其在光纤通信中的应用进行了展望 。 关键字:光纤非线性效应、散射、阈值、光功率 光纤的非线性效应 尽管用于光纤的玻璃材料的非线性很弱,但由于纤芯小,纤芯内场强非常高,且作用距离长,使得光纤中的非线性效应会积累到足够的强度,导致对信号的严重干扰和对系统传输性能的限制。 光纤传输的衰耗和色散与光纤长度呈线性变化的,呈线性效应,而带宽系数与光纤长度呈非线性效应。非线性效应一般在WDM系统上反映较多,在SDH 系统反映较少,因为在WDM 设备系统中,由于和波器、分波器的插入损耗较大,对16 波系统一般相加在10dB 左右,对32 波系统,相加在15dB 左右,因此需采用EDF A进行放大补偿,在放大光功率的同时,也使光纤中的非线性效应大大增加,成为影响系统性能,限制中继距离的主要因数之一,同时,也增加了ASE 等噪声。

光纤中的非线性效应包括:①散射效应(受激布里渊散射SBS 和受激拉曼散射SRS 等)、②与克尔效应相关的影响,即与折射率密切相关(自相位调制SPM 、交叉相位调制XPM 、四波混频效应FWM ),其中四波混频、交叉相位调制对系统影响严重。 折射率非线性变化 SBS、SRS及FWM过程所引起的波长信道的增益或损耗与光信号的强度有关。这些非线性过程对某些信道提供增益而对另一些信道则产生功率损耗,从而使各个波长间产生串扰。 从本质上说,任何物质都是由分子、原子等基本组成单元组成。在常温下,这些基本组成单元在不断地作自发热运动和振动。光纤中的受激布里渊散射SBS和受激拉曼散射SRS 都是激光光波通过光纤介质时,被其分子振动所调制的结果,而且SB S 和SRS都具有增益特性,在一定条件下,这种增益可沿光纤积累。SBS 与SRS 的区别在于,SBS 激发的是声频支声子,SRS激发的是光频支声子。受激布里渊散射SBS 产生原理:SBS是光纤中泵浦光与声子间相互作用的结果,在使用窄谱线宽度光源的强度调制系统中,一旦信号光功率超过受激布里渊散射SBS 的门限时(SB S的门限较低,对于1550nm 的激光器,一般为7~8dBm ),将有很强的前向传输信号光转化为后向传输,随着前向传输功率的逐渐饱和,使后向散射功率急剧增加。 在WDM+EDFA 的系统中,注入到光纤中的功率大于SBS 的门限值,会产生S BS 散射。SBS 对WDM系统的影响主要是引起系统通道间的串扰及信道能量的损失。布里渊频移量在1550nm 处约为10~11GHz ,当WDM系统的信道间隔(即波长间隔)与布里渊频移量相等时,就会引起信道间的串扰,但目前的WDM 系统,

高速光纤通信在非线性色散影响下的传输特性

高速光纤通信在非线性色散影响下的传输特性 ? ? ?【摘要】在信息时代,对低成本高速网络的需求将越来越强烈。光通信技术作为一种长距离高容量的通信手段发展迅猛。宽带光通信系统因其结合了宽带和低损耗的优点而得到极大关注。光纤是一种由极细玻璃或塑料构成的光传输媒介。光纤中的光信号受数字脉冲调制或连续模拟信号流调制。这些调制信息可能是语音信号,数据信号,计算机信息或视频信号。同样的信息也可以用金属导线(如双绞线)或微波进行传输,但光纤有着显著的优点。相比其他传输媒介而言,光纤的主要优点是它能在更短的时间和更远的距离内传输更多的信息。此外,它不易受电磁辐射干扰的影响,因而能实现低噪和低误码率传输。但是,当光信号在光纤中传播时,它会受到线性和非线性效应的影响。这些线性和非线性效应是光纤的固有特性。线性衰减包括光衰减和色散。自相位调制(SPM),交叉相位调制(XPM),四波混频(FWM),受激拉曼散射(SRS)和受激布里渊散射(SBS)属于非线性衰减。光纤通信系统中,光纤的输入信号通常是被信息比特流调制过的光信号。当光纤中的线性和非线性效应与不同频率的输入信号相互作用后,对输出比特流的性能衰减变得很复杂。色散和光学非线性是影响高速光纤通信系统性能的主要因素。由于低损耗光谱段是有限的,波分复用技术可提高光谱利用效率。为了在低损耗频段内容纳更多的信道,必须减小信道间隔。随着信道间隔减小,光纤非线性效应会增加并导致系统性能急剧下降。这种性能恶化在长距离传输时更明显,因为此时需要给光纤提供更高的光功率。高功率不仅会增加XPM和FWM效应,而且会改变其他光纤非线性效应产生的条件,比如受激拉曼散射和受激布里渊散射。长距离通信要求同时满足高速率、高功率和远距离传输,这种环境下非线性效应是主要制约因素。尽管光纤非线性效应已被研究了20多年,但仍有大量的影响未被完全了解。因此有必要研究不同调制方式下光纤对线性和非线性效应的容限,并找出结果最好的调制方式。本文研究受非线性影响的高速光纤的传输性能。主要探讨了线性和非线性效应对长距离波分复用系统下不同调制方式的影响。具体可描述为:*研究超高速光纤通信系统(比如40Gb/s)的不同调制方式。*比较这些不同的调制方式并得到适合40Gb/s波分复用系统的调制方式。*研究了光纤线性和非线性效应对波分复用系统的影响。为实现上述目标,本文提出了一些可增强系统带宽效率和信号质量的高级调制方式。利用OptiSystem仿真软件,本文分析了以下三种高级调制方式下的性能:非归零调制(NRZ),载波抑制归零调制(CSRZ)和差分相移键控调制(DPSK)。我们针对低色散度(4ps/nm/km)的非零色散位移光纤进行了系列计算机仿真,比较了上述三种调制方式。波分复用系统的信道间隔为100 GHz,数据率为40Gb/s,传输距离设计为100公里至500公里。我们用三个指标评估光传输系统性能:Q因子,比特误码率和眼图模式。首先得到了NRZ调制方式下的仿真结果。当传输距离小于500公里时,4信道的Q因子是可接受的。但若信道数量为8或16,系统传输距离非常短。因为此时从仿真中得到的Q因子不到2.5,这表明最小Q值也不能达到可接受的传输距离。在CSRZ 调制情形,从仿真结果中获得的Q因子相对于NRZ要好一些。短距离4信道传输时,Q因子能达到19.973。 在500公里范围内可进行4路、8路和16路传输。但当距离变大时,达到最大距离的最小线性值条件无法满足。在DPSK调制情形,仿真表明在很远的距离上,4路或8路传输仍能达到满意的Q因子。如表4.1所示,最小Q因子为6时,可接受的传输距离将超过500公里。在相同条件下,4路和8路复用的系统的可接受传输距离超过500公里。此外,当复用路数超过16时,系统性能劣化,最小的Q因子只能覆盖不到500公里的传输距离。NRZ调制的误码率数值结果表明4路波分复用系统可达传输距离不到500公里,否则将产生极严重的传输错误。NRZ调制不能支持8路或16路复用,因为复用路数越多,非线性影响越大,如FWM和XPM,这将带来太多的错误。与Q因子类似,CSRZ调制的BER性能显示:4路和8路复用能保证的传输距

光纤传输原理

光纤,不仅可用来传输模拟信号和数字信号,而且

: 综合布线系统中使用的光纤为玻璃多模850nm波长的 其纤芯和包层由两种光学性能不同的介质构成。内部的介质对光的折射率比环绕它的介质的折射率高。由物理学可知,在两种介质的界面上,当光从折射率高的一侧射入折射率高的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。只有那些初始入射角偏小的光线才有折射发生,并且在很短距离内就被外层物质吸收干净。

4、光纤传输的特点优势及传输原理 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。

第三章 单模光纤传输特性及光纤中非线性效应培训资料

第三章单模光纤传输特性及光纤中非线 性效应

第三章 单模光纤的传输特性及光纤中的非线性效应 3.1.2 单模工作模特性及光功率分布 (3) 3.1.3单模光纤中LP 01模的高斯近似 (4) 3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (5) 3.2.1双折射概念 (5) 3.2.2 偏振模色散概念 (6) 3.2.3 单模光纤中偏振状态的演化 (7) 3.2.4 单模单偏振光纤 (8) 3.3单模光纤色散 (9) 3.3.1 色散概述 (9) 3.3.2 单模光纤的色散系数 (10) 3.4 单模光纤中的非线性效应 (12) 3.4.1 受激拉曼散射(SRS ) (12) 3.4.2 受激布里渊散射(SBS ) (14) 3.5 非线性折射率及相关非线性现象 (15) 3.5.1 光纤的非线性折射率 (15) 3.5.2 与非线性折射率有关的非线性现象 (16) 3.5.3 自相位调制 (17) 第三章 单模光纤的传输特性及光纤中的非线性效应 3.1 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃 型光纤只传播HE 11模(或LP 01)的光纤。 由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤 要小的多,因而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的 采用单模光纤作为传输介质。由于单模光纤已经成为光纤通信系统中最主要的 传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。单模光纤 的纤芯折射率分布可以是均匀的,也可以是渐变的。 3.1.1 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化 截止频率为2.405。单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及 其它高次模都被截止,这就意味着归一化工作频率应满足条件:0

光纤通信系统中的色散问题及其补偿研究

高速光纤通信的色散补偿技术 2015学年第1学期 考试科目光纤通信原理 姓名 年级2014级 专业电子科学与技术 2015年1月15日

高速光纤通信系统的色散补偿问题 ### (重庆邮电大学光电工程学院重庆400065) 摘要:本文首先对色散进行了较全面的概述,提出并分析各项光纤参数对通信系统的影响。简单的说明了色散补偿的原理,介绍了当代的几种光纤色散补偿技术,进而将这些方法进行多方面的比较分析,展望色散补偿研究前景。 关键词:光纤通信;色散补偿;脉冲展宽;比较; Optical communication system of dispersion problems and compensation research #### (The Chongqing University of Posts and Telecommunications, Chongqing 400065, China) Abstract:This paper first to dispersion is comprehensive overview of, put forward and analysis the optical fiber parameters on the influence of the communication system. A short description of the dispersion compensation principle, this paper introduces several kinds of contemporary optical fiber dispersion compensation technology, and a lot of these methods of comparative analysis, looking to the dispersion compensation research prospect. Key word:Optical Fiber Communication;Dispersion Compensation;Pulse Broadening;Compare; 0 前言 近年来,随着电信业务的发展和需求的不断增长,需要传输系统提供更高的容量,目前普遍采用波分复用技或提高传输速率来增加系统的容量。我们知道,影响光纤通信系统的两个主要问题是光纤的衰减和色散。随着掺铒光纤放大器(EDFA)的实用化,光纤损耗不再是限制系统性能提高的主要因素。在放大器实现对光纤的衰减补偿之后,色散成为限制密集波分复用(DWDM)和10G.652和G.655单模光纤中存在色散斜率,使得传输同样距离的不同波长信号光具有不同的色散量;这些最终导致通信质量劣化,严重时会使系统无法正常工作。因此需对通信链路实行色散补偿,以使各波长信号的色散量限制在系统容限内。因此人们提出了色散补偿光纤法、啁啾光栅法、预啁啾技术、色散支持传输法和频谱反转法等色散补偿方案。 1色散的基本概念 1.1 光纤色散的种类 (1)模式色散:在多模光纤中存在许多传输模式,即使在同一波长,不同模式沿光纤轴向的传输速度也不同,到达接受端所用的时间不同,而产生了模式色散。 (2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此而引起的色散称做材料色散。 材料色散主要是有光源的光谱宽度所引起。由于光纤通信中使用的光源不是单色

第三章 单模光纤传输特性及光纤中非线性效应

第三章 单模光纤的传输特性及光纤中的非线性效应 单模工作模特性及光功率分布 ............................................................. 错误!未定义书签。 单模光纤中LP 01模的高斯近似 ............................................................... 错误!未定义书签。 单模光纤的双折射(单模光纤中的偏振态传输特性) ............................. 错误!未定义书签。 双折射概念 ............................................................................................... 错误!未定义书签。 偏振模色散概念 ..................................................................................... 错误!未定义书签。 单模光纤中偏振状态的演化 ................................................................. 错误!未定义书签。 单模单偏振光纤 ..................................................................................... 错误!未定义书签。 单模光纤色散 ................................................................................................... 错误!未定义书签。 色散概述 ................................................................................................ 错误!未定义书签。 单模光纤的色散系数 ............................................................................. 错误!未定义书签。 单模光纤中的非线性效应 ............................................................................. 错误!未定义书签。 受激拉曼散射(SRS ) ........................................................................... 错误!未定义书签。 受激布里渊散射(SBS ) ....................................................................... 错误!未定义书签。 非线性折射率及相关非线性现象 ................................................................. 错误!未定义书签。 光纤的非线性折射率 ............................................................................. 错误!未定义书签。 与非线性折射率有关的非线性现象 ..................................................... 错误!未定义书签。 自相位调制............................................................................................. 错误!未定义书签。 第三章 单模光纤的传输特性及光纤中的非线性效应 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃型光纤只传播 HE 11模(或LP 01)的光纤。 由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因 而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的采用单模光纤作为传输介 质。由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握 其传输特性就显得尤为重要。单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为。单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意 味着归一化工作频率应满足条件:0

光纤传输的特点

光传输的特点 随着通信技术的不断进步,信号的传输媒介已逐渐从原来的同轴电缆转变为光纤。目前,我部门负责范围内电视信号的传输采用光纤与同轴电缆相结合的方式,近年也在有计划地对原有同轴传输系统进行光信号的传输改造和升级,努力优化完善老旧系统,保证电视信号传输的质量与稳定。 一、什么是光传输 光传输是在发送方和接收方之间以光信号形态进行传输的技术。光传输电视信号的工作过程是在光发射机、光纤和光接收机三者之间进行的。在前端机房的光发射机把输入的模拟电视信号变换成光信号,并由光纤进行信号的传输,导向光接收机进行信号的接收。光接收机把从光纤中获取的光信号转换还原成电信号。因此,光传输信号的原理就是电/光和光/电变换的全过程。

二、光传输的特点 光传输信号有以下特点: 1、通信容量大:光传输依靠传递光脉冲来进行通信,由于可见光的频率非常高,因此,光纤网络的运行速率达到了每秒2.5GB。 2、传输距离长:光传输依靠光纤作为传输介质,光纤的衰减极小,抗干扰性强、无论在光纤周围盘绕着多么复杂的强电,传输速度始终保持一致。这使得光信号可传输的距离更长。 3、保密性能好:首先光传输不同于无线电信号,它是在密封的玻璃纤维中传输的,因此不容易被截获,无线电信号很容易在空中被第三方拦截。其次,光纤通信采用特定的数字编码方式传输,不同于同轴电缆等模拟量的传送,因此也更安全。 4、适应能力强:光传输使用的光纤不怕外界强电磁场的干扰、耐腐蚀,抗扰性强。 5、体积小、重量轻、便于施工和维护:光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。 6、原材料来源丰富,潜在的价格低廉:制造光纤的最基本原材 料是二氧化硅即砂子, 其潜在价格是十分低廉的。

相关文档
最新文档