宜昌市初中数学锐角三角函数的易错题汇编及答案解析

宜昌市初中数学锐角三角函数的易错题汇编及答案解析
宜昌市初中数学锐角三角函数的易错题汇编及答案解析

宜昌市初中数学锐角三角函数的易错题汇编及答案解析

一、选择题

1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( )

A 3

B 23

C .3

D .3【答案】B

【解析】

【分析】

证明△OBE 是等边三角形,然后解直角三角形即可.

【详解】

∵四边形ABCD 是菱形,∴OD =OB ,CD =BC .

∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB .

∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°.

∵∠DEB =90°,∴BD =

23sin603

DE =?. 故选B .

【点睛】

本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75

B .15或30

C .75或15

D .15或45

【答案】C

【解析】

【分析】

根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.

【详解】

利用垂径定理可知:32AE .

sin ∠AOD=32,∴∠AOD=60°; sin ∠AOE=22

,∴∠AOE=45°; ∴∠BAC=75°.

当两弦共弧的时候就是15°.

故选:C .

【点睛】

此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.

3.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ?沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )

A .1113

B .1315

C .1517

D .1719

【答案】C

【解析】

【分析】

根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP= OF 可得出△OEF ≌AOBP(AAS)根据全等三角形的性质可得出0E=OB 、EF=BP ,设EF=x ,则BP=x 、DF=4-x 、BF=PC=3-x ,进而可得出AF=1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.

【详解】

解:∵矩形纸片ABCD ,点P 在BC 边上,将CDP ?沿DP 折叠,点C 落在点E 处, 根据折叠性质,可得:△DCP ≌△DEP ,

∴.DC=DE=4, CP= EP ,

在△OEF 和△OBP 中

90 EOF BOP B E OP OF ∠=∠??∠=∠

=???=?

∴△OEF ≌△OBP(AAS)

∴ОE=OB , EF= ВР.

设EF=x,则BP=x ,DF= DE-EF=4-X ,

又∵ BF=OB+OF=OE+ OP=PE=PC, РС=ВC-BP=3-x,

∴AF=AB-BF=1+x.

在Rt △DAF 中,AF 2+AD 2= DF 2,即(1+x) 2+32= (4-x)2

解得: x=35

∴DF=4-x=175

∴cos ∠ADF=

1517AD DF = 故选: C.

【点睛】

本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x ,求出AF 的长度是解题的关键.

4.如图,点E 从点A 出发沿AB 方向运动,点G 从点B 出发沿BC 方向运动,同时出发且速度相同,DE GF

AB =<(DE 长度不变,F 在G 上方,D 在E 左边),当点D 到达点B 时,点E 停止运动.在整个运动过程中,图中阴影部分面积的大小变化情况是( )

A .一直减小

B .一直不变

C .先减小后增大

D .先增大后减小

【答案】B

【解析】

【分析】

连接GE ,过点E 作EM ⊥BC 于M ,过点G 作GN ⊥AB 于N ,设AE=BG=x ,然后利用锐角三角函数求出GN 和EM ,再根据S 阴影=S △GDE +S △EGF 即可求出结论.

解:连接GE,过点E作EM⊥BC于M,过点G作GN⊥AB于N

设AE=BG=x,则BE=AB-AE=AB-x

∴GN=BG·sinB=x·sinB,EM=BE·sinB=(AB-x)·sinB

∴S阴影=S△GDE+S△EGF

=1

2

DE·GN+

1

2

GF·EM

=1

2

DE·(x·sinB)+

1

2

DE·[(AB-x)·sinB]

=1

2

DE·[x·sinB+(AB-x)·sinB]

=1

2 DE·AB·sinB

∵DE、AB和∠B都为定值

∴S阴影也为定值

故选B.

【点睛】

此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.

5.直角三角形纸片的两直角边长分别为6,8,现将ABC

V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE

∠的值是()

A.24

7

B

7

C.

7

24

D.

1

3

【答案】C

【解析】

试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,

解得x=25

4

,故CE=8-

25

4

=

7

4

∴tan∠CBE=

7

24 CE

CB

=.

考点:锐角三角函数.

6.如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan ∠DEC 的值是( )

A .1

B .12

C .32

D .33

【答案】C

【解析】

【分析】 先根据题意过点C 作CF ⊥BD 与点F 可求得△AEB ≌△CFD (AAS ),得到AE =CF =1,EF =323-33

【详解】

过点C 作CF ⊥BD 与点F .

∵∠BAE =30°,

∴∠DBC =30°,

∵BC =2,

∴CF =1,BF 3 ,

易证△AEB ≌△CFD (AAS )

∴AE =CF =1,

∵∠BAE =∠DBC =30°,

∴BE =33 AE =33

, ∴EF =BF ﹣BE 3 3233, 在Rt △CFE 中,

tan ∠DEC =323CF

EF ==, 故选C .

【点睛】

此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等

7.如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于( )

A.31)m B.31)m

C.31)m D.31)m

【答案】A

【解析】

设MN=xm,

在Rt△BMN中,∵∠MBN=45°,

∴BN=MN=x,

在Rt△AMN中,tan∠MAN=MN AN

∴tan30°=

16x

x

+

=3√3,

解得:3,

则建筑物MN的高度等于3 +1)m;

故选A.

点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.

8.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与

函数

1

y

x

=-、

2

y

x

=的图象交于B、A两点,则∠OAB大小的变化趋势为()

A .逐渐变小

B .逐渐变大

C .时大时小

D .保持不变

【答案】D

【解析】

【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a

-),A 为(b ,2b ),得到OE=-a ,EB=1a

-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=

22为定值,即可解决问题. 【详解】

解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,

则△BEO ∽△OFA , ∴BE OE OF AF

=, 设点B 为(a ,1a -

),A 为(b ,2b ), 则OE=-a ,EB=1a

-,OF=b ,AF=2b , 可代入比例式求得222a b =,即22

2a b =, 根据勾股定理可得:22221OE EB a a +=+2222

4OF AF b b +=+ ∴tan ∠OAB=2222222212244b a OB a b OA b b b b

++==++222214()24b b b b ++22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.

故选D

【点睛】

该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.

9.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )

A .1000sin α米

B .1000tan α米

C .1000tan α米

D .1000sin α

米 【答案】C

【解析】

【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB

α=

,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α=

, ∴1000tan tan AC AB αα

==米. 故选:C .

【点睛】

本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.

10.如图,ABC ?是一张顶角是120?的三角形纸片,,6AB AC BC ==现将ABC ?折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )

A .1

B .2

C .2

D .3

【答案】A

【解析】

【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】

解:作AH ⊥BC 于H ,

∵AB=AC ,AH ⊥BC ,

BH=12

BC=3, ∵∠BAC=120°,AB=AC ,

∴∠B=30°,

∴AB=30BH cos ?

3 由翻折变换的性质可知,3

∴DE=BD ?tan30°=1, 故选:A .

【点睛】 此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

11.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )

A .45

B .35

C .43

D .34

【答案】B

【解析】

【分析】

根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.

【详解】

解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,

由勾股定理,得AB=22AC BC +=5

cosA=

AC AB =35

故选:B .

【点睛】 本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

12.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )

A .asinα+asinβ

B .acosα+acosβ

C .atanα+atanβ

D .tan tan a a αβ+ 【答案】C

【解析】

【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.

【详解】

在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=

BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,

∴CD =BC+BD =atanα+atanβ,

故选C .

【点睛】

本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.

13.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于

x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )

A .(2018+6723,0)

B .(2019+6733,0)

C .(40352+6723,32

) D .(2020+6743,0) 【答案】B

【解析】

【分析】

根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.

【详解】

由题意知,111C A =,11160C A B ?∠=,

则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B ===,

结合图形可知,三角形在x 轴上的位置每三次为一个循环,

Q 20193673÷=,

∴2019673(123)20196733OC =++=+,

∴2019C (20196733,0)+,

故选B .

【点睛】

考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.

14.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60?刻度线,则假山的高度CD 为( )

A .()23 1.6m +

B .()22 1.6m +

C .()43 1.6m +

D .23m

【答案】A

【解析】 【分析】 根据已知得出AK=BD=6m ,再利用tan30°= 6

CK CK AK =,进而得出CD 的长. 【详解】

解:如图,过点A 作AK ⊥CD 于点K

∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,

∴DB=AK ,AB=KD=1.6米,∠CAK=30°,

∴tan30°=6

CK CK AK =, 解得:3即3(3+1.6)m . 故选:A .

【点睛】

本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.

15.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( )

A .8sin 17

A =

B .cosA=815

C .tan A =817

D .cot A=815 【答案】D

【解析】

【分析】 根据锐角三角函数的定义进行作答.

【详解】 由勾股定理知,AB=17;A.15sin 17BC A AB =

= ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC =

=,所以,C 错误;D.cot AC A BC ==815

,所以选D. 【点睛】 本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键.

16.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交

于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠

OCD=4

3

,⑤S△DOC=S四

边形EOFB

中,正确的有()

A.1个B.2个C.3个D.4个

【答案】D

【解析】

分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.

详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.

∵AE=BF=1,∴BE=CF=4﹣1=3.

在△EBC和△FCD中,

BC CD

B DCF

BE CF

=

?

?

∠=∠

?

?=

?

∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,

∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;

连接DE,如图所示,若OC=OE.

∵DF⊥EC,∴CD=DE.

∵CD=AD<DE(矛盾),故②错误;

∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠

DFC=DC

FC

=

4

3

,故④正确;

∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;

故正确的有:①③④⑤.

故选D.

点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.

17.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )

A .183π-

B .183π

C .32316π

D .1839π-

【答案】C

【解析】

【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.

【详解】

解:∵四边形ABCD 是菱形,∠DAB=60°,

∴AD=AB=8,∠ADC=180°-60°=120°,

∵DF 是菱形的高,

∴DF ⊥AB ,

∴DF=AD ?sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2

120(43)84332316ππ??=. 故选:C.

【点睛】

本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.

18.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23?BC

的长为( )

A .3π

B .23π

C .33π

D .233

π 【答案】B

【解析】

【分析】

根据垂径定理得到3CE DE ==

,??BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.

【详解】

如图:连接OD ,

∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23,

∴3CE DE ==

,??BC BD = ,∠A=30°, ∴∠DOE=60°,

∴OD=2sin 60

DE =o , ∴?BC

的长=?BD 的长=60221803ππ?=, 故选:B.

【点睛】

此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.

19.如图,已知⊙O 上三点A ,B ,C ,半径OC=1,∠ABC=30°,切线PA 交OC 延长线于点P ,则PA 的长为( )

A.2 B.3C.2D.1 2

【答案】B

【解析】

【分析】

连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】

连接OA,

∵∠ABC=30°,

∴∠AOC=60°,

∵PA是圆的切线,

∴∠PAO=90°,

∵tan∠AOC =PA OA

,

∴PA= tan60°×1=3.

故选B.

【点睛】

本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.

20.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()

A .2244x y +=

B .2244x y -=

C .2288x y -=

D .2288x y

+= 【答案】A

【解析】

【分析】

由直角三角形斜边上的中线性质得出CD =

12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE

=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y

=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.

【详解】

解:如图所示:

∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,

∴CD =

12

AB =AD =4, ∴∠A =∠ACD ,

∵EF 垂直平分CD , ∴CE =12

CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =

GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,

∴∠ACD =∠FCE ,

∴△CEG ∽△FEC , ∴GE CE =CE FE

, ∴y =2FE

, ∴y 2=

24FE , ∴24y

=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4, ∴24y

=x 2﹣4, ∴24y

+4=x 2,

故选:A.

【点睛】

本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.

初中数学易错题型大全共20页文档

初中数学易错题 一、选择题 1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是() A、互为相反数 B、绝对值相等 C、是符号不同的数 D、都是负数 2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是() A、2a B、2b b C、2a-2b D、2a+b 3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度() A、2千米/小时 B、3千米/小时 C、6千米/小时 D、不能确定 4、方程2x+3y=20的正整数解有() A、1个 B、3个 C、4个 D、无数个 5、下列说法错误的是() A、两点确定一条直线 B、线段是直线的一部分 C、一条直线不是平角 D、把线段向两边延长即是直线 6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是 ( ) A、当m≠3时,有一个交点 B、1 m时,有两个交点 ≠ ± C、当1 m时,有一个交点 D、不论m为何值,均无交点 = ± 7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则

两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积. 【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15. 【解析】 【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式; (2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标; (3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积. 【详解】(1)设抛物线顶点式y=a(x+1)2+4, 将B(2,﹣5)代入得:a=﹣1, ∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3; (2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3), 令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1, 即抛物线与x轴的交点为:(﹣3,0),(1,0); (3)设抛物线与x轴的交点为M、N(M在N的左侧), 由(2)知:M(﹣3,0),N(1,0), 当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5), ∴S△OA′B′=1 2 ×(2+5)×9﹣ 1 2 ×2×4﹣ 1 2 ×5×5=15. 【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的

(易错题精选)初中数学代数式难题汇编及答案

(易错题精选)初中数学代数式难题汇编及答案 一、选择题 1.下列说法正确的是() A .若 A 、 B 表示两个不同的整式,则 A B 一定是分式 B .()2442a a a ÷= C .若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则253 2m n -= 【答案】C 【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】 A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称 A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误. C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253 332544 m n m n -=÷=÷=,故此选项错误. 故选:C 【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键. 2.若2m =5,4n =3,则43n ﹣m 的值是( ) A .910 B .2725 C .2 D .4 【答案】B 【解析】 【分析】 根据幂的乘方和同底数幂除法的运算法则求解. 【详解】 ∵2m =5,4n =3,

∴43n﹣m= 3 4 4 n m = 3 2 (4) (2) n m = 3 2 3 5 = 27 25 故选B. 【点睛】 本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键. 3.下列各运算中,计算正确的是( ) A.2a?3a=6a B.(3a2)3=27a6 C.a4÷a2=2a D.(a+b)2=a2+ab+b2 【答案】B 【解析】 试题解析:A、2a?3a=6a2,故此选项错误; B、(3a2)3=27a6,正确; C、a4÷a2=a2,故此选项错误; D、(a+b)2=a2+2ab+b2,故此选项错误; 故选B. 【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键. 4.下列计算正确的是() A.a2+a3=a5B.a2?a3=a6C.(a2)3=a6D.(ab)2=ab2 【答案】C 【解析】 试题解析:A.a2与a3不是同类项,故A错误; B.原式=a5,故B错误; D.原式=a2b2,故D错误; 故选C. 考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 5.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是(). A.1 B.4 C.x6D.8x3 【答案】B 【解析】 【分析】 根据完全平方式的定义,逐一判断各个选项,即可得到答案. 【详解】 ∵4x4+ 4x2+1=(2x+1)2, ∴A=1,不符合题意, ∵4x4+ 4x2+ 4不是完全平方式,

人教版初中数学因式分解易错题汇编及答案

人教版初中数学因式分解易错题汇编及答案 一、选择题 1.若a b +=1ab =,则33a b ab -的值为( ) A .± B . C .± D .【答案】C 【解析】 【分析】 将原式进行变形,3322 ()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的 变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】 解:∵3322 ()()()a b ab ab a b ab a b a b -=-=+- ∴33)a b b ab a =-- 又∵22()()4a b a b ab -=+- ∴22()414a b -=-?= ∴2a b -=± ∴33(2)a b ab =±=±- 故选:C . 【点睛】 本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键. 2.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++ C .()()2111x x x -=+- D .()ax bx c x a b c ++=+ 【答案】C 【解析】 【分析】 根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【详解】 解:A 、是整式的乘法运算,故选项错误; B 、右边不是积的形式,故选项错误; C 、x 2-1=(x+1)(x-1),正确; D 、等式不成立,故选项错误. 故选:C . 【点睛】 熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.

最新整理中考数学易错题集锦及答案

初中数学选择、填空、简答题 易错题集锦及答案 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( B ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( C ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2 -(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2 ,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

中考数学易错题精选-锐角三角函数练习题及答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3AB DE ADE = ==≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC. (1)求证:∠AEC=90°; (2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由; (3)若DC=2,求DH的长. 【答案】(1)证明见解析; (2)四边形AOCD为菱形; (3)DH=2. 【解析】 试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得 ,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出 ∠AEC=90°; (2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形); (3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由 DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长. 试题解析:(1)连接OC,

推荐--初中数学经典易错题集锦及答案

数学错题集

一、选择题 1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是-----------------------------() A、互为相反数 B、绝对值相等 C、是符号不同的数 D、都是负数 2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------() A、2a B、2b C、2a-2b D、2a+b 3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------() A、2千米/小时 B、3千米/小时 C、6千米/小时 D、不能确定 4、方程2x+3y=20的正整数解有---------------------------------------------------------() A、1个 B、3个 C、4个 D、无数个 5、下列说法错误的是-------------------------------------------------------------------()a b

A. 两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( ) A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是---------( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

最新初中数学数据分析易错题汇编

最新初中数学数据分析易错题汇编 一、选择题 1.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211 则下列叙述正确的是() A.这些运动员成绩的众数是 5 B.这些运动员成绩的中位数是 2.30 C.这些运动员的平均成绩是 2.25 D.这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】 根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】 由表格中数据可得: A、这些运动员成绩的众数是2.35,错误; B、这些运动员成绩的中位数是2.30,正确; C、这些运动员的平均成绩是 2.30,错误; D、这些运动员成绩的方差不是0.0725,错误; 故选B. 【点睛】 考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 2.某射击运动员在训练中射击了10次,成绩如图所示:

下列结论不正确的是() A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2 【答案】D 【解析】 【分析】 首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差. 【详解】 根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得 众数是8,中位数是8,平均数是102+92+83+72+61 =8.2 10 ????? 方差是 22222 2(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.56 10 ?-+?-+?-+?-+- = 故选D 【点睛】 本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式. 3.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不 变,则x y 等于() A.3 4 a b B. 4 3 a b C. 3 4 b a D. 4 3 b a 【答案】D 【解析】 【分析】 根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】 解:∵甲、乙两种糖果,原价分别为每千克a元和b元, 两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合, ∴两种糖果的平均价格为:ax by x y + + , ∵甲种糖果单价下降15%,乙种糖果单价上涨20%, ∴两种糖果的平均价格为: 1520 (1)(1) 100100 a x b y x y -?++ + , ∵按原比例混合的糖果单价恰好不变,

推荐--初中数学易错题(含参考标准答案)

初中数学 易错题专题 一、选择题(本卷带*号的题目可以不做) 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千M/小时,逆流航行时(m-6)千M/小时,则水流速度( ) A 、2千M/小时 B 、3千M/小时 C 、6千M/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线不是平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,图像有一个交点 B 、1±≠m 时,肯定有两个交点 C 、当1±=m 时,只有一个交点 D 、图像可能与x 轴没有交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

A 、-1 B 、1 C 、0 D 、不存在 10、2 1的倒数的相反数是( ) A 、-2 B 、2 C 、-21 D 、2 1 11、若|x|=x ,则-x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0

初中数学易错题分类大全

初中数学易错题分类汇编 一、数与式 例题:A )2,(B ,(C )2±,(D ) 例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )1 12112a a a a + +=--,(D )22 a x a bx b =. 二、方程与不等式 ⑴字母系数 例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根. 例题:不等式组2,.x x a >-??>? 的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-. ⑵判别式 例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214 x x x x <+-,求实数的范围. ⑶解的定义 例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a b b a +=____________. ⑷增根 例题:m 为何值时,22111 x m x x x x -- =+--无实数解. ⑸应用背景

例题:某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A、C 两地间距离为2千米,求A、B两地间的距离. ⑹失根 例题:解方程(1)1 -=-. x x x 三、函数 ⑴自变量 例题:函数y=中,自变量x的取值范围是_______________. ⑵字母系数 例题:若二次函数22 y mx x m m =-+-的图像过原点,则m=______________. 32 ⑶函数图像 例题:如果一次函数y kx b =+的自变量的取值范围是26 -≤≤,相应的函数值 x 的范围是119 y -≤≤,求此函数解析式. ⑷应用背景 例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元. 四、直线型 ⑴指代不明 ________.⑵相似三角形对应性问题 例题:在ABC BC=,D为AC上一点,:2:3 DC AC=, AC=18 △中,9 AB=,12 在AB上取点E,得到ADE △,若两个三角形相似,求DE的长. ⑶等腰三角形底边问题

中考数学易错题专题训练及答案

中考数学易错题专题训练 班级: 姓名: 一、选择题。 1、在实数123.0,330tan ,60cos ,7 22 , 2121121112.0,,14.3,64,3,80032---- π中,无理数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、算式2222 2222+++可化为( ) A 、42 B 、28 C 、82 D 、16 2 3、关于x 的一元二次方程(a -5)x 2 -4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 4、如果关于x 的一元二次方程0962 =+-x kx 有两个不相等的实数根,那么k 的取值范围是( ) A 、1k 5、不等式2)2(2-≤-x x 的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组2x 3 x +12x 2>-??≥-? —的最小整数解是( ) A 、-1 B 、0 C 、2 D 、3 7、如图,反比例函数y=在第二象限的图象上有一点A ,过点A 作AB ⊥x 轴于B ,且S △AOB =2,则k 的值为( ) A.﹣4 C.﹣2 8、如图,在函数中x y 1 = 的图象上有三点A 、B 、C ,过这三点分别向x 轴、y 轴作垂线,过每一点所作两条垂线与x 轴、y 轴围成的矩形的面积分别为S 1、S 2、S 3,则( ) A 、S 1>S 2>S 3 B 、S 1<S 2<S 3 C 、S 1<S 3<S 2 D 、S 1=S 2=S 3 9、方程,可以化成( ) A. B.

最新初一年级数学易错题带答案

初一年级数学易错题带答案 1.已知数轴上的A 点到原点的距离为2,那么数轴上到A 点距离是3的点表示的数为 2.一个数的立方等于它本身,这个数是 . 3.用代数式表示:每间上衣a 元,涨价10%后再降价10%以后的售价 ( 变低,变高,不变 ) 4.一艘轮船从A 港到B 港的速度为a,从B 港到A 港的速度为b,则此轮船全程的平均速度为 . 5. 青山镇水泥厂以每年产量增长10%的速度发展,如果第一年的产量为a,则第三年的产量为 . 6.已知a b =43,x y =1 2 ,则代数式374by ax ay by +-的值为 7.若|x|= -x,且x=1 x ,则x= 8.若||x|-1|+|y+2|=0,则x y = . 9.已知a+b+c=0,abc ≠0,则x=||a a +||b b +||c c +|| abc abc ,根据a,b,c 不同取值,x 的值为 . 10.如果a+b<0,且b>0,那么a,b,-a,-b 的大小关系为 . 11.已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)1 2+-y ab 与3 4ab 是同类项.求代数式: )93()632(2222y xy x m y xy x +--+-的值 . 12.化简-{-[-(+2.4)]}= ;-{+[-(-2.4)]}= 13.如果|a-3|-3+a=0,则a 的取值范围是 14.已知-2

初中数学三角形易错题汇编及答案

初中数学三角形易错题汇编及答案 一、选择题 1.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于() A.0和1之间B.1和2之间C.2和3之间D.3和4之间 【答案】B 【解析】 【分析】 先根据点A,B的坐标求出OA,OB的长度,再根据勾股定理求出AB的长,即可得出OC 的长,再比较无理数的大小确定点C的横坐标介于哪个区间. 【详解】 ∵点A,B的坐标分别为(﹣2,0),(0,3), ∴OA=2,OB=3, 在Rt△AOB中,由勾股定理得:AB22 = 2+313 ∴AC=AB13, ∴OC132, ∴点C132,0), <<, ∵3134 <<, ∴11322 即点C的横坐标介于1和2之间, 故选:B. 【点睛】 本题考查了弧与x轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键. 2.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为() A.16cm B.21cm 或 27cm C.21cm D.27cm 【答案】D 【解析】 【分析】 分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.

【详解】 解:当5是腰时,则5+5<11,不能组成三角形,应舍去; 当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm. 故选D. 【点睛】 本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键. 3.下列命题是假命题的是() A.三角形的外心到三角形的三个顶点的距离相等 B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16 C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限 D.若关于x的一元一次不等式组 213 x m x -≤ ? ? +> ? 无解,则m的取值范围是1 m£ 【答案】B 【解析】 【分析】 利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项. 【详解】 A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题; B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题; C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题; D. 若关于x的一元一次不等式组 213 x m x -≤ ? ? +> ? 无解,则m的取值范围是1 m£,正确,是真 命题; 故答案为:B 【点睛】 本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组. 4.如图,在ABC ?中,AB的垂直平分线交BC于D,AC的中垂线交BC于E, 20 DAE ∠=o,则BAC ∠的度数为( )

中考数学易错题专题训练及答案

A 、 S > S > S B S V S^V S? C 、 S V S 3V S> D S = S2= S3 3x 1 4一 工 9方程 -, 可以化成( ) 0.5 0.4 30x 14-10x “ 30x 14 - A. - -10 5 4 5 4 中考数学易错题专题训练 、选择题。 1、在实数.8,3 = 3 —64,3.14,—「0.2121121112 ,-2,cos600,tan30° —3,0.123 中,无理 7 数有( ) A 、 3个 B 、4个 C 、5个 D 、6个 2 、 算式 小2 小2 小2 2 2 2 小2 -2可化为( ) A 、 24 B 、82 C 、28 D 、216 3、关于x 的一元二次方程(a — 5)x 2— 4x — 1 = 0有实数根,则a 满足( ) A. a > 1 B . a > 1 且 a ^5 C . a > 1 且 a *5 D . a *5 4、 如果关于x 的一元二次方程kx 2 -6x ?9=0有两个不相等的实数根,那么 k 的取值 范围是( ) A 、 k 1 B 、 k = 0 C 、 k : 1 且 k = 0 D 、 k 1 5、 不等式2(x -2)乞x - 2的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组 2x _3 的最小整数解是( ) x =— K2x —2 班级: 姓名: _____________ A 、一 1 B 、0 C 、2 7、如图,反比例函数 y=在第二象限的图象上有一点 X 轴于B,且 S A AO =2 , 则k 的值为( ) A. - 4 B.2 C. - 2 D.4 A ,过点A 作A B 丄x 1 &如图,在函数中y 的图象上有三点 A 、B 、C,过这三点分 x 别向x 轴、y 轴作垂线,过每一点所作两条垂线与 x 轴、y 轴围 成的矩形的面积分别为 S 、S 、6,则( )

初中数学概率易错题汇编及答案

初中数学概率易错题汇编及答案 一、选择题 1.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出 的点数是偶数的频率为m n ,则下列说法正确的是 ( ) A.m n 一定等于 1 2 B. m n 一定不等于 1 2 C.m n 一定大于 1 2 D.投掷的次数很多时, m n 稳定在 1 2 附近 【答案】D 【解析】 某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是 偶数的频率为m n , 则投掷的次数很多时m n 稳定在12附近, 故选D. 点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可. 2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是() A.1 2 B. 1 3 C. 1 6 D. 1 9 【答案】B 【解析】 【分析】 先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】 画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示) 共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3, 所以小斌和小宇两名同学选到同一课程的概率=31 93 , 故选B.

【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 3.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是() A.5 9 B. 1 3 C. 1 9 D. 3 8 【答案】B 【解析】 分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1, ∴从布袋里任意摸出一个球是黄球的概率是 31 = 5+3+13 . 故选:B. 点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比. 4.下列事件中,是必然事件的是( ) A.任意掷一枚质地均匀的骰子,掷出的点数是奇数 B.操场上小明抛出的篮球会下落 C.车辆随机到达一个路口,刚好遇到红灯 D.明天气温高达30C?,一定能见到明媚的阳光 【答案】B 【解析】 【分析】 根据必然事件的概念作出判断即可解答. 【详解】 解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误; B、操场上小明抛出的篮球会下落是必然事件,故B正确; C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误; D、明天气温高达30C?,一定能见到明媚的阳光是随机事件,故D错误; 故选:B. 【点睛】 本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键. 5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相

初中数学七年级下册易错题汇总情况大全

初中数学七年级下册易错题 相交线与平行线 1.未正确理解垂线的定义 1.下列判断错误的是(). A.一条线段有无数条垂线; B.过线段AB中点有且只有一条直线与线段AB垂直; C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直; D.若两条直线相交,则它们互相垂直. 错解:A或B或C. 解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直. 正解:D. 2.未正确理解垂线段、点到直线的距离 2.下列判断正确的是(). A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离; B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离; C.画出已知直线外一点到已知直线的距离; D.连接直线外一点与直线上各点的所有线段中垂线段最短. 错解:A或B或C. 解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义. A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅

有垂线段,没有指明这条垂线段的长度是错误的. B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的; C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度. 正解:D. 3.未准确辨认同位角、错角、同旁角 3.如图所示,图中共有错角(). A.2组; B.3组; C.4组; D.5组. 错解:A. 解析:图中的错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。 正解:B. 4.对平行线的概念、平行公理理解有误 4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有(). A.1个; B.2个; C.3个; D.4个. 错解:C或D.

中考数学易错题集锦汇总及答案

中考数学易错题集锦汇总及答案 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 1.如图,能判定 AB ∥CD 的条件是( ) A .∠1=∠2 B .∠1+∠2= 180° C .∠3=∠4 D .∠3+∠1=180° 2.下列各式中从左到右的变形,是因式分解的是( ) A .(a+3)(a-3)=a 2-9; B .x 2+x-5=(x-2)(x+3)+1; C .a 2b+ab 2=ab (a+b ) D .x 2+1=x (x+ x 1) 3.用科学记数方法表示0000907.0,得( ) A .4 1007.9-? B .5 1007.9-? C .6 107.90-? D .7 107.90-? 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( ) A .2 2 2 )(b a b a -=- B .6 2 34)2(a a =- C .5232a a a =+ D .1)1(--=--a a 5.方程 x 3=2 2-x 的解的情况是( ) A .2=x B .6=x C .6-=x D .无解 6.已知2 35x x ++的值为 3,则代数式2 391x x +-的值为( ) A .-9 B .-7 C .0 D .3 7.下列事件中,届于不确定事件的是( ) A .2008年奥运会在北京举行

B.太阳从西边升起 C.在1,2,3,4中任取一个教比 5大 D.打开数学书就翻到第10页 8.下列长度的三条线段能组成三角形的是() A.5cm,3cm,1cm B.6cm,4cm,2cm C. 8cm, 5cm, 3cm D. 9cm,6cm,4cm 9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是() A.B.C.D. 10.下列说法中,正确的是() A.一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点 B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖 C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为() A.1.5万元 B.5万元 C.10万元 D.3.47万元 12.三角形的一个外角小于与它相邻的内角,这个三角形是() A.直角三角形B.锐角三角形 C.钝角三角形D.属于哪一类不能确定 13.下列图形中,由已知图形通过平移变换得到的是()

相关文档
最新文档