激光熔覆技术

合集下载

浅谈激光表面熔覆技术

浅谈激光表面熔覆技术
在航空航天领域激光表面熔覆技术可用于飞机起落架、发动机叶片等关键部件的表面修复和 强化提高其安全性和可靠性。
激光表面熔覆技术用于制备高强度、耐磨、耐腐蚀的金属材料。 通过激光熔覆技术制备出具有优异性能的非金属材料如陶瓷、玻璃等。 激光表面熔覆技术应用于制备复合材料实现多种材料的结合提高材料的综合性能。 激光表面熔覆技术制备的材料在航空航天、汽车、能源等领域得到广泛应用。
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
激光表面熔覆技 术是一种利用高 能激光束将合金 粉末熔覆在基材 表面形成具有优 异性能的涂层的 工艺方法。
激光表面熔覆技术 通过快速熔化和凝 固过程使合金粉末 与基材表面形成冶 金结合具有较高的 结合强度和耐腐蚀 性。
激光表面熔覆技术 可以应用于各种金 属材料和复合材料 的表面改性提高材 料的耐磨性、耐腐 蚀性和高温性能等 方面的性能。
汇报人:
在汽车制造领域激光表面熔覆技术可以用于发动机缸体、曲轴等关键部件的表面强化提高其 耐磨性和耐久性。
激光表面熔覆技术在金属表面修复方面的应用能够快速、高效地修复损坏的零件提高其使用 寿命。
通过激光表面熔覆技术可以在零件表面添加耐磨、耐腐蚀等性能提高其表面质量延长使用寿 命。
在汽车制造领域激光表面熔覆技术可用于发动机缸体、曲轴等关键零件的表面强化提高其耐 磨性和耐久性。
促进工业创新:激光表面熔覆技术的出现为工业制造提供了新的解决方案有助于推动工业创 新。
提升产品质量:激光表面熔覆技术能够实现高精度、高质量的表面熔覆高能源利用效率促进能源转 型
推动相关产业的发展创造更多 就业机会
提升社会经济效益促进社会可 持续发展
送粉速度:控制熔覆层的填充 程度和高度

激光熔覆技术的发展现状

激光熔覆技术的发展现状

激光熔覆技术的发展现状引言
1.1 什么是激光熔覆技术
1.2 激光熔覆技术的应用领域
激光熔覆技术的原理
2.1 激光熔覆的基本过程
2.2 激光熔覆的物理原理
2.3 激光熔覆设备及系统
激光熔覆技术的发展历程
3.1 初期发展阶段
3.2 技术改进与应用拓展
3.3 现代激光熔覆技术的进展
激光熔覆技术的优势与局限性
4.1 优势
4.2 局限性
激光熔覆技术的应用案例
5.1 汽车制造业中的应用
5.1.1 引擎缸体熔覆修复
5.1.2 汽车零部件的功能修复
5.2 能源行业中的应用
5.2.1 火力发电设备的熔覆保护
5.2.2 涡轮机叶片的修复与再生利用
5.3 航空航天领域中的应用
5.3.1 航空发动机叶片的修复
5.3.2 航天器表面覆盖材料的制备
激光熔覆技术的挑战与展望
6.1 材料选择的挑战
6.2 激光熔覆技术在大规模应用中面临的问题
6.3 未来发展方向与展望
结论
激光熔覆技术作为一种高效、精密的表面修复和涂层制备方法,已经在多个领域得到了广泛应用。

随着科技的进步和技术的不断创新,激光熔覆技术在材料修复、零部件制备等方面的应用前景更加广阔。

然而,该技术在材料选择、大规模应用等方面仍然面临一些挑战和问题,需要进一步研究和改进。

展望未来,随着技术的成熟和应用的推广,激光熔覆技术有望在更多领域发挥其重要作用。

浅谈激光熔覆技术研究进展

浅谈激光熔覆技术研究进展

浅谈激光熔覆技术研究进展一、本文概述激光熔覆技术,作为一种先进的表面工程技术,自其诞生以来,就因其在材料改性、表面强化和零件修复等方面的独特优势,受到了广泛的关注和研究。

该技术利用高能激光束将涂层材料快速熔化并与基材形成冶金结合,从而实现对基材表面的强化和改性。

随着科学技术的不断发展,激光熔覆技术在基础理论、材料体系、工艺技术和应用领域等方面都取得了显著的进展。

本文旨在全面概述激光熔覆技术的研究进展,通过梳理国内外相关文献和研究成果,分析激光熔覆技术的最新发展动态和趋势。

文章将首先介绍激光熔覆技术的基本原理和特点,然后重点讨论激光熔覆材料的研究现状,包括涂层材料的种类、性能要求及制备方法。

接着,文章将探讨激光熔覆工艺技术的优化与创新,包括激光参数、送粉方式、预热处理等因素对熔覆层质量的影响。

文章将展望激光熔覆技术在不同领域的应用前景,尤其是在航空航天、汽车制造、生物医学等领域的应用潜力。

通过本文的阐述,希望能够为相关领域的研究人员和技术人员提供有益的参考,推动激光熔覆技术的进一步发展和应用。

二、激光熔覆技术原理及特点激光熔覆技术是一种先进的表面工程技术,它利用高能激光束对基材表面进行快速加热,使预置的涂层材料在基材表面熔化并与基材形成冶金结合。

这种技术结合了激光技术和冶金技术的优点,能够在短时间内实现材料的快速熔化和凝固,从而改善基材的表面性能。

激光熔覆技术的原理主要包括激光与物质的相互作用、涂层材料的熔化和铺展、以及熔池的形成与凝固等过程。

在激光束的作用下,涂层材料迅速熔化,并与基材表面形成熔池。

随着激光束的移动,熔池逐渐铺展并填充基材表面的缺陷和不平整处。

随后,熔池迅速冷却并凝固,形成与基材牢固结合的涂层。

激光熔覆技术具有许多显著的特点。

激光束的能量密度高,加热速度快,能够实现涂层材料的快速熔化和凝固,减少热影响区和热变形。

激光熔覆技术能够实现精确控制,通过调整激光功率、扫描速度和涂层材料的成分等参数,可以制备出具有不同性能和功能的涂层。

激光熔覆技术原理

激光熔覆技术原理

激光熔覆技术原理
激光熔覆技术是一种先进的制造处理技术,它利用聚焦激光束将
金属材料表面局部加热,超过其熔点并快速冷却,从而将材料加以熔化、覆盖。

激光熔覆技术可以针对不同材料、形状、尺寸的表面进行
处理加工,具有高效、高精度、非接触性、低污染等优点。

激光熔覆技术工作原理是:通过将激光束聚焦在金属材料表面,
能量密度超过其熔点,使得材料局部被熔化。

同时,由于激光束的高
能量密度和短作用时间,确保熔化前的材料温度已升到其熔点以上,
意味着在熔化前可避免材料过热和变形的情况。

熔融的材料会形成一
个液态池,通过控制激光束的移动速度和方向,可使熔池不断横向或
纵向移动,以便完全填充所需熔覆的部位。

在激光束停止照射的瞬间,材料表面液态池瞬间冷却并固化,在这样短暂的过程中,激光熔覆技
术显现出其核心优势,即在短时间内实现局部熔化和快速冷却,从而
达到材料组织结构优良和精密度高的输出效果。

激光熔覆技术

激光熔覆技术

激光熔覆技术激光熔覆技术是指以不同的填料方式在被涂覆基体表面上放置选择的涂层材料,经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低并与基体材料成冶金结合的表面涂层,从而显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化及电器特性等的工艺方法。

激光熔覆技术激光熔覆技术是一项新兴的零件加工于表面改型技术。

具有较低稀释率、热影响区小、与基面形成冶金结合、熔覆件扭曲变形比较小、过程易于实现自动化等优点。

激光熔覆技术应用到表面处理上,可以极大提高零件表面的硬度、耐磨性、耐腐蚀、耐疲劳等机械性能,可以极大提高材料的使用寿命。

同时,还可以用于废品件的处理,大量节约加工成本。

激光溶覆应用到快速制造金属零件,所需设备少,可以减少工件制造工序,节约成本,提高零件质量,广泛应用于航空、军事、石油、化工、医疗器械等各个方面。

激光熔覆是一个复杂的物理、化学冶金过程,熔覆过程中的参数对熔覆件的质量有很大的影响。

激光熔覆中的过程参数主要有激光功率、光斑直径、离焦量、送粉速度、扫描速度、熔池温度等,他们的对熔覆层的稀释率、裂纹、表面粗糙度以及熔覆零件的致密性都有着很大影响。

同时,各参数之间也相互影响,是一个非常复杂的过程。

必须采用合适的控制方法将各种影响因素控制在溶覆工艺允许的范围内。

随着控制技术以及计算机技术的发展,激光熔覆技术越来越向智能化、自动化方向前进。

国外在这方面做的比较好。

从直线和旋转的一维激光熔覆,经过X和Y两个方向同时运动的二维熔覆,到上世纪90年代初开始向三维同时运动熔覆构造金属零件发展。

如今,已经把激光器、五轴联动数控激光加工机、外光路系统、自动化可调合金粉末输送系统(也可送丝)、专用CAD/CAM软件和全过程参数检测系统,集成构筑了闭环控制系统,直接制造出金属零件。

标志着激光熔覆技术的发展登上了新的台阶。

各国在激光控制方面的研究的新成果往往都以专利的形式进行保护, 如高质量的同轴送粉熔覆系统以及闭环反馈控制系统等。

浅谈激光熔覆技术

浅谈激光熔覆技术

浅谈激光熔覆技术激光熔覆技术是指利用激光束在基材表面上进行局部熔化,并在其上覆盖一层合金、陶瓷等特殊材料的过程。

随着高新材料的快速发展,激光熔覆技术被越来越广泛地应用于航空航天、船舶、汽车、石化、电子、医疗等各个领域。

与传统的热喷涂等表面处理技术相比,激光熔覆技术具有许多优点。

首先,激光熔覆可以实现对材料表面的精确控制,可以控制所选用材料的成分、粘附度、厚度等参数,以及对目标材料表面的熔化深度等参数进行精细调节。

其次,激光熔覆技术处理过的材料具有非常均匀的表面质量。

这种表面质量的优势还体现在降低了应力、提高了材料的耐磨性和耐腐蚀性等性能方面。

最后,由于激光熔覆是通过对材料进行高温处理来完成的,因此可以快速地完成材料表面的处理,大大提高了生产效率。

激光熔覆技术主要分为逐点激光熔覆和扫描激光熔覆两种。

逐点激光熔覆是指激光束对被处理材料表面进行点焊并进行局部熔化。

这种方法可以精确控制每一个熔化点的形态,大小和深度等参数,适用于处理规则形状和小面积的材料。

扫描激光熔覆是指将激光束沿着被处理材料表面进行扫描,慢慢熔化被处理材料表面上的一整片区域。

这种方法可以用于处理大面积、复杂形状的材料表面,处理效率比逐点激光熔覆高,但难度也相应会增加。

激光熔覆技术在各行各业中的应用是极为广泛的。

在航天航空领域,激光熔覆技术可以用于制造新型发动机涡轮叶片、导向叶片等关键组件,提高航天航空器的飞行效率与安全性能。

在国防军工方面,激光熔覆技术可以用于制造高强度、高硬度等特殊材料的防弹盾、装甲板等,提高战斗力与生产效率。

在医疗领域,激光熔覆技术可以制造出人工骨头、人工关节等修复骨骼、骨折等方面的医疗器材,使医疗技术更为先进、安全可靠。

虽然激光熔覆技术具有很多优势,但这种技术也存在一些问题需要解决。

首先,激光熔覆材料的成本很高,有时甚至高于常规制造方法;其次,激光熔覆技术的处理工艺非常复杂,需要进行专业设计和操作,需要对材料的熔化、涂层与盈余等参数进行精细控制;最后,激光熔覆技术有一定的局限性,比如不能处理很厚的材料,容易产生气孔、裂缝等缺陷。

激光熔覆稀释率的概念讲解课件


稀释率对熔覆层韧性和抗裂性的影响
总结词
稀释率对熔覆层的韧性和抗裂性具有重要影响。随着稀释率的增加,熔覆层的韧性和抗 裂性通常会提高。
详细描述
稀释率的增加意味着基材的加入,基材的韧性通常较好。因此,通过增加基材的含量, 可以提高整个熔覆层的韧性和抗裂性。此外,适当的稀释率还有助于减少热应力和残余
应力,从而降低开裂的风险。
性。
复合材料是由两种或两种以上材料组成的新型 材料,具有优异的性能和广泛的应用前景。
在制备复合材料时,稀释率会影响增强相的分布 和基体金属的组织结构,进而影响复合材料的性 能。
06
结论
激光熔覆稀释率的重要性和应用前景
激光熔覆稀释率是激光熔覆技术中的重要参数,它决定了熔覆层的成分、组织和性 能。
激光熔覆稀释率越高,熔覆层的成分与基体越接近,组织也更加均匀,性能也更加 优异。
送粉速率的影响
总结词
送粉速率越高,稀释率越高
详细描述
送粉速率决定了熔覆层中粉末材料的添加量。送粉速率越高,粉末在熔池中的填充程度越高,与基材 的混合程度增加,导致基材的熔化量增加,从而提高了稀释率。
基材预热温度的影响
总结词
基材预热温度越高,稀释率越高
详细描述
基材预热温度能够影响材料的热物理性质和熔点。预热温度 越高,基材的熔点降低,更容易熔化。同时,预热能够减小 热影响区的范围,使熔化区域更加集中,从而提高稀释率。
05
激光熔覆稀释率的实际应用案例
稀释率在表面强化中的应用
表面强化是提高金属材料表面硬度和 耐磨性的重要手段,激光熔覆技术是 其中的一种。
在表面强化中,稀释率的大小决定了 熔覆层的成分和组织结构,进而影响 其性能。
稀释率是影响激光熔覆表面强化效果 的关键因素之一,通过控制稀释率可 以获得良好的表面强化效果。

浅谈激光熔覆技术研究进展


二、激光熔覆材料研究现状
近年来,激光熔覆材料研究取得了长足的进展。在激光熔覆材料体系方面, 研究人员不断地探索和开发新的激光熔覆材料体系,以满足不同领域的应用需求。 其中,以钛合金、镍基高温合金、不锈钢、铜合金等为代表的金属激光熔覆材料 体系得到了广泛的研究和应用。同时,一些新型的非金属材料如陶瓷、高分子材 料等也逐渐被应用于激光熔覆技术中。
二、激光熔覆技术的应用前景
激光熔覆技术具有广阔的应用前景,可应用于航空航天、汽车制造、模具制 造、石油化工等领域。例如,在航空航天领域,利用激光熔覆技术可以在涡轮叶 片等关键部位形成一层高硬度、高耐磨性的熔覆层,提高其使用寿命和可靠性; 在汽车制造领域,利用激光熔覆技术可以在发动机缸体、曲轴等关键部位形成一 层耐磨、耐腐蚀的熔覆层,
一、激光熔覆材料研究背景和意 义
随着科技的不断进步,新材料的研究和应用越来越受到人们的。激光熔覆作 为一种新型的材料加工技术,可以有效地提高材料的性能和耐久性,降低生产成 本,因此在汽车、航空航天、医疗等领域得到了广泛的应用。激光熔覆材料的研 究对于推动激光熔覆技术的进步,提高产品质量和降低成本具有重要意义。
一、激光熔覆技术的定义和基本 原理
激光熔覆技术是一种利用高能激光束将金属粉末或合金熔敷在材料表面,形 成一层具有特定性能的熔覆层,以提高材料表面硬度和耐磨性等性能的技术。其 基本原理是利用激光束的高能量密度,将金属粉末或合金迅速加热并熔化,同时 对基材表面进行扫描,使熔化的金属粉末或合金均匀地熔敷在基材表面,形成一 层致密的熔覆层。
未来,激光熔覆成形技术的研究将主要集中在以下几个方面:1)研究激光 熔覆成形过程的机理和规律,提高制备材料的性能和可靠性;2)开发新型的激 光熔覆材料,以满足不同领域的需求;3)研究激光熔覆成形技术的智能化和自 动化,提高生产效率和降低成本;4)拓展激光熔覆成形技术的应用领域,如生 物医学、环保等领域。

激光熔覆封孔技术

激光熔覆封孔技术激光熔覆封孔技术(Laser Melting Hole Sealing Technology)是一种利用激光熔化材料并填充封孔的先进技术。

它在许多领域都有广泛应用,如电子、材料科学、航空航天等。

激光熔覆封孔技术的基本原理是利用激光束的高能量密度,使材料表面瞬间升温并熔化,然后通过表面张力的作用,使熔池迅速凝固,形成一个坚固的封孔。

这种技术不仅可以快速封孔,而且可以控制封孔的形状和尺寸,具有很高的精度和重复性。

激光熔覆封孔技术有许多优点。

首先,它可以在材料表面形成非常小的封孔,甚至可以达到亚微米级别。

其次,由于激光束的高能量密度,封孔过程非常快速,通常只需要几毫秒到几十毫秒。

此外,激光熔覆封孔技术可以适用于各种材料,包括金属、陶瓷、玻璃等。

在电子领域,激光熔覆封孔技术被广泛应用于集成电路封装中。

在集成电路制造过程中,需要将芯片与封装基板连接起来,并通过封孔将芯片引脚与封装基板上的电路连接起来。

传统的封孔方法通常使用化学腐蚀或机械钻孔,但这些方法存在一些缺点,如加工速度慢、精度低、成本高等。

而激光熔覆封孔技术可以有效地解决这些问题,提高封孔的质量和效率。

在材料科学领域,激光熔覆封孔技术可以用于制备复合材料。

复合材料由两种或更多种不同性质的材料组成,具有优异的力学性能和热性能。

激光熔覆封孔技术可以将不同的材料熔化并混合在一起,形成复合材料的结构。

这种制备方法简单、快速,并且可以控制复合材料的组分和结构,从而调控其性能。

在航空航天领域,激光熔覆封孔技术被用于制造燃烧室和喷管等关键部件。

燃烧室和喷管是火箭发动机中最重要的部件之一,对其密封性能要求非常高。

激光熔覆封孔技术可以在燃烧室和喷管表面形成高质量的封孔,确保其密封性能和可靠性。

此外,激光熔覆封孔技术还可以用于修复航空发动机等高价值设备的封孔,提高设备的使用寿命和可靠性。

激光熔覆封孔技术是一种先进的加工技术,具有封孔速度快、精度高、适用范围广等优点。

油缸激光熔覆技术

油缸激光熔覆技术
油缸激光熔覆技术是一种利用激光加热和熔化金属粉末,使其与基底金属相结合形成涂层的表面处理技术。

具体步骤如下:
1. 准备工作:选择适当的金属粉末,清理和处理油缸表面。

2. 调节激光参数:选择适当的激光功率、扫描速度和激光束直径,以实现所需的熔覆效果。

3. 涂层熔覆:将金属粉末均匀地喷射到油缸表面,激光束扫描喷射区域,使金属粉末熔化并与基底金属相结合。

4. 冷却和固化:在熔覆过程中快速冷却涂层,使其固化。

5. 后续处理:进行表面处理和设备检测,保证涂层的质量和性能。

油缸激光熔覆技术的主要优点包括:
1. 高质量涂层:激光熔覆技术可以实现高质量、致密的涂层,具有良好的附着力和抗腐蚀性能。

2. 节约材料:使用金属粉末熔覆可以大大降低材料浪费,减少成本。

3. 减少热影响区域:激光熔覆技术可以减少热影响区域,降低基底材料的变形和应力。

4. 灵活性:根据需要可以选择不同的金属材料,实现不同性能涂层的覆盖。

油缸激光熔覆技术广泛应用于汽车、航空航天、石油和化工等领域,用于修复或
改善机械零件的表面性能,延长其使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光熔覆技术
激光熔覆技术简介
激光熔覆技术是指以不同的填
料方式在被涂覆基体表面上放置选
择的涂层材料,经激光辐照使之和
基体表面一薄层同时熔化,并快速
凝固后形成稀释度极低并与基体材
料成冶金结合的表面涂层,从而显
著改善基体材料表面的耐磨、耐蚀、
耐热、抗氧化及电器特性等的工
艺方法。

激光熔覆技术是一种经济效益很高的新技术,它可以在廉价金属基材上制备出高性能的合金表面而不影响基体的性质,降低成本,节约贵重稀有金属材料。

应用于激光熔覆的激光器主要有CO2激光器和固体激光器,主要包括碟片激光器,光纤激光器和二极管激光器。

激光熔覆技术的工艺特点
激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。

两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。

1、激光熔覆具有以下特点:
(1)冷却速度快(高达106K/s),属于快速凝固过程,容易得到细晶组织或产生平衡态所无法得到的新相,如非稳相、非晶态等。

(2)涂层稀释率低(一般小于5%),与基体呈牢固的冶金结合或界面扩散结合,通过对激光工艺参数的调整,可以获得低稀释率的良好涂层,并且涂层成分和稀释度可控;
(3)热输入和畸变较小,尤其是采用高功率密度快速熔覆时,变形可降低到零件的装配公差内。

(4)粉末选择几乎没有任何限制,特别是在低熔点金属表面熔敷高熔点合金;
(5)熔覆层的厚度范围大,单道送粉一次涂覆厚度在0.2~2.0mm,
(6)能进行选区熔敷,材料消耗少,具有卓越的性能价格比;
(7)光束瞄准可以使难以接近的区域熔敷;
(8)工艺过程易于实现自动化。

2、激光熔覆与激光合金化的异同
激光熔覆与激光合金化都是利用高能密度的激光束所产生的快速熔凝过程,在基材表面形成于基体相互融合的、具有完全不同成分与性能的合金覆层。

两者工艺过程相似,但却有本质上的区别,主要区别如下:
(1)激光熔覆过程中的覆层材料完全融化,而基体熔化层极薄,因而对熔覆层的成分影响极小,而激光合金化则是在基材的表面熔融复层内加入合金元素,
目的是形成以基材为基的新的合金层。

(2)激光熔覆实质上不是把基体表面层熔融金属作为溶剂,而是将另行配置的合金粉末融化,使其成为熔覆层的主题合金,同时基体合金也有一薄层融化,
与之形成冶金结合。

激光熔覆技术制备新材料是极端条件下失效零部件的修
复与再制造、金属零部件直接制造的重要基础,收到世界各国科学界和企业
的高度重视。

激光熔覆效果的评价
评价激光熔覆层质量的优劣,主要从两个方面来考虑。

一是宏观上,考察熔覆道形状、表面不平度、裂纹、气孔及稀释率等;二是微观上,考察是否形成良好的组织,能否提供所要求的性能。

此外,还应测定表面熔覆层化学元素的种类和分布,注意分析过渡层的情况是否为冶金结合,必要时要进行质量寿命检测。

研究工作的重点是熔覆设备的研制与开发、熔池动力学、合金成分的设计、裂纹的形成、扩展和控制方法、以及熔覆层与基体之间的结合力等。

激光熔敷技术进一步应用面临的主要问题是:
①激光熔覆技术在国内尚未完全实现产业化的主要原因是熔覆层质量的不稳定性。

激光熔覆过程中,加热和冷却的速度极快,最高速度可达1012℃/s.由于熔覆层和基体
材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度.
②光熔敷过程的检测和实施自动化控制。

③激光熔覆层的开裂敏感性,仍然是困扰国内外研究者的一个难题,也是工程应用及产业化的障碍,虽然已经对裂纹的形成扩进行了研究,但控制方法方面还不成熟。

激光熔覆技术的应用
激光熔覆加工技术的适用范围和应用领域非常广泛,几乎可以覆盖整个机械制造业。

目前已成功开展了在不锈钢、模具钢、可锻铸铁、灰口铸铁、铜合金、钛合金、铝合金及特殊合金表面钴基、镍基、铁基等自熔合金粉末及陶瓷相的激光熔覆。

激光熔覆铁基合金粉末适用于要求局部耐磨而且容易变形的零件。

镍基合金粉末适用于要求局部耐磨、耐热腐蚀及抗热疲劳的构件。

钴基合金粉末适用于要求耐磨、耐蚀
及抗热疲劳的零件。

陶瓷涂层在高温下有较高的强度,热稳定性好,化学稳定性高,适用于要求耐磨、耐蚀、耐高温和抗氧化性的零件。

下面是激光熔覆技术的几处典型应用:
1、矿山设备及其零部件的制造与再制造
矿山煤机设备用量大、磨损快,由于其工作环境恶劣,零部件损坏速度比较快。

激光制造与再制造的煤机设备零部件包括:三机一架
(1)采煤机:主机架、摇臂、齿轮、齿轮轴、各种衬套、铰接架、油缸、油缸座、导向滑靴、链轮、销轨轮、驱动轮、截齿等。

(2)掘进机:油缸、支架、轴、各种衬套、截齿等。

(3)刮板运输机:中部溜槽、过渡槽、齿轮箱体、齿轮、齿轮轴、螺旋伞齿轮、轴类零件等。

(4)液压支架:油缸、底座和支架等的铰接孔、各种衬套等。

掘进机截割齿
激光熔覆后的截齿
2、电力设备及其零部件的制造与再制造
电力设备分布量大、不间断运转,其零部件的损坏机率高。

汽轮机是火力发电的核心设备,由于高温高热特殊的工作条件,每年都需定期对损伤的机组零部件进行修复,如主轴轴径、动叶片等。

燃气轮机由于其在高达1300℃的高温条件下工作,经常会发生损伤。

采用激光再制造技术将其缺陷全部修复完好,恢复其使用性能,费用仅为新机组价格的1/10。

汽轮机转子修复
3、石油化工设备及其零部件的制造与再制造
现代的石化工业基本上采用都是连续大量生产模式,在生产过程中,机器长时间在恶劣的环境下工作,导致设备内元件出现损坏,腐蚀、磨损,其中经常会出问题的零部件包括阀门、泵、叶轮、大型转子的轴颈、轮盘、轴套、轴瓦等,而且这些元件十分昂贵,涉及到的零部件种类也有很多,形状大多数都很复杂,修复起来有一定的难度,但是因为激光熔覆技术的出现,这些问题就都不是问题了。

4、铁路设备及其零部件的制造与再制造
铁路交通运输随社会经济的增长快速发展,新造铁路车辆需求量非常大,对主要零部件的数量和性能要求也在增加。

再制造技术作为一种新的资源再利用技术,可以应用于车辆易磨损零件的再制造。

而激光表面强化是再制造的核心技术和工艺手段,其中激光表面熔覆技术可以应用于再制造零件表面的修复和强化。

5、其他机械行业设备关键零部件的再制造
其它机械制造业的关键零部件的再制造,涉及的行业包括冶金、石化、矿山、化工、航空、汽车、船舶、机床等等领域,针对这些领域中的精密设备、大型设备、贵重零部件磨损、冲蚀、腐蚀部位,使用激光熔覆加工技术进行修复和性能优化。

相关文档
最新文档