2013年广西百色市中考数学试卷(解析版)
广西百色市中考数学一模试卷(解析版) 新人教版

广西百色市中考数学一模试卷一、选择题(本大题共12题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.(3分)(•百色一模)4的平方根是()A.2B.±2C.16 D.±16考点:平方根专题:计算题.分析:首先根据平方根的定义求出4的平方根,然后就可以解决问题.解答:解:∵±2的平方等于4,∴4的平方根是:±2.故选B.点评:本题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键,比较简单.2.(3分)(•百色一模)下列四个角中,最有可能与70°角互补的是()A.B.C.D.考点:余角和补角.分析:根据互补的两个角的和等于180°求出70°角的补角,然后结合各选项即可选择.解答:解:70°角的补角=180°﹣70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角.故选D.点评:本题考查了互为补角的定义,根据补角的定义求出70°角的补角是钝角是解题的关键.3.(3分)(•百色一模)广西壮族自治区财政将进一步调整支出结构,筹措资金184亿元用于实施社保惠民、健康惠民工程项目,比增长17.2%.将18 400 000 000用科学记数法表示为()A.18.4×109B.1.84×109C.1.84×1010D.1.84×1011考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:18 400 000 000用科学记数法表示为:1.84×1010.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•百色一模)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图分析:根据主视图的定义,找到从正面看所得到的图形即可.解答:解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.5.(3分)(•百色一模)下列计算正确的是()A.2a+3b=5ab B.2x•3xy=6x2y C.(ab3)2=ab6D.(x+2)2=x2+4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式分析:根据单项式乘单项式、同类项、幂的乘方、完全平方公式分别进行计算,即可求出答案.解答:解:A、不是同类项,不能合并,故本选项错误;B、2x•3xy=6x2y,故本选项正确;C、(ab3)2=a2b6,故本选项错误;D、(x+2)2=x2+4x+4,故本选项错误;故选B.点评:此题考查了单项式乘单项式、同类项、幂的乘方、完全平方公式,熟练掌握它们的运算法则是解题的关键.6.(3分)(•百色一模)在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理专题:压轴题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)(•百色一模)如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()A.40°B.50°C.80°D.90°考点:圆周角定理专题:探究型.分析:先根据圆周角、圆心角及弧的关系求出的度数,进而可得出的度数,由此即可得出结论.解答:解:∵∠C=40°,∴=2∠C=80°,∵AB是⊙O的直径,∴=180°﹣=180°﹣80°=100°,∴∠ABD==×100°=50°.故选B.点评:本题考查的是圆周角定理,熟知圆周角、圆心角及弧的关系是解答此题的关键.8.(3分)(•沈阳)下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D.“将在我市举办全运会,这期间的每一天都是晴天”是必然事件考点:全面调查与抽样调查;方差;随机事件;概率的意义专题:分类讨论.分析:根据全面调查与抽样调查的区别,方差的定义,概率的意义,必然事件的概念对各选项依次进行判断即可解答.解答:解:A、为检测我市正在销售的酸奶质量,应该采用抽样调查的方式,不能采取全面调查,正确;B、应为方差小的同学数学成绩更稳定,故本选项错误;C、概率应为二分之一,故本选项错误;D、每一天都是晴天是可能事件,故本选项错误.故选A.点评:本题主要考查全面调查与抽样调查的区别,方差的定义,概率的意义,必然事件的概念,熟练掌握定义是解答本题的关键.9.(3分)(•重庆)为了建设新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是()A.B.C.D.考点:函数的图象专题:数形结合.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.10.(3分)(•深圳)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为()A.=+12B.=﹣12C.=﹣12D.=+12考点:由实际问题抽象出分式方程专题:应用题;压轴题.分析:关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣12,由此可得到所求的方程.解答:解:根据题意,得:=﹣12,故选B.点评:此题涉及的公式:包装箱的个数=文具的总个数÷每个包装箱装的文具个数.11.(3分)(•兰州)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()A.B.1C.或1 D.或1或考点:圆周角定理;含30度角的直角三角形;三角形中位线定理专题:压轴题;分类讨论.分析:若△BEF是直角三角形,则有两种情况:①∠BFE=90°,②∠BEF=90°;在上述两种情况所得到的直角三角形中,已知了BC边和∠B的度数,即可求得BE的长;AB的长易求得,由AE=AB﹣BE即可求出AE的长,也就能得出E点运动的距离,根据时间=路程÷速度即可求得t的值.解答:解:∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,BC=2,∠ABC=60°;∴AB=2BC=4cm;①当∠BFE=90°时;Rt△BEF中,∠ABC=60°,则BE=2BF=2cm;故此时AE=AB﹣BE=2cm;∴E点运动的距离为:2cm,故t=1s;所以当∠BFE=90°时,t=1s;②当∠BEF=90°时;同①可求得BE=0.5cm,此时AE=AB﹣BE=3.5cm;∴E点运动的距离为:3.5cm,故t=1.75s;③当E从B回到O的过程中,在运动的距离是:2(4﹣3.5)=1cm,则时间是:1.75+=s.综上所述,当t的值为1s或1.75s 和s时,△BEF是直角三角形.故选D.点评:此题主要考查了圆周角定理以及直角三角形的判定和性质,同时还考查了分类讨论的数学思想.12.(3分)(•百色一模)如图,已知直线l :,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)考点:一次函数综合题专题:规律型.分析:根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A4坐标即可解答:解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256).故选B.点评:本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.二、填空题(本大题共6题,每小题3分,共18分)13.(3分)(•百色一模)若分式无意义,则实数a 的值是 3 .考点:分式有意义的条件分析:根据分式无意义,分母等于0列式计算即可得解.解答:解:∵分式无意义,∴a﹣3=0,解得a=3.故答案为:3.点评:本题考查了分式有意义无意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)(•济南)方程x2﹣2x=0的解为x1=0,x2=2 .考点:解一元二次方程-因式分解法;解一元一次方程专题:计算题.分析:把方程的左边分解因式得x(x﹣2)=0,得到x=0或 x﹣2=0,求出方程的解即可.解答:解:x2﹣2x=0,x(x﹣2)=0,x=0或 x﹣2=0,x1=0 或x2=2.点评:本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.15.(3分)(•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 2 .考点:旋转的性质;等边三角形的性质分析:由在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,根据等边三角形的性质,即可求得BD的长,然后由旋转的性质,即可求得CE的长度.解答:解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.点评:此题考查了旋转的性质与等边三角形的性质.此题难度不大,注意旋转中的对应关系.16.(3分)(•温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27 人.考点:频数(率)分布直方图专题:图表型.分析:根据频数分布直方图估计出89.5~109.5,109.5~129.5两个分数段的学生人数,然后相加即可.解答:解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故答案为:27.点评:本题考查了读频数分布直方图的能力,根据图形估计出两个分数段的学生人数是解题的关键.17.(3分)(•黑龙江)如图,矩形纸片ABCD,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为 2 .考点:翻折变换(折叠问题专题:应用题;压轴题.分析:过点E作EG⊥BC,交BC于点G,Rt△EGM中,EG=AB=8,EM=ED=12﹣AE,MG=12﹣4﹣AE,且由勾股定理可得EM2=EG2+MG2列方程,解之可得AE=2.解答:解:过点E作EG⊥BC,交BC于点GRt△EGM中,EG=AB=8,EM=ED=12﹣AE,MG=12﹣4﹣AE∵EM2=EG2+MG2∴(12﹣AE)2=64+(12﹣4﹣AE)2∴AE=2.点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.18.(3分)(•百色一模)如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离CD 是7.7 m(取≈1.732,结果精确到0.1m).考点:解直角三角形的应用-仰角俯角问题专题:应用题.分析:易得CE=BE,利用30°的正切值即可求得CE长,进而可求得DE长.CE减去DE长即为广告屏幕上端与下端之间的距离.解答:解:∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=26.65﹣1.65=25m ,∴BE=25m,∴AE=AB+BE=30m,在Rt△ADE中,∠DAE=30°,则DE=AE×tan30°=30×=10m,故CD=CE﹣DE=25﹣10≈25﹣10×1.732=7.68≈7.7(m).即广告屏幕上端与下端之间的距离CD约为7.7m.故答案为:7.7.点评:本题考查了解直角三角形的知识,要求学生能借助仰角构造直角三角形并解直角三角形,难点是充分找到并运用题中相等的线段.三、解答题(本大题共8题,共66分.解答题应写出文字说明、过程或演算步骤)19.(6分)(•百色一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值分析:分别根据负整数指数幂、0指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1+﹣2×=1﹣.点评:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.20.(6分)(•百色一模)化简求值:,其中x=2.考点:分式的化简求值专题:计算题.分析:原式除数括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=,当x=2时,原式=0.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.21.(6分)(•广安)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?考点:列表法与树状图法分析:(1)首先根据题意画出树状图,然后利用树状图即可求得所有等可能的结果;(2)由小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情况,利用概率公式即可求得答案.解答:解:(1)画树状图得:如图,可得某个同学抽签的所有等可能情况有16种;(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情况,∴他同时抽到两科都准备的较好的实验题目的概率是=.点评:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(8分)(•娄底)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.考点:全等三角形的判定;菱形的判定专题:证明题;压轴题.分析:由题意可知三角形三线合一,结合SAS可得△ABE≌△ACE.四边形ABEC相邻两边AB=AC,只需要证明四边形ABEC是平行四边形的条件,当AE=2AD(或AD=DE或DE=AE)时,根据对角线互相平分,可得四边形是平行四边形.解答:(1)证明:∵AB=AC,点D为BC的中点,∴∠BAE=∠CAE,∵AE=AE∴△ABE≌△ACE(SAS).(2)解:当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形理由如下:∵AE=2AD,∴AD=DE,又∵点D为BC中点,∴BD=CD,∴四边形ABEC为平行四边形,∵AB=AC,∴四边形ABEC为菱形.点评:本题考查了全等三角形和等腰三角形的性质和菱形的判定定理,比较容易.23.(8分)(•百色一模)为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.考点:一元一次不等式组的应用.分析:本题可根据:每处安排10人×安排的处数=总人数﹣15;10≤每处安排14人×安排的处数<14,列出不等式组求出未知数的取值范围,然后判断出符合条件的值.解答:解:设这所学校派出x名学生,参加y处公共场所的义务劳动,依题意得:,解得:3<y≤4.∵y为整数,∴y=4.∴当y=4时,x=10×4+15=55.答:这所学校派出55名学生,参加4处公共场所的义务劳动.点评:根据每处安排的人数的取值范围及总人数列出不等式组求解即可.解答此题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.24.(10分)(•北京)如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.考点:反比例函数的图象;待定系数法求一次函数解析式专题:数形结合;待定系数法.分析:(1)将A点或B点的坐标代入y=求出m,再将这两点的坐标代入y=kx+b求出k、b的值即可得到这个函数的解析式;(2)画出网格图帮助解答.解答:解:(1)由图象可知,函数(x>0)的图象经过点A(1,6),可得m=6.设直线AB的解析式为y=kx+b.∵A(1,6),B(6,1)两点在函数y=kx+b的图象上,∴,解得.∴直线AB的解析式为y=﹣x+7;(2)图中阴影部分(不包括边界)所含格点是(2,4),(3,3),(4,2)共3个.点评:本题考查了一次函数和反比例函数的图象性质,综合性较强,体现了数形结合的思想.25.(10分)(•百色一模)如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E 作ED⊥AB,垂足为点D,(1)求证:DE为⊙O的切线;(2)过O点作EC的垂线,垂足为H,求证:EH•BE=BD•CO.考点:切线的判定与性质;相似三角形的判定与性质分析:(1)连接OE,根据等边对等角,由AB=AC得到∠B=∠C,再由半径OC与OE相等得到∠C=∠CEO,利用等量代换得到∠B=∠CEO,由同位角相等两直线平行,得到AB与EO平行,再根据两直线平行内错角相等,由角BDE为直角得到角DEO为直角,又OE为圆O的半径,根据切线的判断方法得到DE为⊙O 的切线;(2)根据垂径定理,由OH与BC垂直,得到H为EC中点即CH与EH相等,然后由两对角相等的两三角形相似得到△BDE∽△CHO,得到对应边成比例,把CH换为EH即可得证.解答:(1)证明:连接OE,∵AB=AC,∴∠B=∠C(1分)∵OC=OE,∴∠C=∠CEO,(1分)∴∠B=∠CEO,∴AB∥EO,(1分)∵DE⊥AB,∴EO⊥DE,(1分)∵EO是圆O的半径,∴D为⊙O的切线.(1分)(2)解:∵OH⊥BC,∴EH=HC,∠OHC=90°(1分)∵∠B=∠C,∠BDE=∠CHO=90°∴△BDE∽△CHO(2分),∴(1分)∵EH=HC,∴EH•BE=BD•CO.(1分)点评:本题考查切线的性质和判定、垂径定理及相似三角形的性质与判定的综合运用.证明切线的方法有两种:有连接圆心与这点,证明夹角为直角;无点作垂线,证明垂线段长等于半径.26.(12分)(•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.考点:二次函数综合题专题:压轴题.分析:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.解答:解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0)…(1分)将x=0,y=2代入y=﹣x2+bx+c得c=2…(2分)将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2…(3分)(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t )×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t…(5分)∴当t=2时,MN有最大值4…(6分)(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分)(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2)…(8分)(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)…(9分)故所求的D点坐标为(0,6),(0,﹣2)或(4,4)…(10分)点评:本题是二次函数综合题,考查了抛物线上点的坐标特征、二次函数的极值、待定系数法求函数解析式、平行四边形等重要知识点.难点在于第(3)问,点D的可能位置有三种情形,解题时容易遗漏而导致失分.作为中考压轴题,本题有一定的难度,解题时比较容易下手,区分度稍低.。
中考数学最新真题试题汇编及解析(广西百色)

【答案】C
【解析】
【分析】分情况讨论,当△ABC是一个直角三角形时,当△AB1C是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.
【详解】如图,当△ABC是一个直角三角形时,即 ,
,
;
如图,当△AB1C是一个钝角三角形时,
过点C作CD⊥AB1,
,
,
,
A. B. C. D.
【答案】C
【解析】
【分析】根据常见几何体的主视图,依次判断即可.
【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;
B.该圆锥的主视图为三角形,故不符合题意;
C.该圆柱的主视图为矩形,故符合题意;
D.该圆台的主视图为梯形,故不符合题意;
故选:C.
【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.
故答案为:甲.
【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.三、解答题(本大題共8小题,共66分,解答应写出文字说明、证明过程戏演算步骤)
19.计算:
【答案】
【解析】
【分析】根据有理数的乘方、零指数幂进行化简,再进行有理数的加减运算即可.
【详解】原式
.
【点睛】本题考查了有理数的混合运算,涉及有理数的乘方、零指数幂,熟练掌握运算法则是解题的关键.
【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);
故选:D.
【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.
11.如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()
A. B.
C. D.
广西百色市中考数学试题(解析)

2012年广西百色市中考数学试题(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题)一.选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合要求的.)1.(2012百色)计算:2012-=()A.-2012 B.2012 C.12012D.12012-考点:绝对值.解答:解:|﹣2012|=2012.故选B。
2.(2012百色))如图,已知l1∥l2,∠1=50°,则∠2的度数是()A.50°B.100°C.120°D.130°考点:平行线的性质.解答:解:∵∠1=50°,∴∠3=50°∵l1∥l2,∴∠3+∠2=180°,∵∠3=50°,∴∠2=130°.故选D.3.(2012百色)如图,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.解答:解:这个几何体的俯视图从左到右依次是::长方形,正方形,长方形,故选:C .4.(2012百色)据中央新闻报道,我市因受强对流天气的影响,发生了严重的洪涝灾害.其中至5月25日止,凌云县就有7.6万人受灾.把数字76000用科学记数法表示为( )A .7.6×103B .7.6×104C .7.6×105D .7.6×106考点:科学记数法—表示较大的数.解答:解:把数字76000用科学记数法表示为7.6×104.故选B .5.(2012百色)下列图形中,不是轴对称图形的是( )A .B .C .D .考点:轴对称图形.解答:解:根据轴对称的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形.A .是轴对称图形;故此选项错误;B .是轴对称图形;故此选项错误;C .不是轴对称图形;故此选项正确;D .是轴对称图形;故此选项错误.故选:C .6.(2012百色)下列各式计算正确的是( )A .414-=B .235a b ab -+=-C .8(2)4ab a -÷-=-D .236-⨯=-考点:幂的乘方与积的乘方;合并同类项;整式的除法;有理数的乘法.解答:解:A .-14=-1,故本选项错误;B .-2a +3b 不能进行合并,故本选项错误;C .-8ab÷(-2a )=4b ,故本选项错误;D .-2×3=-6,正确.故选D .7.(2012百色)计算:101tan 45()(3)2π-+--=( )A .2B .0C .1D .-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.解答:解:原式=1+2﹣1=2,故选A 。
【2013中考真题】广西柳州中考数学试卷及答案(有答案)

2013年柳州市初中毕业升学考试试卷数 学(考试时间共120分钟,全卷满分120分)一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每个小题选对3分,选错、不选或多选均得0分) 1.(2013广西柳州,1,3分)如某几何体的三视图如图所示,则该几何体是A .正方体B .长方体C .三棱柱D .三棱锥【答案】CA .B .C .D . 2.(2013广西柳州,2,3分)计算-10-8所得的结果是A .-2B .2C .18D .-18 【答案】D3.(2013广西柳州,3,3分)在-3,0,4,6这四个数中,最大的数是A .-3B .0C . 4.D .6 【答案】C 4.(2013广西柳州,4,3分)右图是经过轴对称变换后所得到的图形,与原图形相比 A .形状没有改变,大小没有改变 B .形状没有改变,大小有改变 C .形状有改变,大小没有改变【答案】A 5.(2013广西柳州,5,3分)下列计算正确的是A .3a ·2a =5aB .3 a ·2a =5a 2C .3a ·2a =6aD .3a ·2a =6 a 2【答案】D 6.(2013广西柳州,6,3分)在下列所给出的坐标的点中,在第二象限的是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)【答案】B(第4题图) 主视图 左视图 俯视图(第1题图)7.(2013广西柳州,7,3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是A . 35B . 36C .37D .38 【答案】B【答案】C 9.(2013广西柳州,9,3分)下列式子是因式分解的是A .x (x -1)=x 2 -1B .x 2 -x = x (x +1)C .x 2+x =x (x +1)D .x 2-x =(x +1)(x -1) 【答案】C10.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为12米 C .15米 D .22.5米【答案】D11.(2013广西柳州,11,3分)如图,P 点(a ,a )是反比例函数xy 16=在第一象限内的图象上的一个、B 落在x 轴上,则△POA 的面积是A . 3B . 4C .33412- D .33824- 【答案】D12.(2013广西柳州,12,3分)在△ABC 中,∠BAC =90°,AB =3,AC =4,AD 平分∠BAC 交BC 于D ,则BD 的长为(第12题图)ABD (第8题图)A .715 B .512 C .720 D .512【答案】A二、填空题(本大题共6小题,每小题3分,满分18分,请你将答案直接写在大题卡中相应的横线上,在草稿纸上、试卷上答题无效) 13.(2013广西柳州,13,3分)不等式4x >8的解集是____________ 【答案】x >214.(2013广西柳州,14,3分)若分式23-+x x 有意义,则x ≠________ 【答案】x ≠2 15.(2013广西柳州,15,3分)一个袋子中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是103,则袋中有________个白球. 【答案】7 16.(2013广西柳州,16,3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉以个最低分、一个最高分后的平均分.7位评委给小红打的分数是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是_______ 【答案】9.5 17.(2013广西柳州,17,3分)如图△ABC ≌△DEF ,请根据图中提供的信息,写出x =_____【答案】2018.(2013广西柳州,18,3分)有下列4个命题: ①方程06)32(2=++-x x 的根是2和3.②在△ABC 中,∠ACB =,90°,CD ⊥AB 于D .若AD =4,BD =49,则CD =3. ③点P (x ,y )的坐标x ,y 满足022222=+-++y x y x ,若点P 也在xk y =的图象上,则k =-1.④若实数b 、c 满足1+b +c >0,1-b +c <0,则关于x 的方程02=++c bx x 一定有两个不相等的实数根,且较大的实数根,满足-1<x 0<1.上述4个命题中,真命题的序号是____________ 【答案】①②③④ABC D FE A1850°60° 70°20x(第17题图)AD(第12题图)三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、演算步骤或推理过程,请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑,在草稿纸、试卷上答题无效) 19.(2013广西柳州,19,6分)(本题满分6分) 计算:02)3()2(--【答案】解:原式=4-1=3 20.(2013广西柳州,20,6分)(本题满分6分) 解方程:3(x +4)=x 【答案】解:x x =+123 123-=-x x 122-=x 6-=x 21.(2013广西柳州,21,6分)(本题满分6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀. (1) 请用列表法或树状图表示所有可能出现的游戏结果: (2) 求韦玲胜出的概率.【答案】 (1)(2)31=P 22.(2013广西柳州,22,8分)(本题满分8分)如图,将小旗ACDB 放于平面直角坐标系 ,得到各顶点的坐标为A (-6,12),B (-6,0),C (0,6),D (-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.剪刀石头布韦玲剪刀 剪刀剪刀 石头 石头 石头 布 布 布覃静(1)画出旋转后的小旗A ′C ′D ′B ′; (2)写出A ′,C ′,D ′的坐标;(3)求出线段BA 旋转到B ′A ′时所扫过的扇形的面积.【答案】 (1)D ′(0,0)(3)ππ3636012902=⨯⨯=S 23.(2013广西柳州,23,8分)(本题满分8分)某游泳池有水4000m 3,现放水清洗池子.同时,工作人员记录放水的时间x (单位:分钟)与池内水量y (单3(2)请你用函数解析式表示y 与x 的关系,并写出自变量x 的取值范围. 【答案】(1)4000-25×80=2000( m 3) (2)y =-25x +4000(0≤x ≤160)(本题:一采用待定系数法,二利用解应用题的思路求解) 24.(2013广西柳州,24,10分)(本题满分10分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,连结AC 、BD .在平面内将△DBC 沿BC 翻折得到△EBC . (1) 四边形ABEC 一定是什么四边形? (2) 证明你在(1)中所得出的结论.(第22题图)【答案】(1) 平行四边形(2) ∵四边形ABCD 为等腰梯形, ∴AB =CD ,AC =BD .∵△DBC 沿BC 翻折得到△EBC , ∴DC =CE ,BD =BE . ∴AB =CE ,AC =BE .∴四边形ABEC 是四平行边形. 25.(2013广西柳州,25,10分)(本题满分10分)如图,⊙O 的直径AB =6,AD 、BC 是⊙O 的两条切线,AD =2,BC =29. (1)求OD 、OC 的长;(2)求证:△DOC ∽△OBC ; (3)求证:CD 是⊙O 的切线.【答案】(1) 解:∵AD 、BC 是⊙O 的两条切线, ∴∠A =90°,∠B =90°. 根据勾股定理:13232222=+=+=OA AD OD 1323)29(32222=+=+=BC OB OC(2)B (第25题图)C(第17题图)过点D 做DH ⊥BC ,则213)229(622=-+=DC ,∵313===OC DC BC OC OB DO ∴△DOC ∽△OBC. (3)过点G 做OG ⊥DC 于点G , ∵△DOC ∽△OBC , ∴∠OCB =∠OCG .∴O C 为∠BCD 的角平分线. ∵OG ⊥DC ,OB ⊥BC , ∴OB =OG .∴CD 是⊙O 的切线 26.(2013广西柳州,26,12分)(本题满分12分)已知二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,0),(5,0),(3,-4). (1)求该二次函数的解析式;(2)当y >-3时,写出x 的取值范围;(3)A 、B 为直线y =-2x -6上两动点,且距离为2,点C 为二次函数图象上的动点,当点C 运动到何处时△ABC 的面积最小?求出此时点C 的坐标及△ABC 面积的最小值.B (第25题图)B (第25题图)H【答案】(1) 设y =a (x -1)(x -5),把(3,-4)代入得a =1,y =x 2-6x +5 (2) x <2,或x >4. (3)设直线l′的解析式b x y +-=2,当直线l′与抛物线相切时,点C 距离直线y =-2x -6最近.5622+-=+-x x b x , 0542=-+-b x x0)5(14)4(422=-⨯⨯--=-=∆b ac b 1=b⎩⎨⎧+-=+-=56122x x y x y(第26题图)(第26题图)解得:⎩⎨⎧-==32y x∴点C (2,-3). 容易求出点D (-3,0),E (21,0),M (0,-6), 易证△DFE ∽△DOM , OM EF DM DE =,6535.3EF =,557=EF ,557557221=⨯⨯=∆ABC S .。
初中数学广西百色市中考模拟数学考试卷及答案解析(word版)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:三角形的内角和等于()A.90° B.180° C.300° D.360°试题2:计算:23=()A.5 B.6 C.8 D.9试题3:如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7试题4:在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A.B.C.D.评卷人得分试题5:今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A.3.89×102B.389×102C.3.89×104D.3.89×105试题6:如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12试题7:分解因式:16﹣x2=()A.(4﹣x)(4+x) B.(x﹣4)(x+4) C.(8+x)(8﹣x) D.(4﹣x)2试题8:下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′ C.35.5°<35°5′ D.35.5°>35°5′试题9:为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)0 1 2 3 4人数(单位:人) 1 4 6 2 2A.中位数是2 B.平均数是2 C.众数是2 D.极差是2试题10:直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0试题11:A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=30试题12:如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD 的最小值是()A.4 B.3C.2D.2+试题13:的倒数是.试题14:若点A(x,2)在第二象限,则x的取值范围是.试题15:如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D= .试题16:某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.试题17:一组数据2,4,a,7,7的平均数=5,则方差S2= .试题18:观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)= .试题19:计算:+2sin60°+|3﹣|﹣(﹣π)0.试题20:解方程组:.试题21:△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.试题22:已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.试题23:.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<7 2二7≤m<8 7三8≤m<9 a四9≤m≤10 2(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).试题24:在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?试题25:如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.试题26:正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.试题1答案:B【考点】三角形内角和定理.【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题【解答】解:因为三角形的内角和为180度.所以B正确.故选B.试题2答案:C【考点】有理数的乘方.【分析】根据立方的计算法则计算即可求解.【解答】解:23=8.故选:C.试题3答案:B【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B试题4答案:C【考点】概率公式.【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【解答】解:∵共有5个球,其中红球有3个,∴P(摸到红球)=,故选C.试题5答案:C【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将38900用科学记数法表示为3.89×104.故选C.试题6答案:A【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.试题7答案:A【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:16﹣x2=(4﹣x)(4+x).故选:A.试题8答案:D【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;故选:D.试题9答案:D【考点】极差;加权平均数;中位数;众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.试题10答案:A【考点】一次函数与一元一次不等式.【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.试题11答案:B【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.故选B.试题12答案:C【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C交y轴于点D,连接AD,此时AD+CD的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C的长度,从而得出结论.【解答】解:连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,∴A′C=2×A′B=2.故选C.试题13答案:3 .【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×3=1,∴的倒数是3.故答案为:3.试题14答案:x<0 .【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,可得答案.【解答】解:由点A(x,2)在第二象限,得x<0,故答案为:x<0.试题15答案:65°.【考点】圆周角定理.【分析】先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.【解答】解:∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°.故答案为:65°.试题16答案:5 .【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故答案为:5.试题17答案:3.6 .【考点】方差;算术平均数.【分析】根据平均数的计算公式:=,先求出a的值,再代入方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵数据2,4,a,7,7的平均数=5,∴2+4+a+7+7=25,解得a=5,∴方差s2=[(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6;故答案为:3.6.试题18答案:a2017﹣b2017.【考点】平方差公式;多项式乘多项式.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017试题19答案:【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及二次根式化简、特殊角的三角函数值、绝对值、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+2sin60°+|3﹣|﹣(﹣π)0=3+2×+3﹣﹣1=3++3﹣﹣1=5.试题20答案:【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.试题21答案:【考点】待定系数法求反比例函数解析式;坐标与图形变化-旋转.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C(﹣1,2),∴OC==,∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′==.试题22答案:【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF ≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.试题23答案:【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根基被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.试题24答案:【考点】一元二次方程的应用.【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm,则依题意得:x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).因为8250<7680,所以采用规格为1.00×1.00所需的费用较少.试题25答案:【考点】切线的性质.【分析】(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.试题26答案:【考点】二次函数综合题.【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+S OCE关于m的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣+2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S△OAE+S OCE=OA•y E+OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.。
2022年广西百色市中考数学试卷(解析版)

2022年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合要求的)1.(3分)(2022•百色)﹣2023的绝对值等于()A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解答】解:因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.2.(3分)(2022•百色)35的倒数是()A.53B.35C.−35D.−53【分析】倒数:乘积是1的两数互为倒数.【解答】解:35的倒数是53,故选:A.【点评】本题考查了倒数,掌握倒数的定义是解答本题的关键.3.(3分)(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是()A.1B.12C.14D.16【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为12.故选:B.【点评】本题考查了用列举法求概率,解题的关键是熟练掌握概率公式,必然事件的概率为1,不可能事件的概率为0,如果A为随机事件,那么0<P(A)<1.4.(3分)(2022•百色)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣7【分析】方程移项合并,即可求出解.【解答】解:移项得:3x﹣2x=7,合并同类项得:x=7.故选:C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.(3分)(2022•百色)下列几何体中,主视图为矩形的是()A.三棱锥B.圆锥C.圆柱D.圆台【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:A.主视图为有一条公共边的两个三角形,故本选项不合题意;B.主视图为等腰三角形,故本选项不合题意;C.主视图为矩形,故本选项符合题意;D.主视图为等腰梯形,故本选项不合题意;故选:C.【点评】本题考查了三视图的知识.主视图是指从物体的正面看物体所得到的图形.6.(3分)(2022•百色)已知△ABC与△A'B'C'是位似图形,位似比是1:3,则△ABC与△A'B'C'的面积比是()A.1:3B.1:6C.1:9D.3:1【分析】利用为位似的性质得到△ABC与△A'B'C'相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC与△A'B'C'是位似图形,位似比是1:3,∴△ABC与△A'B'C'相似比是1:3,∴△ABC与△A'B'C'的面积比是1:9.故选:C.【点评】本题考查了位似变换:位似图形必须是相似形;对应点的连线都经过同一点;位似比等于相似比.也考查了相似三角形的性质.7.(3分)(2022•百色)某班一合作学习小组有5人,某次数学测试成绩数据分别为65、78、86、91、85,则这组数据的中位数是()A.78B.85C.86D.91【分析】将这组数据重新排列,再由中位数的定义求解即可.【解答】解:将这组数据重新排列为65、78、85、86、91,所以这组数据的中位数为85,故选:B.【点评】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(3分)(2022•百色)下列图形中,既是中心对称图形又是轴对称图形的是()A.平行四边形B.等腰梯形C.正三角形D.圆【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.9.(3分)(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD【分析】利用基本作图得到CD垂直平分AB,然后根据线段垂直平分线的性质对各选项进行判断.【解答】解:由作图痕迹得CD垂直平分AB,AE=BE,AC=BC,AB⊥CD.所以A选项不一定成立,B、C、D选项成立.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质.10.(3分)(2022•百色)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)【分析】根据平移与图形的变化规律进行计算即可.【解答】解:根据平移与图形变化的规律可知,将△ABC向左平移2个单位,再向上平移1个单位,其图形上的对应点B′的横坐标减少2,纵坐标增加1,由于点B(1,2),所以平移后的对应点B′的坐标为(﹣1,3),故选:D.【点评】本题考查坐标与图形变化,掌握平移前后对应点坐标的变化规律是正确判断的关键.11.(3分)(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【分析】左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,根据面积相等即可得出答案.【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.【点评】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方法进行求解是解决本题的关键.12.(3分)(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.23B.23−3C.23或3D.23或23−3【分析】根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH的长,再利用勾股定理求出BH,从而得出答案.【解答】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=3CH=,在Rt△CBH中,由勾股定理得BH=B2−B22∴AB=AH+BH==23,AD=AH﹣DH==3,故选:C.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作﹣5米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.【点评】本题考查正负数的意义,即:正负数可以表示具有相反意义的量.14.(3分)(2022•百色)因式分解:ax+ay=a(x+y).【分析】直接提取公因式a,进而分解因式即可.【解答】解:ax+ay=a(x+y).故答案为:a(x+y).【点评】此题主要考查了提取公因式法,正确找出公因式是解题关键.15.(3分)(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为135°.【分析】根据三角形外角定理进行计算即可得出答案.【解答】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.【点评】本题主要考查了角的计算,熟练掌握角的计算方法进行求解是解决本题的关键.16.(3分)(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为12米.【分析】设旗杆的高度为x米,根据“在同一时刻物高与影长的比相等”列方程即可解得答案.【解答】解:设旗杆的高度为x米,根据题意得:7.2=21.2,解得x=12,∴旗杆的高度为12米,故答案为:12.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.17.(3分)(2022•百色)小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(t)和路程(s)数据如表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米到达纪念馆,则小韦家到纪念馆的路程是212千米.t(小时)0.20.60.8s(千米)206080【分析】可设小韦家到纪念馆的路程是x千米,根据高速路行驶速度不变的等量关系列出方程计算即可求解.【解答】解:设小韦家到纪念馆的路程是x千米,依题意有:K7−520÷0.2=2,解得x=212.故小韦家到纪念馆的路程是212千米.故答案为:212.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.(3分)(2022•百色)学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中甲(填:甲、乙或丙)将被淘汰.甲乙丙应聘者成绩项目学历989笔试879上课788现场答辩898【分析】根据加权平均数的概念即可得出答案.【解答】解:∵如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,乙、丙的“上课”成绩大于甲的“上课”成绩,∴“上课”项目上权重大一些(其他项目比例相同),则丙得分最高,甲得分最低,∴三位应聘者中甲将被淘汰.故答案为:甲.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)(2022•百色)计算:32+(﹣2)0﹣17.【分析】首先计算乘方、零指数幂,然后从左向右依次计算,求出算式的值即可.【解答】解:32+(﹣2)0﹣17=9+1﹣17=﹣7.【点评】此题主要考查了有理数的乘方的运算方法,以及零指数幂的运算,解答此题的关键是要明确:a0=1(a≠0).20.(6分)(2022•百色)解不等式2x+3≥﹣5,并把解集在数轴上表示出来.【分析】利用不等式的性质即可求解.【解答】解:移项得:2x≥﹣5﹣3,合并同类项得:2x≥﹣8,两边同时除以2得:x≥﹣4,解集表示在数轴上如下:【点评】本题考查了解不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(6分)(2022•百色)已知:点A(1,3)是反比例函数y1=(k≠0)的图象与直线y2=mx(m≠0)的一个交点.(1)求k、m的值;(2)在第一象限内,当y2>y1时,请直接写出x的取值范围.【分析】(1)把A(1,3)代入解析式,即可求出答案;(2)根据图象和交点坐标即可求出答案.【解答】解:(1)把A(1,3)代入y1=(k≠0)得:3=1,∴k=3,把A(1,3)代入y2=mx(m≠0)得:3=m,∴m=3.(2)由图象可知:交于点(1,3)和(﹣1,﹣3),在第一象限内,当y2>y1时,x的取值范围是x>1.【点评】本题主要考查对一次函数与反比例函数的交点问题,用待定系数法求一次函数,能用待定系数法求出函数的解析式和会观察图象是解此题的关键.22.(8分)(2022•百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD ,其中AB =CD =2米,AD =BC =3米,∠B =30°.(1)求证:△ABC ≌△CDA ;(2)求草坪造型的面积.【分析】(1)利用全等三角形的判定方法,结合三边关系得出答案;(2)直接利用全等三角形的性质以及直角三角形中30度所对边与斜边的关系的得出对应边长,进而得出答案.【解答】(1)证明:在△ABC 和△CDA 中,∵B =B B =B B =B ,∴△ABC ≌△CDA (SSS );(2)解:过点A 作AE ⊥BC 于点E ,∵AB =2米,∠B =30°,∴AE =1米,∴S △ABC =12×3×1=32(平方米),则S △CDA =32(平方米),∴草坪造型的面积为:2×32=3(平方米).【点评】此题主要考查了全等三角形的判定与性质以及全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.23.(8分)(2022•百色)学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x (满分100分)分成四个等级(A :90≤x ≤100,B :80≤x <90,C :70≤x <80,D :60≤x <70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.根据信息作答:(1)参赛班级总数有40个;m =30;(2)补全条形统计图;(3)统计发现D 等级中七年级、八年级各有两个班,为了提高D 等级班级的朗诵水平,语文组老师计划从D 等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).【分析】(1)根据频率=频数总数进行计算即可;进而求出成绩在“C 等级”所占的百分比,确定m 的值;(2)求出“C 等级”人数即可补全条形统计图;(3)用列表法表示所有可能出现的结果,再根据概率的定义进行计算即可.【解答】解:(1)从两个统计图中可知,成绩在“A 等级”的有8人,占调查人数的20%,由频率=频数总数得,调查人数为:8÷20%=40(人),成绩在“C 等级”的学生人数为:40﹣8﹣16﹣4=12(人),成绩在“C 等级”所占的百分比为:12÷40=30%,即m =30,故答案为:40,30;(2)补全条形统计图如下:(3)从D等级的七年级2个班,八年级2个班中,随机抽取2个班,所有可能出现的结果情况如下:共有12种可能出现的结果,其中来自同一年级的有4种,所以从D等级的七年级2个班,八年级2个班中,随机抽取2个班,来自同一年级的概率为412=13.【点评】本题考查条形统计图、扇形统计图,概率的计算,掌握频率=频数总数是正确计算的前提,列举出所有可能出现的结果是计算相应概率的关键.24.(10分)(2022•百色)金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?【分析】(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,根据甲、乙两个工程队同时完成安装任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每天有m(100≤m≤140)间客房有旅客住宿,利用每天所有客房空调所用电费W=电费的单价×每天旅客住宿耗电总数,即可得出W关于m的函数关系式,再利用一次函数上点的坐标特征,即可求出W的取值范围.【解答】解:(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,依题意得:80r5=140−80,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴x+5=15+5=20.答:甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务.(2)设每天有m(100≤m≤140)间客房有旅客住宿,则W=0.8×1.5×8m=9.6m.∵9.6>0,∴W随m的增大而增大,∴9.6×100≤W≤9.6×140,即960≤W≤1344.答:该酒店每天所有客房空调所用电费W(单位:元)的范围为不少于960元且不超过1344元.【点评】本题考查了分式方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于m的函数关系式.25.(10分)(2022•百色)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB 的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.(1)求证:MC是⊙O的切线;(2)若AB=BM=4,求tan∠MAC的值.【分析】(1)根据垂直定义可得∠D=90°,然后利用等腰三角形和角平分线的性质可证OC∥DA,从而利用平行线的性质可得∠OCM=90°,即可解答;(2)先在Rt△OCM中,利用勾股定理求出MC的长,然后证明A字模型相似三角形△MCO∽△MDA,从而利用相似三角形的性质可求出AD,CD的长,进而在Rt△ACD中,利用锐角三角函数的定义求出tan∠DAC的值,即可解答.【解答】(1)证明:∵AD⊥MC,∴∠D=90°,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠MAD,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥DA,∴∠D=∠OCM=90°,∵OC是⊙O的半径,∴MC是⊙O的切线;(2)解:∵AB=4,∴OC=OB=12AB=2,∴OM=OB+BM=6,在Rt△OCM中,MC=B2−B2=62−22=42,∵∠M=∠M,∠OCM=∠D=90°,∴△MCO∽△MDA,∴B B=B B=B B,∴42B268,∴MD=83,∴CD=MD﹣MC=在Rt△ACD中,tan∠DAC=B B=43283=∴tan∠MAC=tan∠DAC=∴tan ∠MAC 的值为22.【点评】本题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,熟练掌握切线的判定与性质,以及相似三角形的判定与性质是解题的关键.26.(12分)(2022•百色)已知抛物线经过A (﹣1,0)、B (0,3)、C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F .(1)求抛物线的表达式;(2)求证:∠BOF =∠BDF ;(3)是否存在点M ,使△MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.【分析】(1)把A (﹣1,0)、B (0,3)、C (3,0)代入y =ax 2+bx +c ,即可得解;(2)根据正方形的性质得出∠OBC =∠DBC ,BD =OB ,再由BF =BF ,得出△BOF ≌△BDF ,最后利用全等三角形的性质得出结论;(3)分两种情况讨论解答,当M 在线段BD 的延长线上时,先求出∠M ,再利用解直角三角形得出结果,当M 在线段BD 上时,得出∠BOM =30°,类别①解答即可.【解答】(1)解:设抛物线的表达式为y =ax 2+bx +c ,把A (﹣1,0)、B (0,3)、C (3,0)代入得:0=−+3=0=9+3+,解得=−1=2=3,∴抛物线的表达式为:y =﹣x 2+2x +3;(2)证明:∵正方形OBDC ,∴∠OBC =∠DBC ,BD =OB ,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=B Bz0°=33,∴ME=BM﹣BE=33−2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=Bz0°⋅B=3,∴ME=BE﹣BM=2−3,综上所述,ME的值为:33−2或2−3.【点评】本题考查了二次函数的性质,正方形的性质,全等三角形的判定与性质,等腰三角形的性质及解直角三角形,分类讨论思想的运用是解题的关键.。
百色市田阳县实验中学2013届中考模拟考试数学试题(一)(附答案)
新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网 新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 2010年中考宝丰中学模拟考试(3)
数学卷答题纸
第Ⅰ卷答题卡(选择题,共36分) 第Ⅱ卷答题卷(非选择题,共84分)
学校:__________________ 准考证号:_______________
姓名:________________
……………………….装……………………………………………………订……………………………………………线…………………………………………….. 1.答题前,考生先将自己的姓名、准考证号码在答题纸上填写清楚。 2.请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效;在草 稿纸、试卷上答题无效。 3.保持卡面清洁,不要折叠、不要弄破。
题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案 [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [A] [B] [B] [B] [B] [B] [B] [B] [B] [B] [B] [B] [B] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [C] [D] [D] [D] [D] [D] [D] [D] [D] [D] [D] [D] [D]
二、填空题
三、解答题 17.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
13.____________________. 14.____________ ________ . 15.____________________ . 16.___________________ _.
18.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
广西百色市中考数学试卷(含答案、解析版)
2017年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.【考点】15:绝对值.【分析】根据绝对值的定义即可解题.【解答】解:∵负数的绝对值是它的相反数,∴|﹣15|等于15,故选A.2.多边形的外角和等于()A.180°B.360°C.720°D.(n﹣2)•180°【考点】L3:多边形内角与外角.【分析】根据多边形的外角和,可得答案.【解答】解:多边形的外角和是360°,故选:B.3.在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.6【考点】W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.4.下列计算正确的是()A.(﹣3x)3=﹣27x3B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】根据积的乘方等于乘方的积,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、积的乘方等于乘方的积,故A符合题意;B、幂的乘方底数不变指数相乘,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C不符合题意;D、同底数幂的乘法底数不变指数相加,故D不符合题意;故选:A.5.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC【考点】IJ:角平分线的定义.【分析】根据角平分线定义即可求解.【解答】解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.6.5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:44亿这个数用科学记数法表示为4.4×109,故选:B.7.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②【考点】U1:简单几何体的三视图.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:D.8.观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.121【考点】37:规律型:数字的变化类.【分析】根据已知数据得出规律,再求出即可.【解答】解:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.9.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°【考点】VB:扇形统计图;VC:条形统计图.【分析】根据条形统计图可以得到第一小组在五个小组中所占的比重,然后再乘以360°,即可解答本题.【解答】解:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.10.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.300【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选A.11.以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b 的取值范围是()A.0≤b<2B.﹣2C.﹣22D.﹣2<b<2【考点】MB:直线与圆的位置关系;F7:一次函数图象与系数的关系.【分析】求出直线y=﹣x+b与圆相切,且函数经过一、二、四象限,和当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时b的值,则相交时b的值在相切时的两个b的值之间.【解答】解:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=2.则OB=OC=2.即b=2;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣2.则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.12.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.若分式有意义,则x的取值范围为x≠2.【考点】62:分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.14.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.【考点】X4:概率公式.【分析】根据一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴随机抽取一张,抽中标号为奇数的卡片的概率是.故答案是.15.下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有②(填序号)【考点】O1:命题与定理.【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②,故答案为:②.16.如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【考点】Q3:坐标与图形变化﹣平移.【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).17.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是y=﹣x2+x+3.【考点】H8:待定系数法求二次函数解析式.【分析】根据A与B坐标特点设出抛物线解析式为y=a(x﹣2)(x﹣4),把C 坐标代入求出a的值,即可确定出解析式.【解答】解:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3,故答案为y=﹣x2+x+3.18.阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=(x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)三、解答题(本大题共8小题,共66分)19.计算: +()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+2﹣1﹣2+1=2.20.已知a=b+2018,求代数式•÷的值.【考点】6D:分式的化简求值.【分析】先化简代数式,然后将a=b+2018代入即可求出答案.【解答】解:原式=××(a﹣b)(a+b)=2(a﹣b)∵a=b+2018,∴原式=2×2018=403621.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.【解答】解:(1)将B点坐标代入函数解析式,得=2,解得k=6,反比例函数的解析式为y=;(2)由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).S△ACD=AD•CD= [3﹣(﹣3)]×|﹣2|=6.22.矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.【考点】LB:矩形的性质;L7:平行四边形的判定与性质.【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.23.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员环数次数12345甲10 8 9 10 8 乙 10 9 9 a b某同学计算出了甲的成绩平均数是9,方差是S 甲2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a +b= 17 ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a 、b 的所有可能取值,并说明理由.【考点】VD :折线统计图;W2:加权平均数;W7:方差.【分析】(1)根据表中数据描点、连线即可得;(2)根据平均数的定义列出算式,整理即可得;(3)由a +b=17得b=17﹣a ,将其代入到S 甲2<S 乙2,即 [(10﹣9)2+(9﹣9)2+(9﹣9)2+(a ﹣9)2+(b ﹣9)2]<0.8,得到a 2﹣17a +71<0,求出a 的范围,根据a 、b 均为整数即可得出答案.【解答】解:(1)如图所示:(2)由题意知,=9,∴a +b=17,故答案为:17;(3)∵甲比乙的成绩较稳定,∴S 甲2<S 乙2,即 [(10﹣9)2+(9﹣9)2+(9﹣9)2+(a ﹣9)2+(b ﹣9)2]<0.8,∵a +b=17,∴b=17﹣a ,代入上式整理可得:a 2﹣17a +71<0,解得:<a <,∵a 、b 均为整数,∴a=8时,b=9;a=9时,b=8.24.某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个. (1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a 个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.【解答】解:(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个,根据题意,得:,解得:, 答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a=3,答:参与的小品类节目最多能有3个.25.已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【考点】MI:三角形的内切圆与内心.【分析】(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.26.以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A (﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.【考点】LO:四边形综合题.【分析】(1)先确定出OA=4,OB=2,再利用菱形的性质得出OC=4,OD=2,最后用待定系数法即可确定出直线BC解析式;(2)分两种情况,先表示出点P的坐标,利用两点间的距离公式即可得出函数关系式;(3)分两种情况,利用勾股定理的逆定理建立方程即可求出点P的坐标.【解答】解:(1)∵A(﹣4,0),B(0,﹣2),∴OA=4,OB=2,∵四边形ABCD是菱形,∴OC=OA=4,OD=OB=2,∴C(4,0),D(0,2),设直线BC的解析式为y=kx﹣2,∴4k﹣2=0,∴k=,∴直线BC的解析式为y=x﹣2;(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣x+2,由(1)知,直线BC的解析式为y=x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+(舍)或a=2﹣,∴P(,2﹣),即:当△OPM 为直角三角形时,点P 的坐标为(,2﹣),(4,0).。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
(历年中考)广西省百色市中考数学试题含答案
1 2016年广西百色市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2016•百色)三角形的内角和等于()A .90°B .180°C .300°D .360°2.(3分)(2016•百色)计算:23=()A .5 B .6 C .8 D .9 3.(3分)(2016•百色)如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是()A .∠1=∠6 B .∠2=∠6 C .∠1=∠3 D .∠5=∠7 4.(3分)(2016•百色)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A .B .C .D .5.(3分)(2016•百色)今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A .3.89×102 B .389×102C .3.89×104 D .3.89×1056.(3分)(2016•百色)如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=()A .6 B .6C .6D .12 7.(3分)(2016•百色)分解因式:16﹣x 2=()A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )28.(3分)(2016•百色)下列关系式正确的是()A .35.5°=35°5′B .35.5°=35°50′C .35.5°<35°5′D .35.5°>35°5′9.(3分)(2016•百色)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量阅读量(单位:本(单位:本/周)0 1 2 3 4 人数(单位:人)1 4 6 2 2 A .中位数是2 B .平均数是2 C .众数是2 2 D D .极差是2 10.(3分)(2016•百色)直线y=kx +3经过点A (2,1),则不等式kx +3≥0的解集是()A .x ≤3 B .x ≥3 C .x ≥﹣3 D .x ≤0 11.(3分)(2016•百色)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是()A .﹣=30 B .﹣= C .﹣= D .+=30 12.(3分)(20162016••百色)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是(的最小值是( ) A .4 B .3 C .2D .2+二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2016•百色)的倒数是的倒数是 .14.(3分)(2016•百色)若点A (x ,2)在第二象限,则x 的取值范围是的取值范围是 . 15.(3分)(2016•百色)如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C=25°,则∠D= . 16.(3分)(2016•百色)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 .17.(3分)(2016•百色)一组数据2,4,a ,7,7的平均数=5,则方差S 2= . 18.(3分)(2016•百色)观察下列各式的规律:百色)观察下列各式的规律: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4…可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)= .三、解答题(本大题共8小题,共66分)19.(6分)(2016•百色)计算:+2sin60°+|3﹣|﹣(﹣π)0. 20.(6分)(2016•百色)解方程组:.21.(6分)(2016•百色)△ABC 的顶点坐标为A (﹣2,3)、B (﹣3,1)、C (﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B 、C 的对应点.应点.(1)求过点B′的反比例函数解析式;的反比例函数解析式;(2)求线段CC′的长.的长.22.(8分)(2016•百色)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.的大小.23.(8分)(2016•百色)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:进行分组统计,结果如表所示:组号组号 分组分组 频数频数一6≤m <7 2 二7≤m <8 7 三8≤m <9 a 四9≤m ≤10 2 (1)求a 的值;的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;内所对应的扇形图的圆心角大小; (3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).24.(10分)(2016•百色)在直角墙角AOB (OA ⊥OB ,且OA 、OB 长度不限)中,要砌20m 长的墙,长的墙,与直角墙角与直角墙角AOB 围成地面为矩形的储仓,围成地面为矩形的储仓,且地面矩形且地面矩形AOBC 的面积为96m 2. (1)求这地面矩形的长;)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m )的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?板砖费用较少?25.(10分)(2016•百色)如图,已知AB 为⊙O 的直径,AC 为⊙O 的切线,OC 交⊙O 于点D ,BD 的延长线交AC 于点E .(1)求证:∠1=∠CAD ;(2)若AE=EC=2,求⊙O 的半径.的半径.26.(12分)(2016•百色)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标;三点坐标;②求抛物线L 的解析式;的解析式;(2)求△OAE 与△OCE 面积之和的最大值.面积之和的最大值.2016年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)(2016•百色)三角形的内角和等于(百色)三角形的内角和等于( )A .90°B .180°C .300°D .360°【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题即可解本题【解答】解:因为三角形的内角和为180度.度.所以B 正确.正确.故选B .【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.2.(3分)(2016•百色)计算:23=( )A .5 B .6 C .8 D .9 【分析】根据立方的计算法则计算即可求解.根据立方的计算法则计算即可求解. 【解答】解:23=8.故选:C .【点评】考查了有理数的乘方,乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.3.(3分)(2016•百色)如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是(的是( )A .∠1=∠6 B .∠2=∠6 C .∠1=∠3 D .∠5=∠7 【分析】利用平行线的判定方法判断即可.利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a ∥b (同位角相等,两直线平行),则能使a ∥b 的条件是∠2=∠6,故选B 【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.(3分)(2016•百色)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是(个,随机抽取一个小球是红球的概率是( )A .B .C .D .【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.用红球的个数除以所有球的个数即可求得抽到红球的概率.【解答】解:∵共有5个球,其中红球有3个,个,∴P (摸到红球)=,故选C .【点评】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.之比.5.(3分)(2016•百色)今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为(记数法表示为( )A .3.89×102 B .389×102C .3.89×104 D .3.89×105【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.是负数. 【解答】解:将38900用科学记数法表示为3.89×104.故选C . 【点评】此题考查科学记数法的表示方法.此题考查科学记数法的表示方法.科学记数法的表示形式为科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.6.(3分)(2016•百色)如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( )A .6 B .6C .6D .12 【分析】根据30°所对的直角边等于斜边的一半求解.所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°BC=12sin30°=12=12×=6, 故答选A .【点评】本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.7.(3分)(2016•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )2【分析】直接利用平方差公式分解因式得出答案.直接利用平方差公式分解因式得出答案. 【解答】解:16﹣x 2=(4﹣x )(4+x ).故选:A .【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.8.(3分)(2016•百色)下列关系式正确的是(百色)下列关系式正确的是( )A .35.5°=35°5′B .35.5°=35°50′C .35.5°<35°5′D .35.5°>35°5′【分析】根据大单位化小单位乘以进率,可得答案.根据大单位化小单位乘以进率,可得答案.【解答】解:A 、35.5°=35°30′,35°30′>35°5′,故A 错误;错误;B 、35.5°=35°30′,35°30′<35°50′,故B 错误;错误;C 、35.5°=35°30′,35°30′>35°5′,故C 错误;错误;D 、35.5°=35°30′,35°30′>35°5′,故D 正确;正确;故选:D .【点评】本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.9.(3分)(2016•百色)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是(查,统计如表,则下列说法错误的是( )阅读量阅读量(单位:本(单位:本/周)0 1 2 3 4 人数(单位:人)人数(单位:人)1 4 6 2 2 A .中位数是2 B .平均数是2 C .众数是2 2 D D .极差是2 【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A 、B 、C 正确,D 错误.错误.故选D . 【点评】此题考查了极差,平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.10.(3分)(2016•百色)直线y=kx +3经过点A (2,1),则不等式kx +3≥0的解集是( ) A .x ≤3 B .x ≥3 C .x ≥﹣3 D .x ≤0 【分析】首先把点A (2,1)代入y=kx +3中,可得k 的值,再解不等式kx +3≥0即可.即可.【解答】解:∵y=kx +3经过点A (2,1),∴1=2k +3,解得:k=﹣1,∴一次函数解析式为:y=﹣x +3,﹣x +3≥0,解得:x ≤3.故选A .【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握待定系数法计算出k 的值.11.(3分)(2016•百色)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是(小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣=D .+=30 【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,小时, 根据题意得,﹣=. 故选B .【点评】本题考查由实际问题抽象出分式方程,本题考查由实际问题抽象出分式方程,关键是设出速度,关键是设出速度,关键是设出速度,以时间做为等量关系列方以时间做为等量关系列方程.程.12.(3分)(2016•百色)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是(的最小值是( )A .4 B .3C .2D .2+【分析】作点A 关于直线BC′的对称点A 1,连接A 1C 交直线BC 与点D ,由图象可知点D 在C′B 的延长线上,的延长线上,由此可得出当点由此可得出当点D 与点B 重合时,AD +CD 的值最小,由此即可得出结论,再根据等边三角形的性质算出AB +CB 的长度即可.的长度即可.【解答】解:作点A 关于直线BC′的对称点A 1,连接A 1C 交直线BC 与点D ,如图所示.,如图所示.由图象可知当点D 在C′B 的延长线上时,AD +CD 最小,最小,而点D 为线段BC′上一动点,上一动点,∴当点D 与点B 重合时AD +CD 值最小,值最小,此时AD +CD=AB +CB=2+2=4.故选A .【点评】本题考查了轴对称中的最短线路问题以及等边三角形的性质,本题考查了轴对称中的最短线路问题以及等边三角形的性质,解题的关键是找出点解题的关键是找出点D 的位置.本题属于基础题,难度不大,解决该题型题目时,找出一点的对称点,连接对称点与另一点与对称轴交于一点,由此即可得出结论.点与另一点与对称轴交于一点,由此即可得出结论.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2016•百色)的倒数是的倒数是 3 .【分析】直接根据倒数的定义进行解答即可.直接根据倒数的定义进行解答即可.【解答】解:∵×3=1,∴的倒数是3.故答案为:3.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.的两数互为倒数.14.(3分)(2016•百色)若点A (x ,2)在第二象限,则x 的取值范围是的取值范围是 x <0 . 【分析】根据第二象限内点的横坐标小于零,可得答案.根据第二象限内点的横坐标小于零,可得答案.【解答】解:由点A (x ,2)在第二象限,得)在第二象限,得x <0,故答案为:x <0.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.本题考查了点的坐标,熟记点的坐标特征是解题关键.15.(3分)(2016•百色)如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C=25°,则∠D= 65° .【分析】先根据圆周角定理求出∠A 的度数,再由垂径定理求出∠AED 的度数,进而可得出结论.出结论.【解答】解:∵∠C=25°,∴∠A=∠C=25°.∵⊙O 的直径AB 过弦CD 的中点E ,∴AB ⊥CD ,∴∠AED=90°,∴∠D=90°﹣25°25°=65°=65°. 故答案为:65°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.都等于这条弧所对的圆心角的一半是解答此题的关键.16.(3分)(2016•百色)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .【分析】根据三视图,根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;个;故答案为:5.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(3分)(2016•百色)一组数据2,4,a ,7,7的平均数=5,则方差S 2= 3.6 .【分析】根据平均数的计算公式:=,先求出a 的值,再代入方差公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.进行计算即可.【解答】解:∵数据2,4,a ,7,7的平均数=5,∴2+4+a +7+7=25,解得a=5,∴方差s 2=[(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6;故答案为:3.6.【点评】本题主要考查的是平均数和方差的求法,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].18.(3分)(2016•百色)观察下列各式的规律:百色)观察下列各式的规律: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4… 可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)= a 2017﹣b 2017. 【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可. 【解答】解:(a ﹣b )(a +b )=a 2﹣b 2; (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3; (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;…可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)=a 2017﹣b 2017, 故答案为:a 2017﹣b 2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分) 19.(6分)(2016•百色)计算:+2sin60°+|3﹣|﹣(﹣π)0.【分析】本题涉及二次根式化简、特殊角的三角函数值、绝对值、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:+2sin60°+|3﹣|﹣(﹣π)0=3+2×+3﹣﹣1 =3++3﹣﹣1 =5.【点评】本题主要考查了实数的综合运算能力,本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.是各地中考题中常见的计算题型.是各地中考题中常见的计算题型.解决此类解决此类题目的关键是熟练掌握二次根式化简、题目的关键是熟练掌握二次根式化简、特殊角的三角函数值、特殊角的三角函数值、特殊角的三角函数值、绝对值、绝对值、绝对值、负整数指数幂等考点负整数指数幂等考点的运算.的运算.20.(6分)(2016•百色)解方程组:.【分析】方程组利用加减消元法求出解即可.方程组利用加减消元法求出解即可.【解答】解:, ①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.加减消元法.21.(6分)(2016•百色)△ABC 的顶点坐标为A (﹣2,3)、B (﹣3,1)、C (﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B 、C 的对应点.应点.(1)求过点B′的反比例函数解析式;的反比例函数解析式;(2)求线段CC′的长.的长.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.求出解.(2)根据勾股定理求得OC ,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B 点的坐标为(﹣3,1),根据旋转中心O ,旋转方向顺时针,旋转角度90°,点B 的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C (﹣1,2),∴OC==,∵△ABC 以坐标原点O 为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′==.【点评】本题考查了图形的旋转、勾股定理的应用以及待定系数法求反比例函数的解析式,抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.22.(8分)(2016•百色)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.的大小.【分析】(1)由平行四边形的性质得出AB=CD ,AD ∥BC ,∠B=∠D ,得出∠1=∠DCE ,证出∠AFB=∠1,由AAS 证明△ABF ≌△CDE 即可;即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD 是平行四边形,是平行四边形,∴AB=CD ,AD ∥BC ,∠B=∠D ,∴∠1=∠DCE ,∵AF ∥CE ,∴∠AFB=∠ECB ,∵CE 平分∠BCD ,∴∠DCE=∠ECB ,∴∠AFB=∠1,在△ABF 和△CDE 中,,∴△ABF ≌△CDE (AAS );(2)解:由(1)得:∠1=∠ECB ,∠DCE=∠ECB ,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°65°=50°=50°. 【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23.(8分)(2016•百色)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:进行分组统计,结果如表所示:组号组号 分组分组 频数频数一6≤m <7 2 二7≤m <8 7 三8≤m <9 a 四9≤m ≤10 2 (1)求a 的值;的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;内所对应的扇形图的圆心角大小; (3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【分析】(1)根基被调查人数为20和表格中的数据可以求得a 的值;的值;(2)根据表格中的数据可以得到分数在8≤m <9内所对应的扇形图的圆心角大;内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,)由题意可得,a=20﹣2﹣7﹣2=9,即a 的值是9;(2)由题意可得,)由题意可得,分数在8≤m <9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.【点评】本题考查列表法与树状图法、频数分布表、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.找出所求问题需要的条件.24.(10分)(2016•百色)在直角墙角AOB (OA ⊥OB ,且OA 、OB 长度不限)中,要砌20m 长的墙,长的墙,与直角墙角与直角墙角AOB 围成地面为矩形的储仓,围成地面为矩形的储仓,且地面矩形且地面矩形AOBC 的面积为96m 2. (1)求这地面矩形的长;)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m )的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?板砖费用较少?【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;面积,求出即可; (2)分别计算出每一规格的地板砖所需的费用,然后比较即可.)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm ,则依题意得:,则依题意得:x (20﹣x )=96,解得x 1=12,x 2=8(舍去),答:这地面矩形的长是12米;米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.所需的费用较少.【点评】此题主要考查了一元二次方程的应用,此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,解题关键是要读懂题目的意思,解题关键是要读懂题目的意思,根据题目给根据题目给出的条件,找出合适的等量关系,列出方程,再求解.出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)(2016•百色)如图,已知AB 为⊙O 的直径,AC 为⊙O 的切线,OC 交⊙O 于点D ,BD 的延长线交AC 于点E .(1)求证:∠1=∠CAD ;(2)若AE=EC=2,求⊙O 的半径.的半径.【分析】(1)由AB 为⊙O 的直径,AC 为⊙O 的切线,易证得∠CAD=∠BDO ,继而证得结论;结论;(2)由(1)易证得△CAD ∽△CDE ,然后由相似三角形的对应边成比例,求得CD 的长,再利用勾股定理,求得答案.再利用勾股定理,求得答案.【解答】(1)证明:∵AB 为⊙O 的直径,的直径,∴∠ADB=90°,∴∠ADO +∠BDO=90°,∵AC 为⊙O 的切线,的切线,∴OA ⊥AC ,∴∠OAD +∠CAD=90°,∵OA=OD ,∴∠OAD=∠ODA ,∵∠1=∠BDO ,∴∠1=∠CAD ;(2)解:∵∠1=∠CAD ,∠C=∠C ,∴△CAD ∽△CDE ,∴CD :CA=CE :CD , ∴CD 2=CA•CE ,∵AE=EC=2,∴AC=AE +EC=4,∴CD=2,设⊙O 的半径为x ,则OA=OD=x , 则Rt △AOC 中,OA 2+AC 2=OC 2, ∴x 2+42=(2+x )2, 解得:x=.∴⊙O 的半径为.【点评】此题考查了切线的性质、圆周角定理以及相似三角形的判定与性质.注意证得△CAD ∽△CDE 是解此题的关键.是解此题的关键.26.(12分)(2016•百色)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标;三点坐标;②求抛物线L 的解析式;的解析式;(2)求△OAE 与△OCE 面积之和的最大值.面积之和的最大值.【分析】(1)以O 点为原点,点为原点,线段线段OA 所在的直线为x 轴,轴,线段线段OC 所在的直线为y 轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O 、P 、A 三点的坐标;②设抛物线L 的解析式为y=ax 2+bx +c ,结合点O 、P 、A 的坐标利用待定系数法即可求出抛物线的解析式;线的解析式;(2)由点E 为正方形内的抛物线上的动点,设出点E 的坐标,结合三角形的面积公式找出S △OAE +S OCE 关于m 的函数解析式,根据二次函数的性质即可得出结论.的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O 点为原点,线段OA 所在的直线为x 轴,线段OC 所在的直线为y 轴建立直角坐标系,如图所示.轴建立直角坐标系,如图所示.①∵正方形OABC 的边长为4,对角线相交于点P ,∴点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2).②设抛物线L 的解析式为y=ax 2+bx +c ,∵抛物线L 经过O 、P 、A 三点,三点,∴有,解得:,∴抛物线L 的解析式为y=﹣+2x .(2)∵点E 是正方形内的抛物线上的动点,是正方形内的抛物线上的动点,∴设点E 的坐标为(m ,﹣+2m )(0<m <4),∴S △OAE +S OCE =OA•y E +OC•x E =﹣m 2+4m +2m=﹣(m ﹣3)2+9,∴当m=3时,△OAE 与△OCE 面积之和最大,最大值为9.【点评】本题考查了待定系数法求函数解析式、本题考查了待定系数法求函数解析式、正方形的性质、正方形的性质、正方形的性质、三角形的面积公式以及二次三角形的面积公式以及二次函数的性质,解题的关键是:(1)建立直角坐标系.①根据正方形的性质找出点的坐标;②利用待定系数法求函数解析式;(2)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,建立直角坐标系,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.系数法求出函数解析式是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年广西百色市中考数学试卷 一.选择题(本大题共12小题,每小题3分,共36分.)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑. 1.(2013百色)﹣2013的相反数是( )
A.﹣2013 B.2013 C. D.﹣ 考点:相反数. 分析:根据相反数的概念解答即可. 解答:解:﹣2013的相反数是﹣(﹣2013)=2013. 故选B. 点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.(2013百色)已知∠A=65°,则∠A的补角的度数是( ) A.15° B.35° C.115° D.135° 考点:余角和补角. 分析:根据互补两角之和为180°求解. 解答:解:∵∠A=65°, ∴∠A的补角=180°﹣∠A=180°﹣65°=115°. 故选C. 点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°. 3.(2013百色)百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程.其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目.那么数据282 000 000用科学记数法(保留两个有效数字)表示为( ) A.2.82×108 B.2.8×108 C.2.82×109 D.2.8×109 考点:科学记数法与有效数字. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于282 000 000有9位,所以可以确定n=9﹣1=8.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:282 000 000=2.82×108≈2.8×108. 故选:B. 点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 4.(2013百色)下列运算正确的是( ) A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6 D.5x3÷x2=5x 考点:整式的除法;合并同类项;幂的乘方与积的乘方. 分析:根据整式的除法,幂的乘方与积的乘方,合并同类项分别进行计算,即可得出答案. 解答:解:A.不是同类项,不能相加,故本选项错误; B.3x2y﹣2x2y=x2y,故本选项错误; C.(2a2)3=8a6,故本选项错误; D.5x3÷x2=5x,故本选项正确. 故选D. 点评:此题考查了整式的除法,幂的乘方与积的乘方,合并同类项,掌握运算法则是本题的关键. 5.(2013百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为( ) A.6cm2 B.4πcm2 C.6πcm2 D.9πcm2 考点:由三视图判断几何体;几何体的表面积. 分析:易得此几何体为圆柱,底面直径为2cm,高为3cm.圆柱侧面积=底面周长×高,代入相应数值求解即可. 解答:解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱, 故侧面积=π×2×3=6πcm2. 故选:C. 点评:主要考查了由三视图判断几何体及几何体的展开图的知识;本题的易错点是得到相应几何体的底面直径和高.
6.(2013百色)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx的图象大致是图中的( )
A. B. C. D. 考点:二次函数图象与系数的关系;反比例函数的性质. 分析:根据反比例函数图象的性质确定出m<0,则二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴,即可得出答案.
解答:解:∵反比例函数y=,中,当x>0时,y随x的增大而增大, ∴根据反比例函数的性质可得m<0; 该反比例函数图象经过第二、四象限, ∴二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴. ∴只有A选项符合. 故选A. 点评:本题考查了二次函数图象、反比例函数图象.利用反比例函数的性质,推知m<0是解题的关键,体现了数形结合的思想. 7.(2013百色)今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是( ) 第 3 页 共 15 页
A.33℃,33℃ B.33℃,32℃ C.34℃,33℃ D.35℃,33℃ 考点:众数;折线统计图;中位数. 分析:将数据从小到大排列,由中位数及众数的定义,可得出答案. 解答:解:31,32,32,33,33,33,34,34,35,35, 这组数据的中位数是:33, 众数是:33. 故选A. 点评:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的10个数据. 8.(2013百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是( )
A.25° B.30° C.40° D.50° 考点:圆周角定理;垂径定理. 分析:由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C=50°;则在直角△BOE中,利用“直角三角形的两个锐角互余”的性质解题. 解答:解:如图,∵在⊙O中,直径CD垂直于弦AB,
∴=, ∴∠DOB=2∠C=50°. ∴∠ABO=90°﹣∠DOB=40°. 故选C.
点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 9.(2013百色)如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD的
长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH. 其中正确的有( )
A.①②③ B.①③④ C.②④D.①③ 考点:平行四边形的性质;作图—复杂作图. 分析:根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形. 解答:解:根据作图的方法可得AG平分∠DAB, 故①正确; ∵AG平分∠DAB, ∴∠DAH=∠BAH, ∵CD∥AB, ∴∠DHA=∠BAH, ∴∠DAH=∠DHA, ∴AD=DH, ∴△ADH是等腰三角形, 故③正确; 故选:D. 点评:此题主要考查了平行四边形的性质,以及角平分线的做法,关键是掌握平行四边形对边平行.
10.(2013百色)不等式组的解集在数轴上表示正确的是( )
A. B. C. D. 考点:在数轴上表示不等式的解集;解一元一次不等式组. 分析:分别计算出两个不等式的解集,再求其公共部分.
解答:解: 由①得,x≤1; 由②得,x>﹣2; ∴不等式组的解集为﹣2<x≤1.
在数轴上表示为:, 故选B. 点评:本题考查了解一元一次不等式组,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线. 11.(2013百色)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是( ) 第 5 页 共 15 页
A.1 B. C. D.2 考点:翻折变换(折叠问题);矩形的性质;勾股定理. 分析:由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′E=x,由勾股定理即可得:x2+4=(4﹣x)2,解此方程即可求得答案. 解答:解:∵四边形ABCD是矩形, ∴∠A=90°,
∴BD==5, 由折叠的性质,可得:A′D=AD=3,A′E=AE,∠DA′E=90°, ∴A′B=BD﹣A′D=5﹣3=2, 设A′E=x, 则AE=x,BG=AB﹣AE=4﹣x, 在Rt△A′BE中,A′E2+A′B2=BE2, ∴x2+4=(4﹣x)2,
解得:x=.
∴A′E=. 故选C. 点评:此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
12.(2013百色)如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是( )
A.24 B.48 C.96 D.192 考点:一次函数综合题;规律型;等边三角形的性质. 分析:首先求得点A与B的坐标,即可求得∠OAB的度数,又由△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,易求得OB1=OC=,A1B1=A1C,A2B2=A2C,则可得规律:OAn=(2n﹣1).根据A5A6=OA6
﹣OA5求得△A5B6A6的边长,进而求得周长.
解答:解:∴点A(﹣,0),点B(0,1), ∴OC=,OD=1,